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It is shown that a real physical problem exists which, when calculated in first-quantized electro-
dynamics, possesses a convergent perturbation expansion. The result is demonstrated by proving
the analyticity in a region of nonzero radius about the origin in the complex coupling-constant plane,
of the transition probability for pair creation by two electromagnetic fields. Some singularities in
the complex plane are located, which limit the radius of convergence only for a discrete set of values
for the energies of the electromagnetic fields which define the problem.

INTRODUCTION

ERTURBATION theory has played a funda-
mental role in the development of quantum
field theory. Although the existence of large coupling
constants for the strong interactions has now led to
the development of methods which avoid it, pertur-
bation theory is still the backbone of quantum
electrodynamics. As such, the question of the
convergence of perturbation theory has been the
subject of considerable discussion (and controversy)
in the literature.'
The investigation of this paper is directed towards

* Based on portions of a thesis submitted in partial
fulfillment of the requirements for the degree of Doctor of
Philosophy at the University of Maryland, 1958.

1F. J. Dyson, Phys. Rev. 85, 631 (1952); C. A. Hurst,
Proc. Cambridge Phil. Soc. 48, 625 (1952); W. Thirring,
Helv. Phys. Acta 26, 33 (1953); A. Petermann, Arch. Sci.
Phys. Nat. 6, 5 (1953); Phys. Rev. 89, 1160 (1953); R.
Utiyama and T. Imamura, Prog. Theoret. Phys. (Kyoto) 9,
431 (1953); M. Fierz, Proceedings of the Fifth Annual Rochester
Conference on High-Energy Physics, (Interscience Publishers,
Inc., New York, 1955), p. 67. D. R. Yennie and S. Garten-
haus, Proceedings of the Midwest Conference on Theoretical
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E. R. Caianiello, Nuovo cimento 8, 170 (1958).

the demonstration that a real problem exists which
leads to a perturbation series that will converge
within the framework of Dirac theory, i.e., a non-
second-quantized theory. The procedure employed
is to use the known solution® for the interaction
of two plane-wave electromagnetic fields in which
one of the fields is treated as a perturbation, but
the other may have arbitrary strength. The analytic
properties of the transition probability as a function
of the field-strength parameter of this second field
are then examined to determine the radius of con-
vergence of a power series in this parameter. This
power series is the perturbation expansion for this
c-number theory. It is shown that, except for a
denumerable set of values of the expansion param-
eter, the series has a nonzero radius of convergence.
PROCEDURE

The problem considered in ALL was the pair
production resulting from the interaction of two

2 H. R. Reiss, J. Math. Phys. 3, 59 (1962). Since the title

of this paper is ‘“Absorption of Light by Light,” it will be
referred to hereafter as ALL.
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388 HOWARD
plane-wave electromagnetic fields propagating in
opposite directions. Any other angle of collision of
the two fields can be obtained by Lorentz trans-
formation, with the obvious exception of the case
of parallel propagation, for which there is no inter-
action. The fields were taken to be plane polarized,
and the two independent cases of parallel or per-
pendicular relative polarization of the fields were
calculated. The results from these two cases are
quite similar, and their analytic properties are the
same, so only one of these cases will be treated here.

The probability for the creation of an electron
pair per unit volume per unit time by the head-on
collision of a plane wave of frequency « and arbi-
trary strength, with a weak plane wave of frequency
&, with the two waves polarized perpendicular to
each other, is®

mz 5 ! f t_dh
8 qg% (aqu) (1 — M

0
/2 z " a\ cos’ v o
fo d”l:ax Fit:z07T g ]°]'

The convention is employed that A = ¢ = 1. The
parameter z is the perturbation expansion parameter,
since it is z = 2(ae/m)?; where a is the amplitude of
the vector potential for the plane wave of arbitrary
strength, and e and m are the electron charge and
mass. The parameter # refers to the weak plane
wave. The quantity w = wd/m’ is the product
of the photon energies of the two fields, measured
in units of electron mass, and « is an abbreviation
for gqw — 1 — 2. The functions IZ, and I} are defined
in terms of the family of integrals

W=

(1)

2%
I, =f d8(cos nb)

X exp [¢q(b, sin 6 4+ 3b,sin 26 + 6)]. (2
I?, is defined to be
n =207 = Iy = L, 3)

go that it is not actually a square of any I, integral,
although it is a quadratic combination of them. The
quantities in the exponential function in the I,
integrals are

b, = 2(2zaN)i(oX + 1 + 2)'siny

by = zlaA + 1 +2)7%. 4)
Finally, the lower limit on the sum over ¢ in Eq. (1)
is ¢o = [(1 + 2)/w], where the square bracket is
defined to mean the smallest integer containing

1+ 2)/w.
Equation (1) is identical to Eq. (16) of ALL,
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but with a change of integration variables to simplify
the type of analysis required here. The integration
variables used in ALL were { and p,, which are
related to X and » by

¢ =mar+ 142
A= (g/m =1 =2/
v = arcsin [(p./m)(¢/m* — 1 — 2)71,
with the Jacobian
3¢, p)/oN, ») = m*(@’B) cos ».

The convergence of a perturbation expansion of
Eq. (1) is to be investigated. The expansion param-
eter is 2z, which is proportional to the square of the
electron charge. In principle, a perturbation expan-
sion should be in powers of e rather than e*; but
examination of Eq. (1) shows that 2'/? occurs only
in by, given in Eq. (4). From a theorem proved in
ALL, both I and I}, are even in b,, so that any
expansion of W in powers of z/* would lead to a
series in powers of z.

In view of the familiar Cauchy-Taylor theorem
that the necessary and sufficient condition for a
funetion to be expansible in a power series is that
it should be analytic in a region, the analytic
behavior of W as a function of z will be examined in
the neighborhood of the origin in the complex z
plane. Since it has not been found possible to locate
the singularity closest to the origin, the technique
employed is to show that there exists a nonzero
radius of convergence, without establishing the
upper bound to this radius. In Eq. (1), W is given
as a series in the index g, which is unrelated to the
perturbation series. It will be shown that the terms
in the ¢ series are analytic and that the ¢ sum
converges uniformly in a certain region. It then
follows that W 1is analytic in that region. The
uniform convergence property of the ¢ series is
demonstrated by finding a uniform bound for the
general term in the ¢ series such that the sum of
the uniform bounds is convergent.

P = mla)} sin»

SINGULARITIES

The dependence on z of the lower limit of the ¢
sum in Eq. (1) is given by

g = [(1 + 2)/w].

This means that for some fixed value of w, as z is
increased the value of (1 + 2z)/w must eventually
pass through an integer value. When this happens
a new term of nonzero value is added to W, so that
the derivative of W with respect to z is singular at
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such a value of z, and W is thus not an analytic
funetion of z at such a point.

When 2z = 0, then ¢, = [1/w]. There will be no
singularity until z increases from zero sufficiently
that

1+ 2/w = [1/w],
or when
z = w[l/w] — 1. (5)

Equation (5) thus represents a limit on the radius of
convergence of a perturbation expansion. To make
the algebraic behavior of Eq. (5) more manifest, set

1/w=¢q—3 0ZL5<L.
Then, from Eq. (5)
z2=23/(gp—19), 0ZLs<L (6)

Between consecutive discontinuities, Eq. (6) repre-
sents a hyperbola in z and 4, which rapidly
approaches a straight line for large values of the
parameter g,.

The summand in ¢ contains as a factor «'/%, which
is an irrational function of z. To see if it really
introduces a branch point at z = qw — 1, or if the
rest of the summand contributes a further o'®
factor, set v = o' and examine the parity of the
various terms in % which arise from elimination of
z in favor of u. The b, function is odd in u, but it
is known that I; and I%, are even functions of by,
and depend otherwise only on even powers of u,
so they are also even functions of u. The only other
appearance of « is its direct occurrence as a factor
in the summand. The integration operations
indicated in the summand cannot introduce any
additional odd factors of u, so there is a real branch
point at © = 0, i.e., at z = qw — 1. Since this con-
dition holds for every g term, the radius in z is
limited by 2z = ¢ow — 1. This is identical with Eq.
(5), so the branch point at « = 0 has given no
new limitation on the region of analyticity.

The integrations over A and » and those involved
in I? and I?, can introduce no singularities which do
not already exist in the integrands. This is true by the
theorem which states that if, for any definite
integral the integrand is a continuous function of
2z and of the integration variable over the entire
closed interval of integration, for z within some
closed region, and if the integrand is analytic in z
within this region for the entire integration interval,
then the integral is analytic in z within the entire
region. The I} and I3, functions have integrands
which are exponential functions, so the continuity
and analyticity conditions are satisfied everywhere

389

except at the pole which occurs in both b, and b, at

()

From Eq. (7), as \ increases from 0 to 1, z moves
along the negative real axis from —1 and approaches
— o, This pole in the exponential function cannot
be removed by any of the integrations or the sum-
mation, so a line of singularities exists along the
negative real z axis from —1 to — . It is interesting
to compare this behavior with the results of another
investigation® in which the ¢ series in Eq. (1) was
split into a finite part consisting of all the smaller
indices, and an infinite remainder series starting
at a very large ¢ value. This last part was evaluated
using the asymptotic results valid for real z and
very large ¢, and then the total result for W was
extended into the complex 2z plane. This approxima-
tion for W was found to be analytic everywhere in
the complex plane cut along the negative real
line from —1 to — «, except for the point given by
Eq. (5).

For fixed ¢, the » integrand is analytic in z in
the entire finite 2z plane with the exception of
negative real z less than —1, and before integration,
the I? and I%, integrands are continuous in » (and A).
Hence the v integrand is continuous in » (and \)
and the result of the » integration is analytic in
the finite 2 plane and continuous in A. The X integral
is then also analytic in the finite z plane. Therefore,
any given term in the ¢ sum is analytic in z except
when z = qw — 1, or when zis real and < — 1.

z= —1— quwr/(1 = N).

UNIFORM BOUNDS

The establishment of a bound for the general
term in the ¢ sum hinges upon finding bounds for
I, and I,. These functions, Eq. (2) with Eq. (4),
exhibit rapid oscillations in the integrand, partic-
ularly for large ¢, so that no bound (which will lead
to a convergent ¢ sum) is immediately evident from
Eq. (2). If, however, the path of integration in 6
can be deformed into the complex 6 plane to
coincide (at least in part) with the paths of steepest
descent from the saddle points which exist there,
then the imaginary part of the exponential function
in the integrand of Eq. (2) is constant, and a bound
can be found simply from the largest value of the
real part of the exponential function on the path
of integration, i.e., at one (or more) of the saddle
points.

$H., R. Reiss, Ph.D. Thesis, University of Maryland
(1958); NAVORD Report 6180, U. S. Naval Ordnance
Laboratory (1958).
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Write I, as

I = [ doexn laf(0),

where

f(8) = (b, sin 8 + b, sin 20 + 9), (8)

and C represents a suitable contour which will
shortly be specified in detail, and which is obtained
by deformation of the original path along the real
axis from O to 2x. f(0) has the property

fa — 0 = —flx + 0) + 2m 9

so that any saddle point which is found shows the
existence of another saddle point at a location
symmetrical with respect to inversion through the
point # = =. The condition f'(§) = 0 locates the

saddle points at
oy
ab, | \ab,

or, from Eq. (4) at
cos 6, = —(a) sin® »/22)

=+ i[(e\ cos® v + 1)/22)%. (10)
Equation (10) defines four saddle points. It will be
proved below that [cos 6,,/] > 1, so none of these
saddle points can occur on the real axis. The sym-
metry condition Eq. (9) states that two of the
saddle points must be in the upper half-plane, and
the other two in the lower half-plane.

Let 6. and 6; be the real and imaginary parts
of 6. Then the real part of f(8) is, from Eq. (8),

Re f(6) = —B, cos 6, sinh 6, — v, sin 6, cosh 6,
— 18, cos 26, sinh 26,
— %v,sin 26, cosh 26, — 4.,

cos B, =

- b»]*
2b, '

(11)

where b, and b, have been split into real and
imaginary parts by

by = 6, + 7y,
On the real axis,
(6/06,) Re f(6) = —8, cos 6,
— By cos268, — 1,

b, = B2 + ©7v..

9, =0, (12

which suggests that if 8, and 8, are sufficiently
small, Re f(6) will decrease for all 8, if the path of
integration on the real axis is displaced upwards
into the upper half-plane. The extrema of the
right-hand side of Eq. (12) occur for

6, = 0, m, arccos (—B,/48,).

It will be required that Eq. (12) must be negative
for all these extrema. For both 6, = 0 and 6, = =,
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this is assured by
|br] + [b] < 1. (13)
For 6, = arccos (—8,/48;) the condition becomes
3 1611/162] + |b2] < 1. (14)

In general, however, |b,] can be bounded in terms
of |b,], since from Eq. (4),

by g sin® v _
by “ar+ 142z
s0 that, for [z| < 1,
51 < 8 Ibal. 15)

Equation (15) is always true for |2] < 1. If Eq. (13)
is to be satisfied also, then

1by] < 5 — 2(6)%. (16)

If, on the other hand, Eqgs. (15) and (14) are to be
true simultaneously, then

[bs] < 1/9.

A bound on |b,| has immediate significance for |z,
since it follows from Eq. (4) that

le] < [ba]/(1 + [ba]).

Therefore, Eq. (16) will be accepted as a restriction
of |b.], since it is the more stringent of the two
possible bounds. Thus, only

<3 -6
shall be considered.

The negative property of Eq. (12) requires that
any path which crosses the real axis must be such
that Re f(#) decreases as the path goes from the
lower to the upper half-plane. In particular, any
path of constant imaginary part which passes
through a saddle point with 8; > 0, and which
crosses the real axis, must be a path of steepest
ascent from the saddle point. Therefore, any path
of steepest descent from a saddle point with ; > 0
must lie wholly within the upper half-plane. From
Eq. (11), as 6, — + o,

Re f(6) > «, B2 cos 20, + v.sin 26, < 0
Re f(6) » — o, B2 cos 26, 4 v, sin 26, > 0.

an

Since the trigonometric functions of argument 26,
possess two separated regions in an interval of
length 27 where they take on a given sign, then these
relations state that there will be two regions in
6. where Re f(6) — o, separated by two regions
where Re f(8) — — . The curve of steepest descent
from one of the saddle points in the upper half-plane
must then go from one region where Re f(§) —» —
at 6, — o, through the saddle point, to the other
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region where Re f(f) —» — « at §; —» », thus en-
closing one of the regions where Re f(§) — «. Hence,
one branch of the path of steepest ascent from this
same saddle point can ascend between the two
branches of the path of steepest descent to the
region at §; — « where Re f(6) — o« ; but the other
branch of this path of steepest ascent is excluded
from reaching any other such region in the upper
half-plane, because both these regions are enclosed
by paths of steepest descent which cannot be
crossed. Hence, the second branch of the path of
steepest ascent must cross the real axis into the
lower half-plane.

All the comments above which refer to paths of
steepest descent (or ascent) from saddle points in
the upper half-plane, apply as well to paths of
steepest ascent (or descent) from saddle points
in the lower half-plane. The geometry of these
paths may be clarified by Fig. 1, where the partic-
ular location of the saddle points is not of signif-
icance, but the qualitative behavior of the paths
through the saddle points is the feature of interest.
It can be shown that any one complete path of
steepest descent in the upper half-plane can have
no more than two intersections with a line of con-
stant 6;. To show this, note first that the imaginary
part of f(6) is

Im f(6) = B, sin 8, cosh 8, — ~, cos 6, sinh 6,
+ 18, sin 26, cosh 28, — 1y, cos 26, sinh 26, -+ 4,

so that, for constant 6,, the partial derivative with
respect to 6, of Im f(6) has the form

(0/86,) Im {(8) = a,sin 6, + a, cos 6,

+ a;sin 26, + a, cos 26, + as. (18)
This is equivalent to the expression
(6/96,) Im () = e ***G'"), (19)

where G(exp ©6,) is a polynomial of fourth degree
in exp 76,. Equation (19) can vanish only when @G
does, which will happen for at most four values in
the interval 0 < 6, < 2. Thus Im f(8) can have
no more than four extrema as a function of 6, in
0 < 6, < 27. Since Im f(6) is continuous in 6,,
it can therefore take on any particular value at
most at only four points in 0 £ 6, < 27. For any
constant #; which is greater than the lowest point
on a curve of steepest descent from a saddle point in
the upper half-plane, the curve of steepest descent
will cross the line of constant 6, at least twice.
Since the curve of steepest ascent from the same
saddle point goes from 6, = + o to 8, = — o, it
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F1a. 1. Geometry of the saddle points and paths of steepest
ascent and descent from them. Small circles show the saddle-
point locations. Arrows on the curves indicate the direction
of increasing Re f(6).

must cross the same line of constant 6, at least
once. Hence, the line of constant 6; is crossed at
least three times by curves along which Im f(6) has
the same saddle point value. If, however, one of the
lines of constant Im f(#) should oscillate with 6,,
and loop back across the line of constant 6;, then
five crossings would occur by curves with the same
value of Im f(#). This is impossible, so the paths of
steepest descent from the saddle points in the upper
half-plane cannot oscillate, but must increase
monotonically towards §; — « as 8, departs from
the location of the minimum in the steepest descent
curve.

It has now been shown that there are two saddle
points in the upper half-plane; that the paths of
steepest descent from these saddle points are wholly
contained in the upper half plane; and that these
paths cannot oscillate across a line of constant ;.
Consequently, sufficient information is at hand to
make plausible the specific choice of a path of
integration in the complex 6 plane. This path is
to be such that the largest value of Re f(8) which
occurs along it is to occur at a saddle point, and the
total length of the path is to be finite. A path with
these properties can be constructed from a combina-
tion of the paths of steepest descent from the saddle
points and a line of constant 6,, which 64; is to
coincide with the larger of the #; coordinates of
the two saddle points in the upper half plane. With
reference to Fig. 2, starting at the lower-lying
saddle point, the path of steepest descent is fol-
lowed to the point at the intersection of this path
with the line of constant 6;, then the line of con-
stant 8, is followed to the second saddle point, the
path of steepest descent followed to its intersection
with the line of constant 8;, and the line of constant
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Fia. 2. Path of integration in the complex ¢ plane, Circles
labeled I and IT mark the saddle point locations. Heavy
arrowed lines show the path of integration.

6; followed to the path of steepest descent from the
first saddle point, which is followed to the saddle
point itself. The language of this description takes
tacit cognizance of the periodicity of the I, (and I,)
integrands, so that the lines 8 = 0 and 8 = 27 are
viewed as being identical. In terms of the labeling
of Fig. 2, the path of integration is to be I to A to
II (or B) to C to D to I, with an obvious modification
if the second saddle point should be at C rather
than where shown. A link with the original path of
integration may be established by a line from the
origin along # = 0 to the new path, and another
line along 6 = 27 from the new path to 6, = 0.
Contributions to the integral from these additions
to the path will cancel because of the periodicity
of the integrand.

To find how Re f(6) varies along the path, note
that (8/06,) Re f(8) for constant 6, gives an expres-
sion identical in form to Eq. (18). Hence there are
no more than four extrema in (8/06,) Re f(8) for
constant 6,. Consider 6; = 6,, + A, where 6,,, is
the 6; coordinate of saddle point II in Fig. 2, and
A represents a small upward displacement. Take
the points A through D in Fig. 2 to be at
6; = 8., + A, so that IT and B are no longer coinci-
dent. There must be a maximum with respect to
6. in Re f(8) between D and A, and another between
B and C. Because of the limitation to four extrema
at constant 6;, no more than these two maxima
can occur. In particular, since there can be no
maximum between A and B, the highest point in
terms of Re f(#) on the path segment AB is at
either A or B, and this highest point is of necessity
smaller than the larger of the two saddle-point
values. This conclusion is true for any A > 0,
so from the continuity of f(#) it remains true when
A — 0. Similar considerations apply to the path
segment C'D, so it must be true that

]euf(ﬂ)l S ,eaf(eap)]
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along the entire path, where 8,, denotes that saddle
point in the upper half-plane which has the larger
value of Re f(8).

The total path length involved can be bounded
by observing that the paths of steepest descent
cannot cross the real axis, and 6; must therefore
decrease by less than 6,, in going from 6; = 6,, to
the lowest point on the steepest descent curve. The
path length would then be bounded by 27 + 46,,
except for one possible complication. Although it
was shown that a path of steepest descent cannot
oscillate across a line of constant 6;, similar con-
siderations show that there can be one such oscilla-
tion across a line of constant 6.. Thus, to account
for this possibility, the path length is bounded by
6r -+ 46,,.

It now remains to place a bound on Re f(8,,).
From the definition of f(8), Eq. (8),

Re f(6.,) = —1Im (b, sin 6,,)
— Im (3b, 8in 26,;) — 0,45.
A upper bound on this is given by
Re f(0,) < |by sin 6,,]
+ [5b, sin 26, — 6..p. (20)

The first two terms in Eq. (20) are most readily
investigated in terms of their squares. It is most
convenient to start with the second term, and to
regard its square as a product of {b, cos® 6,,] and
|b, sin® 6,,].
From Eqgs. (4) and (10), it follows that
[b; cos® 8,,] < % Jah + 1 + 27" [la) cos 2v + 1]
+ 2sin v j(eN) (e cos® » + D] (21)
With the notation
a=quw— 14 |7
then |o] < &, and
loA cos 2v + 1] < @\ |cos 2| + 1
[N} cos” » + 1)} < (@)@ cos® » + 1)}
leh + 142 >ax+ 1 — [z
Thus Eq. (21) can be rewritten
|b; cos® 8,,] < 2@\ + 1 — |z))7'[@\ [cos 2]
+ 1 + 2sinv@)i@ cos’» + 1. (22)

Viewed as a function of », the numerator on the

right-hand side of Eq. (22) has extrema when
a\cos2 + 1 = £27an + 1),

v = i,

where the ambiguous sign is given by the sign of
cos 2v. These extrema give the values
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(@ + 117, 2@ +1, 2+2@+1)
for the square bracket in Eq. (22). Since the last
value is the largest of the three for all values of aj,
it is always true that
[by cos® 8,y

<@ +1-—k)7+2%+ D] (23)
As a function of A, Eq. (23) attains its maximum
value when A = 0. Then
b, cos® 8,,] < (1 — 271+ 27H)
represents a bound which is a function of |z| only.
The denominator in Eq. (24) is always positive in
view of the restriction imposed by Eq. (17).
Starting from
[, sin® 6,,] < 3 lah + 1 4 2|7 [|a) cos 2
+ 1 4+ 22| + 2sin »[@N}a cos® » + 1)},
It follows in the same way as above that
b2 sin” 6,0 < (1 = DM@+ 27 4 ). (25)

The first term on the right-hand side in Eq. (20)
can be bounded in terms of Eq. (25) by use of
Eq. (15), since then,

(b sin® 6,,] < 8 |by sin® 6,;]. (26)

Since the saddle points through which the path
of integration is taken lie above the real axis, then
the third term in Eq. (20) will subtract from the
contribution of the first two terms, and an upper
bound on Re f(6,;) follows from taking a lower
bound for 6,,,. If cos @ is written in terms of its
real and imaginary parts,

(29)

Re cos 8§ = cos 6, cosh 6,

Im cos § = —sin 4, sinh 6,,
a straightforward derivation leads to
cosh 20, = |cos 6/°

=+ [|cos 8]* — 2Re (cos® 6) + 1]%. @27
Since
lcos® 8] > |Re (cos® 6)],

then
[|cos® 6> — 2Re (cos® 6) -+ 11} > [(Jeos® 8] — 1)*}L.
It will appear below that |cos 8] > 1. This removes
the sign ambiguity in Eq. (27), and gives

cosh 20, > 2 |cos® 6] — 1. (28)

To place a lower bound on [cos 6] at the saddle
points, it is convenient to write cos 6,, from Fq.
(10) as

c0s 0, = (22"~ A = iB). (29)
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Then it follows that
|cos” 8,
= (2 ||)"'[A4* + BB* + 2 Im (4*B)]. (30)

From the definitions of A and B as given by Eqgs.
(29) and (10), it is readily shown that

AA* > avsin® v

and
BB* > a\ cos’ v + 1,
so that
AA* 4+ BB* > ax + 1. (31)
To place a bound on Im (4*B), where
A*B = A\gin V[af A cos® v + o*]?, (32)

it may be observed that, in general,

Im () = 27%[Ju] — Re )]} < 27 |Im ()]},
when Re (u) > 0. Within the bounds already
imposed on |z, it is possible to make Re (4*B) > 0
by just choosing ¢ large enough. Thus, from Eq. (32),

Im (A4*B) < 27 2\!siny |Im @)1
This, in turn, may be replaced by
Im (A*B) < (A |z|/2)%.

When this result is combined with Eq. (31), and
inserted into Eq. (30), then

lcos® 6,,] > (2 l2))7'lax + 1 — (2X ). (33)

As a function of A, the right-hand side of Eq. (33)
achieves 2 minimum when
>‘§ = a§l(|z|/2)})
so that
leos® 6., > (2 )70 — [e]/2a). (34)

With the upper bound on |z| as dictated by Eq. (17),
Eq. (34) requires that |cos 6,,) > 1, which justifies
Eq. (28). The bound given by Eq. (34) now estab-
lishes a lower bound on 6,,, from Eq. (28) as

0..p > % arccosh [|z|™" — 1 — (2a)7"]. (35)

Finally, Eq. (20) can be restated in terms of
|z. By combining Egs. (24)-(26) and (35), the
result is obtained that

Re f(8.,) < (1 — 2D + 27 + |}
I8 4+ (1 — kD7 + 27hHh

— L arccosh (2] — 1). (36)

The (2a&)"' term in the argument of the inverse
hyperbolic function in Eq. (35) has been omitted
in Eq. (36) in view of its vanishing significance for
large g. The result thus obtained is dependent on
|z] alone. The aim of this part of the investigation
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has been to find the conditions under which
Re f(8,,) < 0. The right-hand side of Eq. (36) is
equal to zero for

lz] < 4 X 107° 37)
and hence Re f(6,,) < 0 for values of |2| less than
this limit.

It is now possible to express the result for the

bound on I,.
L] < (67 + 46,,)e”°", (38)

where K is found from Eq. (36), and can be taken
to be positive. To show that 6,,, in Eq. (38) causes
no difficulty, rewrite e ** as

e—aK > e—(q—l)K

X exp [Re (¢b, sin 6 -+ 1b,sin 20) — 6,,,].

Suppose that the maximum value of Re f(4.,)
occurs for the saddle point at 8., = 6., (ie., at
saddle point ITI in Fig. 2). Then

8. exp [Re (¢b, sin 6,, + i3b. sin 26,,) — 6.,,]

= ¢¥0,,e°""
where K’ is known to be bounded by a finite con-
stant, and 6,,.e”"" < 1/e. If the maximum value
of Re f(6.,,) occurs at the saddle point where
Bip < 0:, (ie., at saddle point I in Fig. 2), then
since the preceding work has shown that Re f(4,,)
is bounded by Eq. (36) for both saddle points, the
difference between Re f(8,,) at each of the saddle
points is certainly bounded, and

6. exp [Re (¢, sin 6,, + 73b. sin 26,;) — 0.,

< e ;e .

Since
6re ™ < 61 < 577,

then
o] < Be¥"lem VK = 39
where K is the negative of the right-hand side of
Eq. (36), and
K’ =

40,75 < 457

K'3+K~1 _—-gK
5e TR Tl

—K + % arccosh (2] — 1).

An upper bound, Eq. (38), has now been deter-
mined for I,. This bound was established by the
selection of a suitable contour passing through two
of the saddle points possessed by the exponential
function in the integrand of I,. Now that a bound
is known for |I,| a bound for |I,] is directly implied,
though it is more convenient to treat I, in combina-
tion with the factors with which it is associated
in I,. I} occurs in Eq. (1) multiplied by a factor
a\ cos® v/qw. Because this factor is bounded,

R. REISS

lax cos® v|/qw < @\ cos® v/quw < 1,
then the total contribution of the I term after
the double integration over A and » is performed, is
bounded by =/2 times the square of Eq. (39). The
Ii, term in Eq. (1) occurs with the factor b,. From
the definition of I?, given in Eq. (3), and after I,
has been eliminated in favor of I, and I, through
an integration by parts, it then follows that

lb2 31’ S II — bz’ Hgl + lbll IIOI lIll
+ 2 |b,] |I3]. (40)
For the first term
L= 0] <@+ /@ +1— [2])
<@ =) @
Since I, differs from I, only in that an additional
cos 6 term appears in the integrand, an upper
bound for I, may be arrived at by multiplying 7,
by the maximum value which cos 8 can attain along
the path of integration. Thus, the third term in
Eq. (40) requires that a bound be placed on
[bs[|cos 6]°. In general,
|cos 8] < [cos 8, cosh 6,| + [sin 6, sinh 8, ]
< 2 cosh 4,.
The maximum 6, encountered along the integration
path is 6,,, which corresponds to one of the saddle
points. Hence
[cos 6]° < 2{1 -+ |cos 8,,]° + [1 + |cos 8,,]
— (2Re cos 6,,)']"} < 4(1 + |cos 6,,]%).

However, it has already been shown [Eq. (24)] that
[Ba] [eos® 8,,] < (1 — [o)7'(1 4+ 27H.

Also, in view of Eq. (16), an upper bound & can be
imposed on [b.]. This bound § must be such that
8<5—2X6Y,buts >zl (1 — [2))7" to be
consistent with |2] < |bs| (1 + |bs])”". Hence,

[By] [cos 8] < 46+ 4(1 — [¢)7'A + 27H). (42

Then an upper bound is established for the second
term in Eq. (40), since

|b1]° |cos 8]° < 8 [b.] [cos 8. (43)

Finally, then, |b,I3,| is bounded in terms of [IZ| by

611, < C* |I3], (44)

where C’ is a constant resulting from the use of
Egs. (41)-(43) in Eq. (40). The end result of inte-
grating over A and » is to multiply Eq. (44) by .

From Eq. (1), the ¢ sum contains a factor (agw)'’®
multiplying the double integral over A and ». Thus,
with
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o] <& < (qw?
(aqu)t| < qu,

if the general term of the g sum is written as F(z),
it has now been shown that

F@] < Cge 7,

where C is a constant. The exponent K is known to
be positive for sufficiently small |z|. Specifically,
since the bound on |z| given by Eq. (37) is less than
the upper bound imposed on |z| by Eq. (17), then
positive real constants Z and K, can be defined such
that Z < 4 X 107° and K, is twice the negative of
the right-hand side of Eq. (36) with Z substituted
for |z|, whereby

P&l < g

for all |2| < Z.

The total transition probability W, Eq. (1), is
given by a constant times a sum over g. Each term
F,(z) in the series is an analytic function of 2z in
the region given in Eq. (5), excluding the negative
real axis from —1 to — o. Since the F,(z) are
uniformly bounded as shown in Eq. (45), and the
sum of these uniform bounds converges, then the
sum over ¢ is an analytie function of 2 in the region
lz2| € Z,, where Zy, < Z and Z, < w[l/w] — 1.

(45)
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W is thus an analytic function of z in |z| < Z,,
and therefore possesses a convergent power series
expansion in z in this region.

CONCLUSIONS

It has been demonstrated that a real physical
problem in electrodynamics exists which has a
convergent expansion in powers of the electro-
magnetic coupling constant. This demonstration
is for the case of a non-second-quantized theory.
Two limitations are imposed upon the radius of
convergence. One limitation [Eq. (5)] is in terms
of the energies of the two plane-wave fields in the
problem, and goes to zero for a discrete set of values
of the field energies. The other limitation [Eq. (37)],
is given as a numerical upper bound on the radius
of convergence. This upper bound, however, is not
a least upper bound, but it depends on the details
of the bounding procedure. The significant result is
that there is a nonzero radius of convergence for
the perturbation expansion.
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An explicit form of the homogeneous Green’s function for
the multi-dimensional iterated Klein-Gordon operator is
obtained. By a direct calculation from its Fourier repre-
sentation, the Green’s function is expressed as a one-dimen-
sional, infinite integral of the Sonine type. Although this
integral is classically divergent when the order of the operator
is less than the number of space dimensions, it can be treated
rigorously under these conditions using the concepts of
distribution analysis. A generalized Sonine integral is de-
veloped and the result applied to obtaining an explicit
expression for the Green’s function, which is now to be
regarded as a distribution in the sense of Schwartz. Using a
distribution introduced for this purpose, the Green’s function
is written in a form which explicitly displays its singularities
on the light cone. The well-known difference between even-
and odd-dimensional spaces is reflected in the nature of

these singularities. The singularities appearing for an odd
number of space dimensions consist of a finite linear com-
bination of derivatives of the Dirac delta function &(s?)
where s is the space-time distance. The highest derivative
appearing is of order {(n — 2/ — 1) with n giving the number
of space dimensions and 2! giving the order of the operator.
The singular part for even-dimensional spaces consists of a
polynomial in 1/s of degree n — 21 4+ 1. No singularities
appear when the order of the operator is greater than the
number of dimensions. The general solution of Cauchy’s
problem for the iterated Klein-Gordon operator is obtained
in convolution form. An explicit solution for the ordinary
Klein-Gordon equation is presented in a form which exhibits
separately the contributions due to the singular part and
the regular part of the Green’s function.

1. INTRODUCTION

HE problem of Cauchy for the Klein-Gordon
equation

O+ wex) =0 (1)

in multi-dimensional spaces has been studied
extensively.' * The field is uniquely determined by
the differential equation for all space-time if it
is known on a space-like surface along with its
first derivative normal to the surface. For con-
venience, we choose the space-like manifold to be
the plane of zero time. The Cauchy initial value
problem then consists of finding a unique solution
o(z) in terms of ¢ and d¢/d¢ taken at time ¢ = 0.

The available methods of solving the Cauchy
problem all lead to integral representations of ¢(x)
which must be given some generalized interpreta-
tion. Explicit expressions for the general solution
in terms of ordinary integrals and functions are
obtained only by means of special techniques.
Hadamard® for example, introduced the concept of
“finite part’’ of an improper integral. In the case of
even-dimensional spaces he obtained directly an

* Present address: University of Michigan, Ann Arbor,
Michigan.

1 R. Courant and D. Hilbert, Methoden der Mathematischen
Physik (Springer-Verlag, Berlin, Germany, 1937), Band I, TI.

2 J. Hadamard, Lectures on Cauchy’s Problem in Linear
Partial Differential Equations (Yale University Press, New
Haven, Connecticut, 1923).

3 M. Riesz, Acta Math. 81, 1 (1949). .

¢ N. E. Fremberg, Comm. Sem. Math. Univ. Lund, 7
(1946).

explicit solution, while in the case of odd-dimensional
spaces he was forced to use the more indirect
“method of descent.”

Riesz’® has developed a theory of fractional
integrals of functions of several variables and applied
this theory to the solution of the Cauchy problem.
He introduces multi-dimensional integrals of the
Riemann-Liouville type whose kernels are modified
elementary solutions or “Riesz potentials”* depend-
ing on a complex parameter. Using Green’s identity,
the soultion of the Cauchy problem is obtained by
analytic continuation with respect to the parameter.
The cases of even- and odd-dimensional spaces are
treated on an equal footing, although after the
analytic continuation is carried out, quite different
formulas are obtained for the two cases.

In modern field theory the method of Fourier
integrals is widely used, chiefly because of the direct
physical interpretation of the Fourier transform
in momentum space. The general solution for the
field ¢(x) can be expressed, in terms of the Cauchy
data, as convolutions generated by the propagator
or homogeneous Green’s function A(z). However,
due to the singular character of the Green’s function,
some generalized interpretation must be given to
A(z). Such an interpretation is of course available
in the theory of distributions developed by
Schwartz.”

8 L. Schwartz, Theorie des distributions, (Hermann & Cie,
Paris, France, 1950-51), Vols. I and II.
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In this paper we consider the Cauchy problem for
the iterated Klein-Gordon equation

O+ 1)iel@) = 2

in multi-dimensional spaces and its associated homo-
geneous Green’s function A, ;(z). The d’Alembert
operator [ ] is taken in the form
¥ 9 ¥

T T (3)
where n gives the number of space dimensions, and [
1s to be considered a positive integer. Since the wave
equation (2) is of order 2I, the Cauchy data now
consist of 8'¢/dt’ taken at zero time for all

=01,---,2 — 1.

The Green’s function is determined from its
Fourier representation. After some angular integra-
tions, A, (z) is expressed (cf. Sec. 2) as a one-
dimensional, infinite integral of the type investigated
by Sonine.® Using Sonine’s result, it is shown that
this integral is divergent when the order of Eq. (2)
is less than the number of space dimensions. It
becomes apparent, then, that the Green’s function
cannot be considered a function in the ordinary sense
for general values of n and I. As is well known, such
singular functions occurring in physics can be
treated rigorously only in connection with the
concepts of distribution analysis.

We therefore show (cf. Sec. 3) how the Sonine
integral can be generalized by defining it as a dis-
tribution in the sense of Schwartz. The Green’s
function may then be evaluated directly from its
Fourier representation and explicit expressions
(cf. Sec. 4) obtained for general » and l. Of course
the Green’s function itself is now to be regarded
as a (tempered) distribution. This treatment
involves the introduction of a distribution (ef.
Sec. 3) whose properties are particularly convenient
when investigating the singularities of the Green’s
function.

Various properties of the Green’s function are
presented in Sec. 4. The Green’s function is written
in a form which explicitly displays its singularities
on the light cone. The remarkable contrast between
spaces with an even and an odd number of dimen-
sions is reflected in the nature of these singularities.
For odd-dimensional spaces the singular part
consists of a finite linear combination of derivatives
of the Dirac delta function 6(s*) where

— (tz _ Xf . xi)ll?

¢ N. Sonine, Math. Ann. 16, 1 (1880).
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is the space-time distance. The highest derivative
appearing in the linear combination is of order
$(n — 20 — 1). The singular part for spaces with
an even number of dimensions, on the other hand,
consists of a polynomial in 1/s of degree n — 21 + 1.
In both cases, no singularities occur when the order
of the differential equation is greater than the
number of space dimensions. A number of interesting
recurrence relations for the Green’s function are
also presented.

A complete set of homogeneous A-function
solutions is required for constructing the field o(z)
described by (2). Such a set of independent A-
functions evidently comsists of A,,(z) with
p =1, 2 , I. After investigating the initial
conditions satisfied by these Green’s functions
at zero time, the general solution of the Cauchy
problem for the iterated Klein-Gordon equation (2)
is presented in convolution form (cf. Sec. 5). Since
the Green’s functions are distributions, this integral
representation of ¢(z) may be expressed in terms
of ordinary integrals and functions by means of
the calculus of distributions. Further, Schwartz®
has shown how the notion of convolution product
can be extended to the convolution product of two
distributions (when at least one of them has a
bounded supporting set). Thus the field o(z) is
interpreted as a distribution when the Cauchy data
are themselves distributions instead of well-behaved
functions.

It is interesting to carry out the convolution
operation directly to obtain the explicit solution
of the Cauchy problem for the Klein-Gordon
equation (1). This is done in Sec. 6 where the general
solution is obtained in a form which exhibits the
contributions due to the singular part and the
regular part of the Green’s function. The explicit
solution for the d’Alembert equation [Jo = 0 is
also given. Many of the expressions appearing here
may be found scattered throughout the literature
with varying degrees of generality.

2. THE GREEN’S FUNCTION

The Fourier representation of the homogeneous
Green’s function may clearly be written in the form

a - @0 [ A= @
where
dk = dk, dk, --- dk, = dk, dk
kr = kot — kix; — -+ — kx, = kot — k-x.
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The integration in the k, plane is defined in the
usual way”: It is to be carried out over a closed
path C encircling both poles k, = +(k* + u*)'?
in a clockwise direction. The variables k,, --- , k,
are then integrated from — = to + «. The inhomo-
geneous Green’s funetion A, (z) is obtained by
taking the principal part of the k, integration over
the singularities instead of integrating along the
path C. The relation between the two Green’s
functions is given by the well-known formula

A, a(x) = 26(2) B,,(2), (5

where e(f) = sign (f). From now on we will consider
only the homogeneous Green’s function since the
inhomogeneous Green’s function is easily obtained
by means of (5).

The result of the k, integration over the path C
in (4) is

Lt o) e

where w = (k* + uz)” % and J is the Bessel function
of the first kind [ef. Eq. (40)]. Introducing n-
dimensional spherical coordinates in k space, we have

(6)

_ On- 1(7")

@mr2irQ J, ) (-’)l' Jiywk™™ dk

An,l

>< f Sinn—Z Oeikrcosﬁ dﬂ, (7)
0

where o, represents the surface area of the n-
dimensional unit sphere,

_ 21'_11/2 ) (8>
™7 T/2)
The integral over 8 in (7) has the value®
3 1\ (kr\'
(T)zr(n >(2_T> Jorz(kr);
thus A,,; may be written in the form
_ _1_ (n—=1)/2 G(t)_
Ant = (21r) 2'1(l)
x [P0 ()7 6 e ac @

The ¢(t) appears because Eq. (6) represents a series
of odd powers in time [cf. Eq. (64)].
The integral in (9) has the form of a Sonine

" W. E. Thirring, Principles of Quantum Electrodynamics
(Academic Press Inc., New York, 1958).
8 H. Bateman, Hzgher Tmnscendental Functions (McGraw-

Hill Book Company, Ine., New York, 1953), Vol. I, II.
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integral,® namely,
= b8 J,[a(f + f/Z] P di
¥+
_ {0, a<b (10)
[(a2 - bg)%/"":]”_“_IJV—M—I['Z(G’2 - bz)%]) a > b)

where ¢ and b are positive real numbers. To secure
convergence, the restriction Re » > Re p > —1is
placed upon ux and v. Using this result, one obtains
(compare with Riesz® and Schwartz®)

(1 (n=1)/2 E(t)h(sz) (S I—(n+1)/2
Bt = 5) 2'T () ;)

X S iz tnery 2(uS), (11)

where s = (# — r*)'? is the space-time distance
and h(a) is the Heaviside unit function: h(a) =
for a > 0 and h(a) = 0for a < 0. The restriction for
convergence becomes 2] > n — 1. When this restric-
tion is not obeyed, that is, when 2] < n (remembering
that n and [ are integers), the Sonine integral in
Eq. (9) is divergent. It is clear, then, that the Green’s
function cannot be considered a function in the
ordinary sense when the order of the differential
equation is less than the number of space dimensions.
For unrestricted values of the integers n and ! the
Fourier representation (4) must be given an extended
interpretation. A natural interpretation from the
standpoint of physics is provided by the theory of
distributions.

3. SPECIAL DISTRIBUTIONS AND THE SONINE
INTEGRAL

At first we summarize the basic definitions
involved in distribution analysis; a detailed exposi-
tion is given by Schwartz.®

Briefly, distributions are continuous linear func-
tionals on an appropriate topological vector space.
Following Schwartz, we denote various spaces as
follows:

(i) The space (D) consists of all (C”) functions
on R™ with compact support.

(ii) The space of distributions (D) is the dual
of (D).

(iii) The space (8) consists of all (C”) functions
on R" that “decay rapidly at infinity.”

(iv) The space of tempered distributions (8’) is
the dual of (8).

(v) The space (D_.) is the space of all (C7)
functions on R with support bounded on the
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right, i.e., with support contained is some
half-line (— », C).

(vi) The space of distributions with support
bounded on the left (D)) is the dual of (D_).

A distribution ¥ is defined as a continuous linear
functional T{¢} on (D). However, such a functional
representation can be avioded®’ and it is sometimes
convenient to omit the symbol ¢. Every summable
point function T(z) can be associated with the
distribution T{¢} given by

T} = [ T@eto) dr. (12)
In practice, the usefulness of distributions is often
enhanced by associating a ‘“‘generalized” function
with each distribution; Eq. (12) is then interpreted
symbolically. (For other definitions of distributions
and generalized functions see Korevaar,'® Temple,'
and Lighthill."®) Distributions can be differentiated

without restriction. In (') derivatives are defined
by

TV} = (- Te™}, (13)

80 that every derivative of a distribution is again
a distribution. In (8') the Fourier transformation can
be defined by means of Parseval’s formula, and
the Fourier transform of each tempered distribution
is again a tempered distribution.® The Laplace
transformation'? is defined for distributions in (D).

The present investigation is based on a distribu-~
tion obtained from the expression’

Da(x) = h(x)2""/T(B), (14)

where 8 is a complex parameter. The functional
associated with $s(z), namely,

8ulol = 15 | " () d, (15)

makes sense (classically) only for Re 8 > 0. How-
ever, the definition of §; can be extended to the
entire finite 8 plane by setting

Dslo} = (=) Dsnls™},

where n is an integer such that Re 8 + n > 0.
When 8 is neither zero nor a negative integer, the

(16)

9 H. Kronig, Math. Nachr. 9, 129 (1953).

10 J. Korevaar, Ned. Akad. Wetensch. Proc. A58 (1955)
(4 papers).

1 (3, Temple, Proc. Roy. Soc. (London) A228, 175 (1955).

12 M. J. Lighthill, An I'ntroduction to Fourier Analysis and
Generalized Functions (Cambridge University Press, New
York, 1958).

13 J. Lavoine, Calcul symboligue (Centre National de la
Recherche Scientifique, Paris, France, 1959).
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definition (16) is equivalent to taking Hadamard’s®
“finite part” of the integral in (15). When @ is zero,
the Dirac distribution

Hofo} = 3{p} = 4(0) (17)
is obtained. Since derivatives are given by
95" = Do, (18)
we also have, in terms of the Dirac distribution,
H_.le} = 878} = (=)8™(0). (19)

The set of elements $; constitutes the group of
the Riemann-Liouville integral with

'@u *‘bv = ‘bw—n

the * indicating convolution product. Equation (18)
may easily be extended to include fractional
derivatives.

The product z"8; for n =
by the formula

(20)

0, 1,2, --- is defined

xn‘@ﬂ = (B)n@ﬁi—ﬂy (21)

where
@.=8B+1--B+n—-1, B, =1.

Making use of this product, we introduce the dis-
tribution Qs(e; \) as

(22)

Qg(a; N)

= F(lia 4+ 1, 8 4+ 1, M) $50 /T + 1),  (23)

where a, 8, and A are complex parameters. Extensive
use will be made of Qs(a; N).
The hypergeometric series ,F, is given by
I S G
o0, bi9 = 2@ o
Except for certain integer values of the parameters
for which the series terminates or fails to make
sense, ,F; converges for all finite z. Using (21) and
(24) we have immediately the expansion

(24)

R — = )\"‘ ®B+m+l
gﬂ(a; )‘) g% F(a + m + 1) 1 (25)
and in view of (16) we may write
Qi) = (=)' Qu.{e™}, (26)

where 7 is an integer such that Re g +n + 1 > 0.
Clearly this distribution is well defined for all
complex «, 8, and A.

Derivatives of Qg are given by

Qén) = Qﬁ—n (27)
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which of course may be extended to fractional

derivatives. Further, Let .sd be an operator defined
by

)
a8 da’ dx a
We obtain, as easy consequences of (25),
esd"Qpla; N) = Q4 (@ — n; N), (29)
n m=1
Qs (a —n;\) = N"Qgla;N) + 2 S——=fm - (30)
m=0 - m)

where n is a positive integer. Equatlon (30) leads
to the differential equation of second order

(asd — NQs(a; N) = H5/T(w), 3D

from which the homogeneous equation of third order

(d/de + 1 — B)(asd — NQsla;N) =0 (32)
is evident.
Using the Laplace transform™® of £,
L9} = Psle ™} =277, 33)
the Laplace transform of Qs(a; A) is obtained:
oo )\mz—ﬁom—l
£{Q4a; N} = MZO Tatmt 1)
_ e M/)e” .

P(Q))\azﬁ—a +1 7

where v is the incomplete gamma function.® Equa-
tion (34) reduces to

L{Q0; N} = 2777 (35)

when a = 0.

It will often be convenient to speak in terms of the
generalized function Qs(a; A z) generating the dis-
tribution Qg(a; ). In this regard, several particular
cases will be of importance and we list them here:

Q(0; —A: 2) = Rh(@)(@/N*To@2N2}), (36)
Q(8; —\: @) = h@OD) " T2N2h),  (37)
MQy(3; =N 2) = h@)(2/N"Hy@Ndh),  (38)
M8 + ;=21 2) = h@)(n) " Ha@M Y. (39)
In these formulas, J; is the Bessel function®
_ © (_)m(z/2)2m+ﬁ
= 2 otm+ ¥ @O
and H; is the Struve function®
oo _A\m™ 2m+S+1
R Y (41

S Tm + HT(m + 6+ 9
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The boldface H is standard notation for the Struve
function and should not be confused with the bold-
face type for distributions.

One of the chief services to mathematical physics
rendered by the theory of distributions is the pro-
vision of a precise analytical method for removing
the troublesome restrictions which abound in
classical analysis. Ordinary functions are given
extended ranges of validity and difficulties with
regard to convergence of integrals disappear. We
turn our attention in particular to an integral which
is essentially the Sonine integral with a convenient
change of integration variable. Once the Sonine
integral is interpreted as a distribution, explicit
expressions for the Green’s function A, ,; are easily
obtained.

In the notation of generalized functions we write
& = f Q0; 2 — a:w)Q,(0; N — u: a) du, (42)

0
where the real parameter a is taken to be positive.
Using the inverse Laplace transform [ef. (35)] in
place of the second function under the integral sign,
we have

2mf f 20;x — a:wez"™
X exp (za + Z\__;__E) dz du (43)

with ¢ > 0. Upon interchanging the order of integra-
tion, one recognizes the integral over u as the
Laplace transform (35) with z replaced by 1/,
that is,

f Q0; 2 — a:we™* du = e, (44)
[}
What remains is
fﬁm =7 ex (zx + A) dz
211'1 eim b z
= Q50X 2); (45)
thus, with 8 and » unrestricted,
f 0;z — a:wQ0; A — u:a) du
0
= Q,.4..(0; \: 2). (46)

The classical condition for convergence is Re » >
Re B > —1; however, within the framework of
distribution theory, (46) is valid for all 8 and », and
the integral is to be regarded as a distribution. The



ITERATED KLEIN-GORDON OPERATOR

connection with the Sonine integral (10) is easily
seen with the aid of (36).

4. DISCUSSION OF THE GREEN’S DISTRIBUTION

Making use of (36), we may write Eq. (9) in
the form

H
A, = 2n ‘"e$)221‘(l)f Q21005 T/4 u)
X Q05 —u® — i £/4) du,  (47)
which becomes, according to (46),
An,l(x> — e(t)ﬂl (n+1)/2(0 PL -8 /4) (48)

Zn (n— 1)/2r|<l)

The last expression is equivalent to (11) except the
restriction on n and has now been removed.

The corresponding result for the iterated
d’Alembert equation
O o) = (49)

is obtained by letting ¢ — 0 in (48). The homo-
geneous Green’s function D, ; for (49) is thus

G(t)\@(l-n)/wz(s /4)
o (n—-l)/2r‘(l)

D, (x) = (50)
The Green’s functions A, ; and D,,; are now regarded
as tempered distributions.

Several recurrence relations for A, are easily
obtained. Recalling (27) we have immediately

_ 4T (43"
An,l—m - P(l - m) (dSZ) An,l) (51)
Apszma = (1/2")(d/ds)" B, (52)

where m is an integer. Further, by means of the
equation

(d/dN"Qs0; ) = Q4.,(0; N), (53)
one obtains
G AON A
Anim = ({1 + m) (d;ﬁ) Anst (54)
A»-2m,l = (—47r)m(d/dﬂ2)m An.l' (55)

A straightforward calculation (cf. Appendix) shows
that

An—-m,l = ‘[ An,l dxl M dxm) (56)
which is an expression of Hadamard’s® “method of
descent.” These recurrence formulas indicate that
all of the Green’s functions A, ; are derivable from

A, as expected.
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From (30) it is evident that A, ; has no singu-
larities on the light cone when (1 ~ n)/2 +1 > 1.
Remembering that ! and n are integers, one may
write this condition in the form 2! > = to infer that
no singularities appear on the light cone when the
order of the differential equation is greater than the
number of space dimensions.

When the order is less than, or equal to, the
number of dimensions, Eq. (30) can be applied to
express A,,; in a form which displays its singularities
on the light cone explicitly. The profound difference
that exists between spaces with an even number of
dimensions and spaces with an odd number of
dimensions is of course reflected in the nature of
these singularities. When 2 < », the singularities
appear as follows:

Bgmer, = % {Qo(m — 1+ 1; —p®:s°/4)
D_o(s’/D -
+ a};( £ m — 1 — q)!} 67

Appm,t = % {Q;(m — 1+ 1; =y /4
+ Z )f?};n(s -/ 41) — !}. (58)

Using Eqgs. (37) and (39) along with Eq. (19) we
write the above equations in the form

A _ e(t)(—,uz)m_lﬂ {zm_l+lh(82)Jm_z+l(u8)
2m+1,1 22m+17l'mr(l) (Ms)m-—l-#l
(=TT 2}
* ;(m—- I TRRL R
OIS i {2m"*%h(s2>H,,_,+*<#s>
2m,l 22m+1ﬂ_m—§r(l) #(#8)m~l+}

(/D)
t =g TG =g

a=0

9}

where J is the Bessel function and H is the Struve
function.

In each of these equations, the first term con-
tains no singularities and represents a finite jump
discontinuity across the light cone. The contrast
between even- and odd-dimensional spaces is made
evident in the second term. For spaces with an
odd number of dimensions, the singular part of A, ,
consists of a finite linear combination of derivatives
of the Dirac delta function §(s*), the highest deriva-
tive being of order $(n — 21 — 1). On the other hand,
the singular part of A, for spaces with an even
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number or dimensions consists of a polynomial in
1/s of degree n — 21 + 1.

5. GENERAL SOLUTION OF THE CAUCHY PROBLEM

In terms of the Green’s function A,, = A, the
solution of the initial value problem for the ordinary
Klein-Gordon equation (1) is given by the well-
known equation’

o) = [ axise — o) dlpla)
— @) % A — )]s (6)

where 9, = 9/d¢. That this is the solution follows
from the initial conditions

A(x,0) = 0,
3, A(x, 0) = &%),
95 A,(x, 0) = 0.

(62)

The corresponding solution for the iterated
Klein-Gordon equation (2) requires all the independ-
ent A-function solutions A, , withp = 1,2, .-+ | L
The initial conditions satisfied by these Green’s
functions may be obtained from

A LX) =(@2n) f : dke™™G,(k, #), (63)
where
Gk, ) = mf‘, ————L——m !(If(gzm_(l_ )2'"m) £rml o (64)
represents Eq. (6). Simple calculation gives
[o for j=0,1,---,(2p —2);
(65)

34 A, (x,0) =18(x) for j=2p—1;
10 for all even j.

In addition, one obtains the important relation
B 8,00, 0) = o (vt - )60 (60

where ¢ is any non-negative integer. In view of these
initial conditions, we may construct the field ¢(z)
described by (2) as follows:

The general solution is written in the form

-1 1
> 2 A

m=0 p=m+1

(@) = f dx’
X [8577 ™ A, (x — 27) 05" 0(x")] im0
-1

1]
+[a 3 3 A,
m=0 p=m+1

X (8677577 A y(@ — ) 887 @@ )] (67)
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For each m = 0,1, ---, ({ — 1), the l — m con-
stants A,, are to be determined from the I — m
equations

1
D A 3TTHA, L, 0) = 3(x) b,

p=m+1

(68)

where j = 0,1, --- , (I — m — 1) and &,; is the
Kronecker delta, that is, 6,; = 1 for § = 0 and
do; = 0 for 7 # 0. By virtue of (66), these equations
for the constants become .

1
2 Amp(p)i = 50i’

(69)
p=m+1
where (p); is given by (22).
The solution of Eq. (69) is
e 2D
App = (=) (m o) (70)

with (§) representing the binomial coefficient. To
prove this, we substitute (70) into (69) with the
result

,:Z'_;l Am(); = Il — m)(m + 1)!

Fim—1+1,m+j+1;m+2;1),

(71)

where ,F, is Gauss’ hypergeometric series. Using
the identity®

TeT{c —a — b

Fila, b;e; 1) = T{c — q)T'c — b)’ (72)
which is valid provided ¢ # 0, —1, —2, --- and
Re (¢ — a — b) > 0, we have

' _ Ml —m—jm+ 1),
n=§l Am.‘n(p)i - P(l _ m)P(l _ ]) - 50!' (73)
sincej = 0,1, -+ ,l —m — 1.

To show that Eq. (67) represents the solution to
Cauchy’s problem we note that

[a(ZJMSO(x)L=o = fdx’ Z E Amp

m=0 p=m+1

X [87 T A, p(x = &) 97 e(@)]imo  (74)
t=0

where the upper limit to the sum over m is obtained
using (65). The second integral in (67) makes no
contribution because of (65). By virtue of (68) we
obtain the required result.

(5% @imo = [ dx’ 3 b 8x — x)

X [08"0(a")] im0 = 05 "0(x, 0).

(75)
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An exactly analogous proof is obtained for
[0+ o(x)], -0, €xcept in this case the first integral
in (67) contributes nothing and the second integral
gives the required result.

6. EXPLICIT SOLUTIONS FOR THE KLEIN-GORDON
EQUATION

The general solution of the initial value problem
for the Klein-Gordon equation will now be calculated
explicitly by earrying out the integral operation
indicated in Eq. (61), which is equivalent to Eqg.
(67) when I = 1. Noting that A.(x, t) = A.(—X, ),
the solution may be written in the form

o) = [ A0 = x, 1) dlplx’, 0) dx’

+ f 3 A (X' — x, He(x’, 0) dx’. (76)
Changing the variable of integration toR = x’ — x
and introducing n-dimensional spherical coordinates
in R space, we note that the integral over the angles
gives the arithmetic average @(x; R) of the initial
field on a sphere of radius R centered about the
fixed position x. That is,

pR) =o' [ +R, 0 do,,  (70)
where ¢, is the solid angle given by (8). Finally,
using doA, = 27tA,.., we may write (76) as

o@) = o f AR, Do (x; RR™ dR

+ 2nlo, f AR, D RR™ dR.  (78)
0

It is at this stage of the analysis that the difference
between an even and an odd number of space
dimensions becomes significant. In order to obtain
¢(z) in an explicit form one must distinguish between
n even and n odd because the singularities of A,
are so different in the two cases.

Odd Number of Dimensions, n = 2m + 1
In this case we use Eq. (59) withl = 1in Eq. (78)
to obtain
(_”)4} E(t) m—1 (_#2/4)171—«—1 <_d_)a
ae’
(2
at*

O =T+ 2 & Tm—-g

X {@.(x; [¢) ¢

@ & (=™
FTmt D S Tm= g% D

X {e; [¢) [}

403
@) (—u\" ['R"dR
¥ T(m + 3 < 2 ) f @ — R
X Tl — R)e,(x; R)
2 ] (=u\™ " RAR
+ F(m + %) < 2 ) ﬁ (t2 . R2)(m+1)/2
X [ = R o(x; R). (79)

Even Number of Dimensions, n = 2m

We use Eq. (60) in Eq. (78), calculating the con-
tribution from the singular part of A, by means
of Eq. (16). The result is

L) "SR (=E /™ 1Y RGR
@) = T(my Z (m—gq Jo (& —R)
x (o) o )
+ 9 ,tl m (_“2/4)m—q l1 RdR
r(m) Z5T(m — ¢+ 1) J, (£ — R®F

x (o) totes R

_me N /g 2m—1
L (i R 0R

m—% altl
[ -
<2> ﬁ (t2 — RZ)(m—§)/2

T(m)
X H,y[u(# — R .(x;R)
+ (_)m+12(7r)} ¢ <E>m+§ fltl R2m—1 dR
T'(m) 2 o (£ —RHmHA

X Hoylu(# — R)Ho(x; R). (80)

The corresponding results for the d’Alembert
equation

Ce@) =0 (81)
are of course obtained in the limit as u goes to zero.
The solution of the Cauchy problem for the wave

equation (81) is thus (compare with Courant and
Hilbert'):

o) = S0 ()" s o 1
+ O i 1) )
for odd n > 3, and
ela) = r(ig?z) om (fR—dgz)! (d_g_z)w-m
Xt R + ol
x [ s ()RR @)

for even n > 2.
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As is well known, Huygen's principle for the
d’Alembert equation holds only for spaces with an
odd number of dimensions, while the effect of dif-
fusion takes place in even-dimensional spaces.’
Equation (50) indicates that the Green’s function
for the iterated d’Alembert operator has a §-function
type of singularity only when = is odd and 2! < n.
Thus Huygen’s principle for Eq. (49) holds only
when the order of the equation is less than the
number of space dimensions and when the number
of space dimensions is odd. Huygen’s principle for
Eq. (2) does not hold.

APPENDIX. THE METHOD OF DESCENT

We want to evaluate

®

I = A, dxy oo AT, (A1)

-0

where m < n. Introducing spherical coordinates for
the volume element

dx, «-- o" Vdp do.,

and using Eq. (9) for A,,; we obtain
1 (n—1)/2 o
I-= a,,,(-) | G a
0

dr, =

2

® kr) .-
X f i]—"%z’—_(l—r—) " dp,  (A2)
0

where

(t/w)'*
2lr(l> Jl-}(wt) .

The integral over p in Eq. (A2) has the form of
another Sonine integral when we set r* = p° 4+ R’
namely,
® J,[a(8® + )]
0 ( tz + zZ)y/z

G@) = (A3)

£ dt

_ 2°T(u + I)J

u+l v—pu—1
a g

—u-1(02), (A9
for @ > 0. This result is obtained from the Sonine
formula in Eq. (10) by letting b — 0. The integral
over p thus has the value

2" p(m/2)
R D2

4 G, N. Watson, A T'reatise on the Theory of Bessel Func-
tions (Cambridge University Press, New York, 1922).

J(n—m)/2—1(kR) .
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Remembering Eq. (8) for ¢,, we finally have

1 (n—-m~1)/2
1= ()

* J e s2-1(kR)

R(n—m—2>72

X

GOk™ " dk,  (A5)

0

which is equivalent to A,._,,.; as seen from Eq. (9).
We thus have

An—m,l = f An.l dxl cee dxm (AG)

giving the method of descent.

Note added in proof. Equation (70) permits one to
write the general solution (67) in the form

o@) = [ dx duule = #)X'e(a)

where the differential operator X is defined by

«—

x =6 - a5 )@+ e - B

the arrows indicating the directions in which the
differentiations are to be carried out. We observe
that X may be written

2 N
(60 — )X = (3 — )
“— . - < —
X[O+ws+& - —QO+ )
The invariant form of the general solution is
o) = [ doy@) Susle = #)Xh o),
where ¢ is an arbitrary spacelike surface and
— - — — — o —
O-DXs =@ — O+ ) -0+ 1
These results may be extended to include arbitrary

polynomials in []; such a generalization will be
published in a future paper.
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A realization of the infinitesimal generators for the mass-zero case of the proper orthochronous
inhomogeneous Lorentz group is given explicitly for both continuous and discrete spin cases in terms of
a uniform notation. The realization for the discrete spin case is unitarily equivalent to that given

by Shirokov.

For the sake of completeness the infinitesimal generators for the case of nonzero mass, derived
by Foldy, are also given. Hence the present paper contains realizations for all irreducible unitary
representations of the inhomogeneous Lorentz group of physical interest.

Since the irreducible representations of the two-dimensional Euclidean group play an important role
in the massless case, simple realizations of the irreducible representations of the generators of this

group are also given.

1. COMMUTATION RULES FOR THE INFINITESI-
MAL GENERATORS. INVARIANTS CHARAC-
TERIZING THE REPRESENTATION

HE first to find and classify all physically in-
teresting unitary ray representations of the
proper orthochronous inhomogeneous Lorentz group
was Wigner." His approach was global in character
and his treatment was a generalization of that used
for finding representations of finite groups.

Bargmann and Wigner® gave explicit realizations
for all physically interesting, Hermitian, irreducible
representations of the infinitesimal generators of
the group. For the discrete-spin representations of
both nonzero and zero mass, the realizations were
given in terms of Dirac-like wave equations. The
realizations of the massless, so-called ‘‘continuous-
spin”’ representations were given in terms of more
complicated systems of equations.

Foldy® gave particularly simple realizations of
the generators for the case of finite mass. The ob-
jective of the present paper is to present analogous
realizations for all zero-mass representations.*"®

* The work of H. E. Moses was supported by the Office
of Naval Research. Contract No. Nonr 839(30), Project
No. NR-013-106. It was performed while he was at the
Polytechnic Institute of Brooklyn.

1 5. P. Wigner, Ann. Math. 40, 149 (1939).

2V, Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci.
U. 8. 34, 211 (1948).

8 L. L. Foldy, Phys. Rev. 102, 568-581 (1956).

4 For the discrete spin case, our realization is unitarily
equivalent to the realization of Shirokov.® The advantage
of our realization is that it has a similar structure to the

realizations of the other massless cases and, for that matter,

of the case of finite mass. .
5 Ju. M. Shirokov, Soviet Physics—JETP 6, 919 (1958).

For the sake of completeness we shall also present
Foldy's realizations for the case of finite mass.
Hence the present paper will contain simple realiza-
tions for all cases of current physical interest.

Since the two-dimensional Euclidean group plays
a particularly important role in the massless case,
we shall give all irreducible representations of this
group as well.

There are 10 infinitesimal generators of the proper,
orthochronous Lorentz group. Those which corre-
spond to time and space translations are the Hamil-
tonian and momentum operators, respectively, which
we denote by H and P,. The operators which corre-
spond to rotations about the space axes are denoted
by J;. Rotations involving one-space axis and the
time axis are denoted by g.. The subscript 7 takes
on the values 1, 2, 3 corresponding to the three-
space axes.

The commutation rules satisfied by the generators
are

H,P]=0 (1.1)
[Pi:Pi] =

e, Pay =

[Js, 9] =

[g:, H] = iP; (1.8)
[c(]i:Pi] =4 5(1’

[J], J?] = Z.Ja

405
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[(Ja, J35] = i, (1.4)
(s, 1] = i/
(91, g1 = —iJs
(g2, §s] = —iJ, (1.5)
(s, §u] = —iJs
[Jy, Py] = [P, J2] = iP;
[Je, Ps] = [Ps, Ja] = 1P, (1.6)
[Js, Pi] = [Ps, J1] = i
V1, o] = [g1, J2] = ids
[J2) §s] = (9, o] = 14 (1.7)

(3, 8] = [gs, Ji] = ©Ja.

It can be shown that any operator which com-
mutes with each operator of an irreducible set of
Hermitian operators must be a scalar operator. In
the present case the generators are to form such an
irreducible set. Four operators which commute with
this set and hence are scalar operators are par-
ticularly important. They label completely all cases
of possible physical interest, except the mass-zero,
discrete-spin case. These four operators, which are
called invariants or Casimir operators are defined
as follows:

Co = H/|H|
3
C,=2P.-H'=PP-H
3
Co= 2 wi— 2 (PJ)
i=1 f (18)
=w-w — (P-])°,
where
w= —[H] + (P xg)]
¢, = ST = 2T o T

where here g is the 3-vector (J,9:9s)-

The invariant C,, which gives the sign of the
spectrum of the Hamiltonian, can take on the value
-+1 or —1. In what follows we shall consider repre-
sentations only for the case of positive energy
spectrum because for free particles the energy must
be positive.

The invariant ¢, = —m® gives the negative of
the square of the mass of the particle. The mass m
is taken to positive or zero to be of physical interest.

The range of values of the invariant C, depends
upon C,, that is, upon whether m is zero or not.
If m is not zero, C, will always have the following
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form
C, = m’s(s + 1),

where s is any non-negative integer or half-integer
and corresponds to the spin.

(1.9)

If m = 0, then C, can have the value zero or
any positive value. We write
¢, == (1.10)
0<E< ».

In the case C, = 0, which is called the mass-
zero, discrete-spin case, there is another scalar
operator (P-J)/H = S. The real scalar S can take
on any positive or negative integer or half-integer
value.

The invariant C; can have only the values +1
or —1. If the value is +1, the representation is
said to be single valued; if the value is —1, the
representation is called double valued. In the non-
zero mass case the value of C; is determined by C,
or equivalently s. If s is an integer, the representation
is single valued; if s is a half integer, the representa-
tion is double valued. In the zero-mass case the
value of C; (that is, the single or double valuedness
of the representation) must be prescribed.

2. THE GENERATORS AND REPRESENTATIONS OF
THE EUCLIDEAN GROUP

The Euclidean group has three generators which
we shall denote by T., 75, and S. They satisfy the
commutation rules

15, S] = —iT,
(Ts, 8] = T, 2.1)
[T., T5] = 0.

The invariants which completely specify the repre-
sentation are

T: + 15 =1

2xi8
€

2.2)
- e?wi¢’

where ¢ is any real number and r is any non-negative
number. The case for » > 0 and r = 0 lead to dif-

ferent irreducible representations.

a.The Caser > 0

In this case the scalar ¢ can take on any value
0 < ¢ < 1 for inequivalent representations. The
generators are represented by infinite Hermitian
matrices which we shall denote by the same letters
as the abstract generators.
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T2 = (TZn,n’)
Ta = (T3n.n’) (2.3)
8 = (8,..)

n,n’ = any integer,

where the matrix elements are

T2n.n' = %ir[an,n’-kl - Bn.n’—l]
T3n.n‘ = %T[an,nﬂ»l + 6n.n’—]] (2‘4)
Sn.n’ = 6n.n’(n + ¢)

The carrier space is the infinite dimensional
vector space, i.e., each vector A in the space is
represented by a column vector (a,) where n assumes
all integral values from — o to -+ «. The square
of the veector A4 is

> laf

n=—

b. The Caser = 0

In this case the matrices representing 7', and T,
are zero. The matrix representing S is one dimen-
sional, i.e., S is any real scalar. The carrier space
is one dimensional with the one-dimensional Her-
mitian inner product |a|’.

3. REPRESENTATIONS OF THE INHOMOGENEOUS
LORENTZ GROUP FOR THE MASSLESS CASE

Throughout this paper we take the positive energy
representation. Hence,

Co = 1
C’l - 0.
a. The Case for which C, = = > 0

The carrier space is a complex separable Hilbert
space which we proceed to describe.

It consists of complex functions ¢(p, n) where
the vector p denotes collectively three variables
D1, P2, Ps. The variable n is an integer which takes
on all positive and negative values. The square of
the length of the vector is given by

. dp
T [ e, mven R,
where

p = |pl

The form of the inner product assures us that the
generators given below are Hermitian.

The generators are defined on a dense subspace
of the Hilbert space which consists of functions
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Y(p, n) which are twice-differentiable with respect
to the variables p; and which vanish identically
when p lies in a volume consisting of a right circular
cylinder about the negative p, axis and a sphere
about the origin. This volume may be arbitrarily
small.

The operators P,, P,, P; acting on functions of
this subspace consist of multiplication by py, p., ps,
respectively. The operator H consists of multi-
plication by p.

The Hermitian operators J; and g; are described
in the following way:

Jy= —ipxV) + S
Jo= —i@x V) + RS )
Js = —ipxV); + P8
9= Vi + BT+ B
g = WV + 5+ [55@%%3 B zl)]Tz
+ Z_)Eé’%z_)s T, 3.2)
g = Ve = S S 4 T

_m L]
+ [pz(p o0l
In Eqgs. (3.1) and (3.2) the gradient operator is the
gradient with respect to p. The operators S, T,
and T; are the matrices which are the irreducible
representations of the two-dimensional Euclidean
group given by (2.3) and (2.4) (with r = VZ)
and act on the variable n of the functions in the
carrier space. However, in the present case the
number ¢ is determined by the invariant C,, l.e.,
by the single or double valuedness of the representa-
tion. If the representation is single valued, C; = 1
and we must take ¢ = 0. If the representation is
double-valued, C; = —1 and ¢ = L.

These representations are called ‘‘continuous-
spin’’ representations for the massless case.

b. The Case for Which C, = 0

In the case C, = 0, the representation has the same
form as for the previous case. The functions which
comprise the Hilbert space, however, do not depend



408 J. S. LOMONT
on the variable n and there is no summation over
this variable in the definition of inner product.
Furthermore, the matrices T, = T = 0. The
matrix S is replaced by a positive or negative integer
for the single-valued representations and is replaced
by a positive or negative half-integer for the double-
valued representations. Each choice of S leads to a
different representation. These representations are
called discrete-spin representations of the massless
case.

4. REPRESENTATIONS FOR THE CASE OF
PARTICLES OF FINITE MASS®

The carrier space is a space consisting of functions
Y(p, %) where ¢ is a discrete variable which takes
on 2s 4+ 1 values running from ¢ = —sto ¢ = s
in steps of 1. (The quantity s is the spin described
in part 1.) The square of the length of the vector is
defined by

¢ These generators were given in the x representation
in reference 3 and in the momentum representation in
reference 4. The latter is the one used above.

AND H. E.

MOSES

S dp
> [ v ove o 3

i==—g

where

wp) = (@ + m)h (4.1)

The operators P,, P,, P; consist of multiplication
by p1, P2, s, respectively. The operator H consists
of multiplication by w(p).

The operators J; and g, are given by

J; —i(pxV): + 8,
Ji = @)V + (px8)./[w(p) + m] .

The operators S; are just the irreducible Her-
mitian spin matrices corresponding to the spin s
and operate on the discrete variable ¢ of the func-
tions in the Hilbert space.

It should be mentioned that Chang” has given
another form for the infinitesimal generators for
the present case, which is based on the representa-
tions of the group given in reference 1.

7T, 8. Chang, Acta. Math. Sinica, 3, 59 (1953).

i

(4.2)
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The angular momentum operators define a set of irreducible tensors which are unique except for a
normalization constant. The normalization is conveniently defined in terms of statistical tensors
which describe oriented states. The properties of the tensors discussed here include: (1) the trace
of products of components of such tensors, (2) symmetry properties of the traces, and (3) the expansion
of products of components of these tensors into a sum of irreducible tensors. The corresponding
expansion of commutators and anticommutators of these components is also discussed briefly.

I. INTRODUCTION

N many problems of solid-state physics, for
example, paramagnetic resonance or nuclear
orientation, the irreducible tensors in the space of
the angular momentum operators play a central
role. If we consider a physical system for which the
angular momentum is well defined then the tensors
in question depend only on the angular momentum
operators j,, j,, j.. The statement that the tensors
are irreducible means that, to within a normaliza-
tion constant, the tensors are uniquely defined by
the tensor rank I and the projection quantum
number M. The tensor of rank L, by definition
transforms under the 2L -+ 1 dimensional repre-
sentation of the rotation group when a 3-space
rotation of the coordinate axes is carried out. Thus,

if R is the rotation operator'
RTYR™ = ) DTt

M’

(1)

where the arguments of the D matrices are the Euler
angles.

It is convenient to define the normalization of
the T in terms of the statistical tensors introduced
by Fano.” For this purpose it is sufficient to consider
the axially symmetric case wherein the statistical
tensor G, for a state with angular momentum j is

G, = Xm) Pa(—) ""C(jL; m, —m). ©)

In (2) p.. is the population (diagonal element of the
density matrix) for the substate m, and the C coeffi-
cient is a vector addition coefficient.'! Then T} is
fixed by

G, =TrTzp @

* Work partially supported by U. 8. Atomic Energy
Commission.

1 M. E. Rose, Elementary Theory of Angular Momentum,
(John Wiley & Sons, Inc., New York 1957).

2 U. Fano, National Bureau of Standards Report No.
1214 (unpublished).

wherein p is the density matrix given in terms of
the spin Hamiltonian H by

p = exp (—H/kT)/Tr exp (—H/ET).

Then, as has been shown elsewhere,’

T: = A(DG- V) YL 4)
with
N 28] 4m2j - Dt
1o -Gl

and Y (r) is the axially symmetric solid harmonic
of degree L. It follows at once that

Tr = A:(DG-V)"YL).

Obviously, the vector r is, in a sense, a dummy
symbol since, with the ¥ operator in r space, the
T does not depend on these variables. Equation
(4b) is thereby a convenient representation of the
T from which these operators can readily be written
in terms of the components of j. The form (4b) also
makes it obvious that T'Y is an irreducible tensor
component for rank L.

We proceed to discuss some of the properties of
the tensors T7 with the end in view of providing
a better understanding of them and of facilitating
calculations in which they are involved. We mention
that a table of the T} for L < 4 has been given in
the literature.*

(4b)

II. TRACE OF PRODUCTS OF IRREDUCIBLE TENSOR
COMPONENTS

The evaluation of the partition function and
derived quantities, including the statistical tensors,

3 M. E. Rose, Phys. Rev. 108, 362 (1957).

4+ E. Ambler, J. C. Eisenstein, and J. F, Schooley, J. Math.
Phys. (to be published). See also, G. F. Koster and H. Statz,
Phys. Rev. 113, 445 (1959).
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FiG. 1. Tetrahedron for n = 3. The unlabeled (dotted) lines
are § in each case.

can be done in a practical manner whenever an
expansion of the density matrix p in inverse powers
of kT is justified. Since the spin Hamiltonian H can
always be written in terms of contractions of various
T7 with tensors of corresponding rank in the space
of other variables (for example, magnetic field,
electric field gradient, spin of interacting systems)
one is led to the evaluation of traces of products of
T1;. The evaluation of these traces when the tensors
are expressed in Cartesian form has been discussed
by Ambler et al.* The methods given here extend
and supplement their results.
We define

Z, = Te T2 e T
From the Wigner-Eckart theorem’
(G'm’ |T'L| jm) = CGLj"; mM)(7" |IT.]] 5)

and m’ = M 4+ m. From the fact that the com-
mutator (j°, T¥) = 0, we see that j = j’ and from
(4) it is seen that the reduced matrix element is®

GITell D) = au() = [QL + 1D/(25 + DI
Thus,

Mn—1
Su—1

(%)

Try; = a,()C(GLj; mM)y7™™. (6)
Using this result we find
z, = T ais,
where
S = ij CGLyj; mM,)C(GLoj; m + ps, M)
< C(Lyg; m + pper, M),  (72)

and
k
My = ZMl .

The sum over m in (7a) can always be effected by
n — 2 Racah recouplings. In all cases it should be
emphasized that the trace of any T vanishes except
when L = 0 and 7% = a,(j) = (2§ + 1)7%

ROSE
For n =
results follow:
Z, = (2.1 + 1)9 dr,0 Oums0
22 = (—)AM‘ 5L1L: 6#20'

For n = 3 one Racah recoupling gives

1, 2 the results are trivial. Specific

(8a)
(8b)

Zy = [(2L, + 1)(2L; + DI*(=)"*C(L,L.Ls; M, M)
X W(L1jLs; §Ls) 8400 - (80)
A recurrence formula for Z,(M,M,) is'
(Ls(Ly + 1) — Ly, + 1)
— Ly(L, + 1) — 2M,M,)Z,(M M)
=L, - M +10)L +M)L, + M, + 1)
X (L, — M)1Z (M, — 1,M,+ 1)
+ (L + My + DLy — M) L, — M, + 1)
X (L + M)PPZy(M, + 1, M, — 1),

where Z;(M,M,;) = Z, as given in (8c).
For n = 4 two Racah recouplings give

Z, = [(2L, + D)L, + (2L, + 1)L, + DI}
X (=)" M 37 C(LaLos; MoMo)C(LsLs; MoM.)

X W(GL1jLy; jS)W(iLsjLs; 35) 840
The limits on s are
max (|L; — L], |Ls — LiJ) < s
< min (2, L, + L,, L; + L,).

(8d)

No further simplification can be made in this result
and evaluation of Z, can be effected by use of
numerical tables.® Clearly the Z, cannot be ex-
pressed solely in terms of 3n-j symbols because the
latter are invariants independent of magnetic
quantum numbers. However, it would be desirable
to effect the summation in (8d). That this cannot
be done in terms of familiar constructs is apparent
from an examination of the topological diagrams
corresponding to the various Z,. Thus, for n = 3,
to consider a simple example first, there is a tri-
angular relation between the three L., symbolized
by A(L,L.L,;), and also between each L; and 2
vectors each equal to j. This gives the familiar
tetrahedron characteristic of the Racah coefficient
in (8¢), see Fig. 1. While this case is fairly trivial
the n = 4 problem is not. For n = 4 the triangular

¢ Rotenberg, Bivins, Metropolis, and Worten, Table of
% 5%7§d 6§ Symbols, (MIT Press, Cambridge, Massachusetts,
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relations are A(L,L,s), A(L;L,s) which show that
L, L,, L, and L, form a closed 4-sided figure as
must be true. Also, A(jjL;) applied for each L,
and A(jjs) appears as well. The diagram for n = 4,
shown in Fig. 2, is two tetrahedra with a common
edge s. Since the common edge is not one of the
vectors in the originally defined vector addition,’
it is clear that a summation over the auxiliary
angular momentum vector s must appear in the
result.

For larger values of n the results follow an easily
discernible pattern although the expressions for Z,
become more and more complicated as n increases.
Thus,

Zs = [(2L, + 1)(2L, + 1L, + D@L, + 1)}
X (=)™ 20 12s, + 1)(2s, + D]

8182

X C(LyLysy; M M ,)C(LsLysy; M M,)

X Clsy8:Ls; My + Moy My, + M)

X W(GLijLe; js) W(jLajLa; js2)

X W(js1jsz; Ls) 8.0 (8e)

The n = 5 diagram consists of 3 tetrahedra with 2
common edges, s, and s, constructed so that the five
L, form a pentagon as required. One form of this
is shown in Fig. 3. In general, the diagram for Z,
consists of n — 2 tetrahedra with n — 3 common
edges with the n vectors L; forming a polygon of
n sides. The number of summations appearing in
the expression for Z, is always n — 3, it being under-
stood that n > 3. These summations are over the
auxiliary angular momenta which always appear
in the topological figures as inside, and hence com-
mon, edges. The topological diagrams for any case
are readily constructed from these rules. It is now
seen that for n > 3 the Z, are not familiar recoupling
coefficients.

Since the quantities occurring in Z,, for n > 4,

Fic. 2. Two tetrahedra with common edge describing
n = 4. See also caption to Fig. 1. The labeling of the L values
can be changed by cyelic permutation.

§ These are the L; and j.
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Fie. 3. Three tetrahedra with two common edges, s1 and
81, describing n = 5. See also caption to Fig. 1. The labeling
of the L values can be changed by cyclic permutation.

constitute new constructs in the field of Racah
algebra they should be interesting to study in their
own right. Some of their properties emerge from a
study of the symmetries of Z,.

The most obvious symmetry property is that Z,
is unchanged by any cyclic permutation of the
indices 1 to n.” Another symmetry property follows
from consideration of the trace of the Hermitian
conjugate operators. Thus, from the fact that j-V
is Hermitian® it follows that

o= ()T 9
We make the notation more specific by writing
Z. (M) for Z,. Then

ZM)* = (=)"Z2(—M), (10)

where the tilde means that the index order =,
n — 1, --- 11is to be changed into 1, 2, --- n.
The asterisk on Z, means complex conjugate. From
(7a) it is seen that

Z(—M) = (=)""Z,M)). (11)

The sum in the exponent is over all L;. Also, the
Z, are manifestly real. Hence,

Z,=(=)"z,. (12)

That is, reversing the order of the indices (in both
L and M) multiplies Z, by a phase 4 1. Other
symmetry rules are obviously obtained by com-
bining this result with the invariance of the trace
under cyclic permutations. Simultaneous inversion
of the index order and changing the sign of all the
M, leaves Z, unchanged. No other nontrivial sym-
metry relations exist unless it is assumed that some
or all of the 7%’ commute or anticommute. In this
connection it may be remembered that two tensor
components commute if for both of them M. = 0.

7 The lack of symmetry in (8e) is only apparent as may
be seen by applying the Biedenharn-Elliott sum rule after
performing a Racah recoupling to eliminate si of s see
reference 1, Eq. (6.15).

8 The operators j and V operate in different spaces. We
are concerned here only with the space in which j operates.



412 M. E.

If all M, = 0 it follows from (11) that D L; is
even or that Z, = 0. Obviously, Z, is then invariant
under all permutations of the L.

As an application of the foregoing consider a
spin j coupled to a spin s by the invariant interaction

H =K };, (=)MTEGTZY(s)

where K is a constant, T} (s) is constructed in exactly
the same way as T3 (j). The evaluation of a trace
of an operator in j space, say, 77 (j), will involve
evaluation of a sum of terms of the form

¢a=K'Tr T G)H"

For simplicity we have assumed that the total
Hamiltonian contains terms which commute with
H. The trace operation will now involve a sum-
mation over all states of the compound system of
the two angular momenta, j and s. For example,
if j and s represent nuclear and electronic spins
the trace involves summation over nuclear and
electronic states. The terms with n = 0 and 1 vanish.
Therefore, we consider

= K*Tr > TYG(=)"""TTGTEG)

MM,
X T ()M (s).

The trace in s space gives (—)"" 8u.,1.,.0 50 that
the preceding expression reduces to

¢ = K°Tr D, T (=)"11.™
M1

and the argument j has been dropped. This trace
vanishes unless M’ = 0 and in that case (8¢) gives
the result

_ K [_._.3___]*
= = M G DE + 1

for it. The term we have evaluated contributes to
the 1/T* part of the nuclear polarization induced
by the interaction H. It is interesting that this
result is independent of I.

III. EXPANSION OF PRODUCTS OF IRREDUCIBLE
TENSORS COMPONENTS

It is clear that the produect of two irreducible
tensors T'%* and T can be expanded into irreducible
tensors T, with M = M, + M,. The value of Z,
is clearly related to the coefficient of T, in this
expansion. Similarly, Z, is related to the coefficient
of T) in the expansion of the product of the =
tensor components appearing in (5). In particular, if

ROSE

HT;Q. = ; CR ;’)

where the product on the left is ordered as in (5),
then
Z, = CouZ, = Co(2j + DL (13)

It is of interest to determine the complete ex-
pansion of a product of two tensors components
since from this the expansion of a product of an
arbitrary number of tensors components can be
obtained by a step-wise procedure.’ The expansion
of the product of the components of two tensors
can be written in the form

TYpM = ; C(L,Loh; M Mo)b(L,L)TY,  (14)

where the by, serve to adjust the normalization. It
is these quantities we wish to determine. To do this
we first give b,. This is obtained from Z,, and from
(8b) it follows that'®

bo(LiLs) = [(2L, + 1)/(2j + DP(=)"* b1,z,.  (15)

To evaluate b, we use Z; and carry out the expansion
of the ordered product of the three tensor com-
ponents T, 7 = 1, 2, 3. Thus,

TTYT = ; C(L,Lo\; M M )by(L,Ly)
X ; COAL:N 5 polM5) X by (LT

Taking the trace we have Z; on the left and on the
right ' = u; = 0. Using

C()\L30; ﬂzMs) = (2L3 + 1)_5(‘))_“’ oL, 5‘4,0;
and (15) we find
ba(LaLs) = [(2L, + 1)L, + D)PW(GL,GL,; 3. (16)

This result could also be derived by evaluating the
nondiagonal matrix element of (14) using (6). If
(16) is substituted in the ensuing equation the
standard formula of the Racah recoupling emerges.'

From the symmetry properties of the Racah
coefficient it follows from (16) that

bx(LxLz) = bx(Lle) s

even though 77* and T}, in general, will not
commute. Then it is seen that

TETY: £ T3

= Z_, C(L Lo\ ; MiM)b(L, L) Ty,  (17)

¥ The range of A values is, of course,
min Z; 8L; <A< Z; Ly,
where §; = =1 incoherently.
10 From (15) we obtain the useful result that the scalar
Zy (= MTLMTL™M = [an()? = (2L + 1)/(2f + 1.
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where

e = 1 4= (=)Frt, )

It follows then that the commutator contains only
those N for which L, + L, 4+ X is odd and the
anticommutator contains only those A for which
L, + L, + X\ is even. A trivial example is T} ~
fi~ (j +9j,) and Tz} ~j, = jo. Then L, = L, = 1
and M, = 1, M, = 0. The commutator j;jo — Jjoj1
is known' to be proportional to j;. Hence, only
1 appears in (17) with the lower sign,
which agrees with the rule given. Again, the anti-
commutator j,j, + joji is proportional to Tj. Thus,
only A = 2, u; = 1 appears in (17) in this case. The
fact that A = 0 does not oceur in the anticommutator
ig trivial since in the example considered w, = 0.
If y = 0, as in the case jij_« + jouji = 7 — %

)\=1,M2=

413

the trace does not vanish. In general,

Tr (7%, T2Ds = 2(=)"" 8,0 60,2, (18)

which is obvious from (8b).

The rule given above is also consistent with the
fact that the trace of a commutator is always zero.
Hence, X = 0 cannot occur in (17) with the lower
sign even when L, = L,. The relations (17) are
generalizations of the commutation rules for the
angular momentum operators; for L, = L, = 1
the commutator in (17) involves N = 1 only and
we obtain

Gatas Jar)- = V2 CULL; MiM)jariss,  (19)

which are the well-known commutators' of the
spherical components of j.
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The purpose of this paper is threefold: to provide a mathematically rigorous formulation of the
quantum-mechanical scattering problem from the time-independent point of view as has been done
by Jauch from the time-dependent point of view, to establish a union between the two formulations,
and to investigate the necessity of the asymptotic condition which occurs as a postulate in the time-
dependent formulation. The formulation of the problem depends only on the “total’” and ‘“‘free”
Hamiltonian operators. Under the conditions necessary for the time-dependent formulation, the
wave operators defined by the asymptotic limits provide a unique solution of this problem. The
possibility that solutions can exist when the asymptotic conditions are not valid is investigated by
defining wave operators by an integral representation. The conditions sufficient for these to provide
a unique solution are shown to be possibly weaker than the asymptotic conditions; there may be a
class of Hamiltonian operators for which such solutions exist but for which the asymptotic limits
do not. An explicit characterization of such a set of Hamiltonian operators is not achieved, but this
question of the necessity of the asymptotic condition has been reduced to a specific mathematical
problem. It is hoped that this paper will find a reader who is able to carry the mathematical in-
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vestigation further.

I. INTRODUCTION

HE development of descriptions of scattering

by quantum-mechanical theories has been
marked by a shift from a time-independent to a
time-dependent point of view as these theories have
evolved from elementary wave mechanics to quan-
tum field theory. In wave mechanics one solves the
Schridinger equation to find the wave functions
which represent the stationary state of the Hamil-
tonian which describes the interacting system. The
boundary conditions corresponding, for example, to
an incident beam and outgoing scattered particles
are readily applied, and the flux of particle proba-
bility current calculated from the resulting solution
yields the scattering cross section. But the formula-
tion of such boundary conditions becomes increas-
ingly more difficult as the problems considered
become more complicated than those involving the
scattering of a fixed number of particles by poten-
tials which are functions of their positions. Hence
it has been advantageous to adopt a time-dependent
formalism in which one considers time-dependent
state vectors. Taking the limit of these (in the
interaction picture) for infinitely positive and nega-
tive times serves as a substitute for applying the
boundary conditions of incoming and outgoing
scattered waves. This formalism has been an im-
portant factor in the development of the present

* Supported in part by the Atomic Energy Commision.

1 The contents of this paper are contailned in a thesis
submitted by the author to the University of Rochester in
partial fulfillment of the requirements for the Ph.D. degree.

form of quantum field theory in which the descrip-
tion of scattering depends on an asymptotic condi-
tion requiring the existence of limits of the field
operators for infinitely past and future times. One
would like to know to what extent such an asymp-
totic condition postulate is necessary, if it could be
replaced by a weaker condition which is physically
understandable but still gives the correct descrip-
tion of scattering, and if such a postulate could be
understood just as well within the stationary state
picture of scattering as within the time-dependent
picture.

In this paper we will study the relation between
the time-dependent and time-independent formal-
isms of scattering and the necessity of the asymp-
totic condition for a quantum mechanical system
described by the ‘‘total” and ‘“free” Hamiltonian
operators. The asymptotic condition to which we
refer is that of strong convergence as a parameter
becomes infinite. This is considerably simpler than
the asymptotic condition used in quantum field
theory both from a physical and mathematical point
of view. In general, our treatment will correspond
to the usual formulation of nonrelativistic quantum
mechanics. By thus limiting our study to a relatively
simple mathematical structure we will be able to
maintain complete mathematical rigor; we can use
the mathematics of functional analysis to ensure
that all the quantities we use are well defined and
that our results are rigorously derived. We will not,
for example, use such nonexisting quantities as
eigenvectors of operators which have a purely con-
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tinuous spectrum. But before we begin the rigorous
treatment it will be helpful to consider a brief non-
rigorous outline of the two types of scattering
formalism.

According to the time-independent approach':
one finds the eigenstates ¢ of the total Hamiltonian,
H = H, + V, with eigenvalues E in the continuous
spectrum, by considering the interaction V as a
perturbation with eigenstates ¢ of the ‘free”
Hamiltonian H, with identical eigenvalues E as the
unperturbed states. From

(Hy + V)‘/’ = Ey, Hyop = E¢
we get

(E ~ Ho)‘»b = (E - Ho)¢ + V‘/’-

The two solutions of this equation

(=) __ : 1 (=)
yoome ot Im g VY (1.1)
or, after iteration,
(=) _ . J >
v =g Im g Ve
+limo— YV lim—— b ya 4 ..
N —H, x4’ SOF T H, + e
(1.2)

are identified as containing the ‘‘plane-wave’ state
¢ plus “outgoing’” and “incoming’ scattered waves,
respectively.

The scattering amplitude is then constructed as
follows: If Y{* is a certain “‘outgoing wave” solution
which reduces to the ‘‘free” state ¢, as the inter-
action vanishes, we want to known the probability
amplitude (¥$°, ¢{") for observing, in this state,
scattered particles as they would be measured in
the ‘“‘incoming-wave’ state ¢, ' which reduces to
the “free”’ solution ¢,. If we define wave operators

Q. by

P = Qo (1.3)
and a scattering operator S by
S =aq, (1.4)
then the scattering amplitude has the form
W a") = (0, Qudn) = (bm, S¢).  (1.5)

From this point of view the time development

1P. A. M. Dirae, Principles of Quantum Mechanics
(Clarendon Press, Oxford, England, 1958), Chap. 8, Fourth
Ed

2 C. Maller, Kgl. Danske Videnskab Selskab, Mat.-fys.
Medd. 23, No. 1 (1945).
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of the system is not to be considered: The system is
described as being in a stationary state of the total
Hamiltonian which differs from a stationary state
of the unperturbed Hamiltonian only by the presence
of “outgoing” scattered ‘‘waves.” The scattering
amplitude gives the probability for observing a
stationary state of the total Hamiltonian which
differs from a stationary state of the ‘‘free’”’ Hamil-
tonian only by the presence of “‘incoming” scat-
tered waves. We note here that the eigenstates of
the unperturbed Hamiltonian need not in general
describe free particles. Indeed it is common practice
to use Coulomb wave functions, for example, to
describe the unperturbed states.?

The central position of the time-dependent ap-
proach in the formalism of field theory* has resulted
in much attention (see Sec. 2) being given to this
method of describing scattering.””® The system is
described by a time-dependent state vector in the
interaction representation. If these vectors at dif-
ferent times ¢, ¢, are related by the unitary trans-
formation U(, t,) then it follows from the Schro-
dinger equation that

Wa/onU(t, 1) = VUL, o), (1.6)

where
V(ty = g™ Vet
with the boundary conditions
Ulty, t) = 1
and

Ult, t) = U'(to, ), Ult, YU, b)) = Uk, b).

An explicit form for this operator is

U(t, lo) = eiHote—iH(l—to)e—iHut.

(1.7)

In the distant past the scattering system is thought
to consist of widely separated parts so that the
interaction potential V is ineffective and the system
can be represented by an eigenstate, say, ¢,, of the
free Hamiltonian H,. During the time interval

3 For a more complete review of the time-independent
method and its relation to the time-dependent approach
see S. T. Ma, Phys. Rev. 87, 652 (1952).

4 F. J. Dyson, Phys. Rev. 75, 486 (1949).

5 B. Lippman and J. Schwinger, Phys. Rev. 79, 469 (1950).

¢ M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91,
398 (1953).

7 H. S. Snyder, Phys, Rev. 83, 1154 (1951).

8 J. M. Jauch and F. Rohrlich, Theory of Photons and
Elecirons, (Addison Wesley Publishing Company, Reading,
Massachusetts, 1955), Chap. 7, provides a review of both the
time-dependent and time-independent methods.
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— o < t < o the interaction causes the state of
the system to change according to the transforma-
tion U. In the remote future the system separates
again into noninteracting parts so that its state
vector approaches an eigenstate of the free Hamil-
tonian. The scattering amplitude is taken to be
the probability amplitude for observing, as ¢t — + «,
the eigenstate ¢,, of H,, for the case that the system
was initially (as { » — =) described by the eigen-
state ¢,. If we let

S = lim U(, )

t—eo,

(1.8)

to=—®

then the scattering amplitude is

(¢rny S¢n) .

The limits in Eq. (1.8) play a critical role in this
formulation. Suppose that ¢ represents the state
of the scattering system at ¢ = 0. Then at any other
time the state of the system is represented by e~ *#*y.
Now we have stated that as { — 4=« we wish this
to behave as if the interaction were ineffective.
That is we require the existence of vectors ¢;, and
®ous SUCh that

—~iHt —iHot _
e' ¢——>e' Pin A8 [— —® (1.9)
e-th¢ — e-‘H”(ﬁout as t — + © .
This is equivalent to®
e M o — Y 88 o Fo, (1.10)

But any eigenstate of the free Hamiltonian with
the eigenvalue belonging to the continuum is
elegible to be an initial (in) or final (out) state.
So if we assume, as is usually done, that H, has no
bound states, then the “in’’ and “out’ vectors span
the whole space and the

lim e ' = U0, T ») (1.11)
exists, and so does the scattering operator
S = Ule, —=) = U, OUO, —=)
= U0, «)U(0, — ). (1.12)

Comparing the above with Egs. (1.3) and (1.4) and
the preceding discussion shows that the connection
between the two methods can be established by the
identification

Q. = U0, F=). (1.13)

% The convergence in (1.9) and (1.10) i3 strong convergence;
hence

lim,,w Jlexp (—tHt)y — exp (—iHot)o||
= |[¢ — exp (iHt) exp (—7Ht)$||
establishes the equivalence of (1.9) and (1.10).

THOMASF. JORDAN

The importance and wvalidity of the asymptotic
condition, Eq. (1.9) or (1.11), have been given much
consideration.'®'* Various devices such as an ex-
ponential cutoff of the interaction in time® or the
averaging of the preparation of the initial state®
have been used to ensure the existence of the limits.
We only wish to note that the latter method leads
to the formulas

0
U@, -») = lim e’ e dt
0T e (1.14)

U@, +o) = lim | e “'ee """ dt.
e—0t Jo
It has been observed®®:®'*'* that the time-de-
pendent formulation, even with these methods of
forcing the asymptotic condition, should give the
same results as the time-independent formulation,
as indicated by Eq. (1.13).

In the next section we will continue the review
of the time-dependent formulation of scattering by
outlining the mathematically rigorous treatment
given by Jauch,” and the mathematical investi-
gations of the conditions under which the asymptotic
limits exist and render this treatment applicable.

It is to be emphasized that while much attention
has been given to the rigorous formulation of the
problem from the time-dependent point of view,
there has been no mathematically satisfactory for-
mulation of scattering theory according to the
stationary-state approach. In Sec. 3 we will give a
treatment of the problem which reflects the time-
independent point of view, setting up a rigorous
mathematical problem whose solutions define the
wave operators of Eq. (1.3). This formulation is
not limited by any dependence on configuration
space methods.

In the following section we show how this problem
is closely related to the time-dependent treatment
given by Jauch and that, under the asymptotic
conditions required in this treatment, the wave
operators given by Jauch also provide a unique
solution of the stationary state problem.

Since the asymptotic conditions do not enter the
stationary-state problem, there is the possibility
that solutions may be found even when the asymp-
totie limits do not exist. In Sec. 5 we explore this
possibility by developing an integral representation

10 M. N. Hack, Phys. Rev. 96, 196 (1954).

1t g, E. Moses, Nuovo cimento 1, 103 (1955).

2 F. Coester, M. Hammernesh, and K. Tanaka, Phys.
Rev. 96, 1142 (1954).

13 J. M. Jauch, Helv, Phys. Acta 31, 127 (1958).
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for the wave operators which, in the case that the
asymptotic limits exist, have been shown by Jauch
to equal the wave operators of the time-dependent
formulation. We show that these wave operators
provide a unique solution to the stationary-state
problem whenever they exist and are partially iso-
metric operators connecting the continuum sub-
spaces of the free and total Hamiltonians.

In the following section we investigate the condi-
tions under which these wave operators (when they
exist) have the partially isometric property neces-
sary and sufficient for a solution of the scattering
problem. No necessary and sufficient conditions are
given. We do show in a direct way how the conditions
which have most often been used to prove the exist-
ence of the asymptotic limits can be used to prove
the isometric property of these wave operators.
We also show that the requirements that these
wave operators have the isometric property are not
stronger, and possibly weaker, than the asymptotic
conditions necessary for the time-dependent formula-
tion. Consequently there may be a class of Hamil-
tonians for which a solution of the scattering problem
exists, but for which the asymptotic conditions are
not valid. We have not been able to find any explicit
characterization of such a set of Hamiltonian
operators. But this question of the necessity of the
asymptotic condition has been reduced to a specific
mathematical problem. It is hoped that this paper
will find a reader who is able to carry the mathe-
matical investigation further.

2. TIME-DEPENDENT FORMULATION OF
SCATTERING

We consider the description of a quantum-
mechanical system in terms of operators on a
(separable) Hilbert space 3¢. In particular the ‘‘free”
and ‘‘total” Hamiltonians are represented by linear,
self-adjoint operators H, and H, respectively. Let
X, and X be the subspaces of 3 spanned by the
eigenvectors of H, and H, respectively, and let
My = Koy and M = &K, be their orthogonal com-
plements or the continuum subspaces™ of H, and
H, respectively. Let P, and P be the projections
on 9, and M, respectively.

In order to define the operators necessary for a
description of scattering, Jauch'® imposed the fol-
lowing two conditions on the Hamiltonians (we
give these as slightly generalized by Kuroda'®).

1 See, e.g., M. H. Stone, ‘‘Linear Transformations in
Hilbert Space,” American Math. Soc. Colloquium Publ. 15,
Theorem 5.13.

1 S, T. Kurtoda, Nuovo cimento 12, 431 (1959).
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For any ¢ & 3¢ the strong limits
lim ¢'e " 'Pp = Q.¢ (I

exist. This defines the wave operators Q.. Let ®"
be the ranges of the wave operators. The second
requirement is that

R =R = 9. (II)

The first requirement is the asymptotic condition.
The second is characteristic of single-channel scat-
tering; it ensures that the continuum states of H
are the possible states of the scattering system at
t = 0 and the continuum states of H, are the “in”
and “‘out” states. The scattering operator may then
be defined by

S =9Q,. (2.1)

It has then been shown™''® that these operators

have all the properties needed for the description of
scattering. It will be useful to state some of these
here: The wave operators are partially isometric
operators'® mapping 91, to 9. That is,

ngo = M
[10.0]] = llp!| for ¢ & M,
Q¢ =0 for ¢ € X, = My

or equivalently,

Q0. = P, (2.2)
Q.Q. =P, (2.3)
If M, = 3¢ (H, has no bound states) then Q. are
isometric; QI0. = 1. If also 9 = 3¢ (H has no

bound states) then €. are unitary; 2.0% = 1 also.
The scattering operator S is a partially isometric
operator which is unitary in 9%,

S*S = 88 = P, 2.4)
and commutes with the part of H, in 9,
SH,P, = H,P,S. (2.5)

The wave operators have the intertwining property

e'Q. = Q. forallreal ¢, (2.6)

and the part of H in 9 is unitarily equivalent to the
part of H, in 91,

HPQ. = Q.H.P,
QIHP = H,P,Q:.

2.7

#¥ F, J. Murray and J. von Neumann, Ann. Math. 37,
116 (1936), Sec. 4.3.
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The wave operators have the integral representations

0

Q+ — llm eestethe—{HntPO dt
e—0t J—
0 . N
Qf = lim e’ Pyt Tole™ " dt
—ot J o y
¢ e (2.8)
-]
Q. = lim e ‘et Py dt
e—0t Jo
-]
QL = lim | e Pt le™ ™ dt.

e—0+ Jo
We can form the operators
Q*(t) — eiH°'Q*e—fH“’.

By Egs. (2.6), (I), (2.1), and (2.2) these have the
properties that

lim Q.() = P,

tomo

lim 9.,() = S,

to®

lim @_(3) = 8*

1(8/08)Q.() = V(HQ.(9),

which, comparing with the discussion of Eqgs. (1.6)-
(1.8) allows us to make the identification

Q.() = Ult, F»)

in agreement with Eqs. (1.11), (1.12), and (1.13).

These considerations provide a rigorous mathe-
matical treatment of the scattering problem, from
the time-dependent approach, whenever conditions
(I) and (II) are valid. There have been several
investigations'®''"*' which provide conditions under
which the asymptotic limits (I) exist. These have,
for the most part, used the common result that
when we can define V = H — H, with a domain
D(V) dense in 9M,, and when there is a subset D
of 91, such that the linear manifold determined by ©
is dense in 9, and e”#*'D C D(V), it is sufficient
for the existence of the limits (I) that for any ¢ & D

f Ve ™ g|[ di < . 2.9)

Roughly speaking, it has been shown that for inte-
gral operators V this is true if V falls off at infinity

faster than r*.

In order that condition (II) be valid, Kuroda®

17 J. M. Cook, J. Math. and Phys. 36, 82 (1957).
18 M. N. Hack, Nuovo cimento 9, 731 (1958).
(191599{. M. Jauch and I. I. Zinnes, Nuovo cimento 11, 553
20T, A. Green and O. E. Lanford, III, J. Math. Phys.
1, 139 (1960).
2 T, Ikeba, Arch. Ratt. Mech. Anal. 5, 1 (1960).
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has shown that it is necessary and sufficient that
the (strong) limits

lim eiHole—thP¢

t—ow o

(2.10)

also exist. Sufficient conditions for the existence of
these limits have been found.* They provide a
generalization of earlier investigated sufficient con-
ditions®'** which required the trace of |V| to be
finite. We note that under these conditions Kuroda
also proves the (strong) continuity of the wave
operators and the scattering operator with respect
to V (or with respect to H).

3. FORMULATION OF THE SCATTERING PROBLEM

We now want to provide a rigorous formulation
of the scattering problem from the stationary-state
point of view. Let, H, H,, P, P, be defined as in
the previous section on the separable Hilbert space
3¢ with the subspaces 9, 9N, ete. We want linear
operators Q.. [see Eq. (1.3)] which map the continuum
states ¢ & M, of the “free’” Hamiltonian to con-
tinuum states ¢~ € M of the total Hamiltonian.
That is, we require for the solution of the scattering
problem two linear operators Q. defined everywhere
on M, such that if we let

v = 0, ¢ €M 3.1)
then
‘l/(*) E m
or
Q.9M, & M.

Furthermore we want to be able to obtain all the
“stationary states’” ¢‘* of the scattering system
by this operator (this means, as in the time-de-
pendent case, that we have ‘single-channel” scat-
tering), and we want any continuum state of the
total Hamiltonian to be such a state. Therefore we
require that Q. provide a one-to-one mapping of
N, onto N (one-to-one correspondence between the
perturbed and unperturbed states)

tho = (-')TC; (3.2)

since we are not interested in the eigenstates (bound
states) of H,, it is convenient to let Q. map these
to zero, Q.XK, = 0; then

Q.3 = ®" = In. (3.3)

If ¢ & 9, is normalized then we want ¢’ € I to

2§, T. Kuroda, J. Math. Soc. Japan (a) 11, 247 (1959);
(b) 12, 243 (1960).

22 M. Rosenblum, Pacific J. Math. 7, 997 (1957).

# T. Kato, J. Math. Soc. Japan, 9, 239 (1957); Proc.
Japan Acad. 33, 260 (1957).
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also be normalized. Hence we require

[2-¢]| = [8]] for ¢ € M. (3.4)

Therefore 2. must be partially isometric operators'®
from M, to M, or equivalently they must satisfy
the equations

Q:Q* = PO
Q.QI = P.

(Then Q: will be a partially isometric operator
from 9N to M,.)
Now we require that

HQ*PO = Q*H()Po-

Since 2.¢ = 0 for ¢ & M, and M, reduces H,,™
this is equivalent to

(3.5)

HQ. = Q.H,. (3.6)
By taking the adjoint of this, it follows that
QIH = H,QI. 3.7)

Now we can observe, if we allow ourselves the luxury
of using (nonexisting) eigenvectors of H, and H
with eigenvalues in the continuous spectrum, that
the requirement (3.6) is equivalent to the require-
ment of the nonrigorous formulation that: ¢ is an
eigenvector of H, with eigenvalue F in the continuous
spectrum if and only if ¢’ = Q.¢ are eigenvectors
of H with the same eigenvalue. Let (3.6) be valid.
Then if Hy¢p = E¢ we have

Hy'™ = HQu¢ = Q.Hyp = Q.Ep = Ey'™
and if Hy'™ = Ey'™, then
Hp = HQiy"™ = QIHy™ = QIEy™ = Eg.
Conversely if H¢p = E¢ and HQ.¢ = EQ.¢, then
HQ.¢p = EQu¢p = Q.Ep = Q.Hyop.

But since such eigenvectors ¢ span 97, this implies
(3.6).

Now if we are going to be mathematically rigorous
we can not use eigenstates corresponding to eigen-
values in continuous spectrum of the Hamiltonian.
But we can retain some of their fundamental
physical interpretations. In particular if ¢ and
¥ = Q.¢ are eigenvectors with eigenvalue £ of
H, and H, respectively, which represent, at ¢ = 0,
the states of physical systems described by these
Hamiltonians, then at any time ¢ these states will
be represented by

¢t) = e =

e-l'Et
and

—iEt 4 (%)
=e YT,

'p(*)(t) — e—illll//(*)
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i.e., they are stationary states and since they have
the same energy eigenvalue they have the same time
dependence. But even in the rigorous case where
the states are not represented by eigenvectors we
have that

lp(*)(t) — e_th\b(*)

—iHt

=e Q.
= Qe g = Q.(t)
so that the perturbed and unperturbed states have
essenentially the same time dependence.
Here we have used the fact that (3.6) is equiva-
lent to
6—”“9* — Q*e—iHut (38)
for all real t. This can be proved as follows. We
introduce the two families of projection operators
F\, E,, —®» < XA < o which provide a spectral
representation of the operators H and H,, respec-
tively. That is, if ¢, ¢ € 3¢ we have that

0, Ho) = [ \dig, Fup)

and

(¢y HO%) = }\d<¢,E}\‘l/)'

Let HQ., = Q.H,. This means that if ¢ belongs to
the domain of H,, then Q.¢ belongs to the domain
of H and
HQ.¢ = Q.Ho
and conversely, if Q.¢ belongs to the domain of H,
then ¢ belongs to the domain of H, and the above
equality is valid. By induction we ean prove that
H'Q. = Q.H;

for any positive integer n. For if this is true, we
have that ¢ belongs to the domain of Hj if and only
if ¢ belongs to the domain of H"Q., in which case
H"Q.¢ = Q.Hgo.
If, in addition, H"Q.¢ belongs to the domain of H,
or equivalently if ¢ belongs to the domain of H"*'Q..,
then 2.H ¢ belongs to the domain of H and
H*'Q.9 = HQ.Hyp.

But if Q.Hyp belongs to the domain of H, then
H3o belongs to the domain of H,, or equivalently,
¢ belongs to the domain of H}**, and

H*'Q.¢ = HQ.Hyp = Q.Hy'e.
By reversing the argument, one can show that if ¢
belongs to the domain of H;™, then Q.¢ belongs

to the domain of H™' with the above equality
again being valid. Hence

H*'Q. = Q.H,
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which completes the proof of the induction pro-
cedure. From this we obtain that

P(H)Q. = Q.P(H,)

where P(z) is any polynomial in z. This can be
extended to obtain®

e(H)Q. = Quen(H,) forallreal A,

where e, () = 1forz < A\, and ey (x) = Oforz > A:
or equivalently we have that

F)\Q* = Q*E)\.
For any ¢, ¢ belonging to 3¢ it follows that

[ eaw, o = [ ™ aw, 0.5

for all real ¢, which is the precise statement of the
desired result that

e—th 9.. — Q.e_”’“‘

for all real t. Conversely, if the above equality is
valid for all real ¢, the uniqueness of the Fourier
transform implies that for any ¢, ¢ belonging to 3C

(¥, FrQ.9) = (¢, QErd)

for all real A\. From this it follows that ¢ belongs to
the domain of H, if and only if Q.4 belong to the
domain of H, in which case

W, Ho) = [ 3 d(w, Fr0.9)

= [ ndw, 2.B0) = (v, 2.19),

or equivalently
HQ. = Q.H,.

While we can not have states with an exact
value of the energy in the continuous spectrum, we
can have states with an arbitrarily small spread in
the energy about some mean value E. An example
of such states can be constructed as follows. If H
is a self-adjoint operator, it can be approximated
by H — A, where A is completely continuous and
symmetric, such that H — A has a pure point
spectrum but the limit points of the spectrum of H
and of the spectrum of H — A are the same.’
Since A is completely continuous there exists a
set of basis vectors ¢, in 3¢ such that for any ¢ & 3¢

% J, von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, New
Jersey, 1955), pp. 141-145.

% Riesz and Sz. Nagy, Funclional Analysis (Ungar
Publishing Company, New York, 1955), p. 367.
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Ay = Ak‘: H(be, Y)x

(b, @) = 85
where p, are the eigenvalues of A. Then
JAy|" = (4d¢, 4y)

= ; ﬂkﬂ:’(d’k) ¢)(¢u \b)*(d’n ¢k)
Ek HIZ: K‘P’ ¢k)‘2'

If ¢ has unit norm, we have

W, o0 < HIP (el = 1
go that

AP < 20 i

Now in our approximation of H by H — A we can
choose A so that ., u? is arbitrarily small.”® Since
the limit points of the spectra of H and H — A are
the same, given any point in the continuous spec-
trum of H, there is a point E arbitrarily close to
it which is an eigenvalue of H — A. Thus there
exists a vector ¢ with unit norm such that

(H — A)¢ = k¢
or
(H — BE)¢ = A¢.

Such state vectors can be seen to have arbitrarily
small dispersion of the energy. For

(¢, (H — E)’¢) = (H — E)$, (H — E)¢)
= (49, 49) = ||4¢|[*
< ; I’
can be chosen to be arbitrarily small.

The time dependence of these states can be made
to approximate, over some finite interval, that of
a stationary state. The mean value and second
moment of the energy will be preserved in time and

they will be the same for the perturbed and un-
perturbed states

(W, HY'™) = (9.9, H2.4)
= (¢, Q.Hy) = (¢, Hop)

(¢, H*y™) = (HQu¢, HQ.$) = (.Hup, Q.Ho)
= (Hup, Ho) = (¢, Hop).

Another requirement which is a standard part
of perturbation theory is that the perturbed states
reduce to the unperturbed states, ¢’ — ¢, as the
interaction vanishes, H — H,. We could require
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that Q. be strongly continuous® as a function of
H and of H,, and that

Q.—P, if H—H,. 3.9

In the particular case that the common domain
D(H) N D(H,) of H and H, is dense in 3¢ and
the operator V defined by H = H, + gV is bounded,
this would imply that Q. are strongly continuous
functions of g and Q. — P, as ¢ — 0. However, we
will see that the wave operators can be uniquely
determined without their satisfying this condition.
It may even be desirable for some problems that
they do not.”® Hence we will not include this con-
dition in our formulation.

Finally we need a condition which ensures us
that Q.¢ correspond to the solutions with purely
“outgoing’’ or ‘‘incoming” scattered “‘waves”. Now
Coester, Hammermesh, and Tanka'® have shown
that if we find the wave operators using perturba-
tion theory with eigenfunctions of the Hamiltonian
[Egs. (1.1) and (1.3)] then ©. are equal to the
operators U(0, F =) as given by Gell-Mann and
Goldberger® [Egs. (1.4)]. In other words, by (3.6)
we have that

0
lim e Pyt Qe dt
=0t J -
0 o .
= lim e Py’ 'e ™ dtQ, = QTQ,
yuv,. -
0 ° (3.10)
[=-1
1im ee—nPOeiHolQ-e—';Hgt dt
-0t 0
©
= lim e Pt dIQ_ = Qra_.
-0t 0

Since we have required that Q. satisfy Eqs. (3.15),
we will select the solutions with “‘outgoing” and
“incoming’’ scattered waves by imposing the con-
ditions that

o

lim e Poe’ ™' Q67 dt = P,

or o (3.11)
llm ée_ttPQeiH“Q_e_iH” dt = P().

e—0t+ Jo

These are a weakening of the conditions of Jauch

%7 By a strongly continuous function f(A) of an operator A
we mean & function which is continuous from the strong
operator topology to the strong operator topology, i.e., if
A, — A strongly, then f(4.) — f(A) strongly (see Riesz
and Sz. Nagy, reference 26, pp. 150, 298).

28 That solutions which are not continuous funections
of the interaction may be important in theories of elementary
particles has been pointed out by R. E. Marshak and S.
Okubo, Nuovo cimento 19, 1226 (1961).
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and Rohrlich® that

: {H —i1Ho
lim P Que 7!

t—m

= P,. (3.12)
(Note that this would imply asymptotic conditions.)
Conditions (3.11) can be obtained from (3.12) by
noting that whenever the limits exist the integrals
also exist and are equal to the limits. There are
surely other conditions, possibly weaker, which give
unique solutions Q., but ¥gs. (3.11) will be con-
venient for our purposes. We can now summarize
the conditions of Eqgs. (3.5), (3.6), and (3.11) in the
form of a definition of the scattering problem.
Definition: Linear operators Q.. on JC are solutions
of the scattering problem associated with the self-
adjoint operators H, and H if they satisfy the
following conditions:
(o) Q. are partially isometric operators from 91,
to 9, that is

S!:Q* = Po, Q*Q: = P.

B) e Q. = Que™*™! for all real ¢ (or equivalently
HQ: = QtHo).
0
lim ' P’ Qe dt = P,
(7) e—0 -
lim e P Qe dt = P,.
e—0+t Jo

The scattering operator is then defined by S = QIQ,
and the scattering amplitude found as in Eq. (1.5).
[See discussion preceding and following Eq. (1.5)].

In this form the scattering problem does not
depend in any way on a configuration space repre-
sentation of the Hilbert space and hence its ap-
plicability is not limited to situations where con-
figuration space methods are useful. It is obvious
from conditions («) and (8) that a necessary con-
dition in order that a solution of the scattering
problem exist is that the continuum parts of H and
H, be unitarily equivalent.

4. ASYMPTOTIC LIMITS AS A SOLUTION

We now turn our attention to finding solutions
of the problem formulated in the preceding section.
We first notice that whenever the asymptotic con-
ditions of the time-dependent formulation are valid
the solutions obtained from this treatment are also
solutions of the time-independent problem.

Theorem 1: If conditions (I) and (II) of the time-
dependent treatment of scattering are valid, the
operators Q. defined by the limits (I) provide a
unique solution of the scattering problem.
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Proof: The Eqgs. (2.2) and (2.3) are equivalent to
condition (), and Eqgs. (2.6) and (2.7) are equivalent
to condition (8). We can use the integral representa-
tions of Eq. (2.8) for the wave operators Q.. In
the next section (see proof of Theorem 3) we will
prove that if these satisfy («) and (8) then they
also satisfy (v). We will also show there that this
solution is unique. Thus we have dispensed with
the proof of Theorem 1.

Note that if we consider Q. as a solution of the
time-independent problem, the parameter ¢ used in
defining the limits (I) need not be interpreted as
a time variable.

A result of Theorem 1 is that all the investigations
which have provided sufficient conditions for the
validity of conditions (I) and (II) also provide
sufficient conditions for the existence of a solution
of the time-independent problem.

5. INTEGRAL REPRESENTATIONS AS A SOLUTION

Since the asymptotic condition does not appear
in our formulation of the scattering problem, we
are led to consider the possibility that solutions of
this problem exist even when the asymptotic limits
fail to exist. As a means of pursuing this possibility
we will develop in this section a solution which
consists of wave operators in the integral form
[Eq. (2.8)] which we have already used. To this
end we first prove the following:

Theorem 2: Let H, and H be self-adjoint operators
on JC and let ¢, ¢ & 3C. In the equations

0

2.¢ = lim e ‘e eT M Pug di (5.1)
e—o0T J -

Q¢ = lim e e TP dl. (5.2
-0t 0

The integrals exist as Bochner integrals® and when
the limits exist they define linear operators Q.. The
adjoints of these operators are equal to the limits
of the (Bochner) integrals

0

Q¢ = lim e P’ 'e™ g dl (5.3)
e—0t J -

Q¢ = lim | e “"Pe e Fodt (54)
-0t Jo

whenever the limits exist. The integrals in these
equations also always exist. The operators Q. are
bounded by unity,

29 For the theory of Bochner integrals as used here see,

e.g., E. Hille, “Functional Analysis and Semi-groups,”
American Math. Soc., Colloquium Publ. 31, (1948), pp. 40-48.
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[2.01] < o]l

for all ¢ & %, and they have the intertwining
property that
6‘””9* — Q*e‘”{"' (55)
for all real ¢, or equivalently that
HQ. = Q.H,.

In the case that the conditions (I) and (II) of the
time-dependent formulation are valid, the limits of
the integrals in (5.1) and (5.2) exist and define
operators identical to those defined by the asymp-
totic limits of (I).

Proof: Since the function
ee—etethe—iHntPO¢

is strongly measurable, and

f

fo llee™ ‘e ™™ ' Puop|| dt fo ee " di ||Pop]

fi

IPopl} < =,
the integral

f 66—6tethe—iHo!P0¢ dt
0

exists as a Bochner integral for any ¢ € 3.*° In
a similar manner one can show the existence of
the integrals in (5.1), (5.3), and (5.4). Since both
integration and passage to the limit are linear
operations, the operators Q. defined by the limits
are linear. When all the limits exist we have that,
for any ¢, ¢ € 3,

©

(¥, 2.¢) = lim | e (¢, €™ e" "™ Pog) dt
e—0t Jo
= lim e (P’ e Ty, @) dt
e—0t 0
- (“Inf ee—etPOeiHote-iIIt¢d;’ ¢),
e—0t Jo

which establishes the validity of Eq. (5.4). A similar
argument establishes Eq. (5.3). To obtain the
boundedness of these operators we write

lle.sl| < fm @ [l TP g | dt
0 (5.6)

_ f « dt ||Pll = 1Pl < |8l

since this is independent of e. A similar inequality
proves the boundedness of @,. Jauch' (see first
theorem of Sec. 5) has proved Eq. (5.5) so we will
not repeat the proof here. Also Jauch has proved
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that in the case that conditions (I) and (II) of the
time-dependent formulation are valid the wave
operators defined by the limits (I) have the integral
representations of Egs. (5.1) and (5.2). Hence the
proof of Theorem 2 is complete.

We can now see that, when the limits exist to
define the wave operators and their adjoints by
Eqgs. (5.1)-(5.4) of the proceeding theorem, these
operators have most of the properties necessary and
sufficient for a unique solution of the scattering
problem.

Theorem 3: Let the limits of the integrals of Egs.
(5.1)-(5.4) exist and let Q. be the operators defined
by these equations. If they are partially isometrie
from M, to M, that is, if

Q0. = P,, 0.0t =P (5.7)

then the wave operators Q. provide a unique solu-
tion of the scattering problem.

Proof: Equation (5.7) is condition (). From Theorem
2 we have that condition () is satisfied. To prove
(v) we use Eqgs. (56.7), (5.3), (5.4), and (5.5) to write

o

. iHot —ill
P, = Q19, = lim e’ Poe'™'e 't dtQ,
=0t J—o
0
. iHo —i,
= lim e P Qe gy
-0t —c0
. - {Hot —iH
Py, = 99 = lim ee Pt eT ! diQ_
e—0t Jo
. ety iH, —iH,
= }im e P Qe M dt.
e—0t+ Jo

Finally we must show that the solution is unique.
Let w. satisfy conditions (a), (8), and (v). Using
(v) then (8) we get that

4]

. tp iH Y
P, = lim e P 'w,e” 7" dt
-0t —~ @
0
. iHot —1H +
= lim e ' P e” M diw, = Qw,
-0t J -
©
. - i H o —iH
Py, = lim e Py w e dt
-0t J0
[==]
. - iHot —iH
= lim e ‘P le T diw. = Qw_.
-0t Jo

Taking the adjoints of these equations gives
w,Q, = Py, @ Q. = P,.

But because of (o), w. are partially isometrie
operators from 9, to M. Hence'® wi = QI or
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w. = Q. which shows that Q. are the unique solu-
tions and completes the proof of Theorem 3.

From the above theorems we can see that the
three conditions contained in our formulation of
the scattering problem are sufficient to determine
a unique solution. We also see that such unique
solutions exist if either the asymptotic conditions
of the time-dependent formulation are valid, or if
the limits of the integrals in Eqs. (5.1)—(5.4) exist
and define operators satisfying Eqgs. (5.7). But from
the point of view of perturbation theory, we might
want the wave operators to be continuous functions
of the Hamiltonian operators, as was mentioned in
the preceding section. Therefore, it is interesting
to inquire as to what further conditions might be
needed if this is to be the case. The integral repre-
sentation form of the wave operators gives us a
method of investigating this problem.

Stated more precisely, the problem is this: Given
any “free” Hamiltonian operator H, there is a set
of Hamiltonian operators H such that the wave
operators exist as the limits of the integrals of
Eqgs. (5.1) and (5.2) and their adjoints are the limits
of the integrals of Egs. (5.3) and (5.4) and these
operators satisfy Eqgs. (5.7) and hence provide a
unique solution of the scattering problem. In
particular this is true when the asymptotic con-
ditions (I) and (II) are valid. We want to know
if there are further conditions satisfied by a sub-
set, of these operators H which ensures that the
corresponding wave operators are continuous func-
tions of the operators H of this subset. A similar
problem can be stated by interchanging the roles of
H, and H. A partial answer to this question is
given by the following:

Lemma: If for a set of Hamiltonian operators the
limits of the integrals of Eqs. (5.1)-(5.4) exist and
define wave operators satisfying Eqgs. (56.7), a suf-
ficient condition on this set of Hamiltonian operators
in order that the wave operators be strongly con-
tinuous® functions of the Hamiltonian operators is
that the limits of the integrals in equations (5.1) and
(5.2) exist uniformly with respect to the Hamiltonian
operators. This is true for the case that the asymp-
totic limits (I) exist uniformly with respect to the
Hamiltonian operators.

Proof: Let H and H' be two Hamiltonian operators
belonging to the set under consideration, and let
Q2. and Q! be the respective wave operators defined
by Egs. (5.1) and (5.2). For any @ > 0 and any ¢
we need to show that
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Qo — Q.9|| < a

when H' is sufficiently close to H in the strong
operator topology. Since the wave operators are
uniformly bounded, we need only to show that
this is true for a dense set of vectors ¢. We first
note that

[le2 — 0.0l < l Q¢ — f e e e P dtH
o

+

f e e e P dt

0

__f ee—eteiHle-iHotPo¢ dt'l
0

-+

f e e e Pogp dt — Qqs”
0

Since the convergence of the integral in Eq. (5.2)
is assumed to be uniform in the Hamiltonian opera-
tors, we can find an ¢ > 0 such that the first and
last terms on the right-hand side of the above
inequality are less than or equal to «/3. Therefore
we need only to show that for this e the middle
term is also less than or equal to a/3 for H' suffi-
ciently near to H. In other words, we need only to
establish the continuity of

o

fo ee e e Pog dt
as a function of H. Let
() = e e Pog
() =2z if t<n
z,(8) = 0 it £>n;
let z’(t), z.(¢) be defined similarly with H replaced
by H’. We wish to show that

f:x'(t) dt — f:x(t) dt[l <8

Now

f: (1) df — f: () dt”

< f”u«»—xxmdﬂ

+ fo "l dt — fo " l) dtH

+ f@w—mmwﬂ

and
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H fo i (2(t) ~ z.(8) dtH = H f i e 'eeT ' Pog dt“

< [ et |l

Pogl|
which is independent of H so that also

—€n
=€

w ¥
[ @ - sy ar| <o iipgll,
so if we pick n such that

e [[Po|| < a/9,

we need only show that

1 fo "2l dt — fo " b dtH

n
- H't —iH,
f @ Cle‘l le iH, tP0¢ dt
0

_f ee—z!ethe—iHntP0¢ dtH
0

< «/9;

that is, we need only establish the continuity of
‘[ ee—etethe—ngtP0¢ dt
0

in H. But this follows (see Hille® Theorem 3.6.6)
if ee”“‘e*¥'e”"'Pyp is a strongly continuous func-
tion of H, since it is bounded uniformly in H and
int € (0, n),

llee™*'e’™ ‘e "#'Pyp|| = ee™* ||Poo]]|
= |lee™'e' e ™ Pog|| < € ||Pop].

A similar argument follows for the case of Q..

We can establish the strong continuity of
ee” ‘e e P o as a function of H if we can
show that ¢*?* is a strongly continuous function of
the self-adjoint operator H. We can do this as fol-
lows: Let H,, n = 1, 2, 3, --- , be a sequence of
self-adjoint operators converging strongly to H.
This means that the domain D of H is within the
domain of each H, and for any vector ¢ belonging
to O

as n — . It can be shown that e'”** converges

strongly to e*?* for all real ¢ if the resolvent opera-
tors (H, — 2)”! converge strongly to the resolvent
operator (H — 2z)™' for all nonreal 2.*° Now these

30 See Kuroda, reference 22(a), proof of Eq. (4.4).
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resolvent operators are bounded uniformly in H,
and H by |Im 2| (see Riesz and Nagy®®, p. 321)
so they will converge to the desired limit whenever

[|(H, — 27 — (H —2)7¢|| =0
for a dense set of vectors ¢. But
[{Ho = 27'¢ — (H ~ 2)7'¢]|
(H, —2)7(H — H — 297'¢
— (H, — 97 (H, — 2)(H — 2)7¢||
lH, = 7' (H — H)H — 2)7'¢]|
< |Imel™ [J(H — H)H — 2)7'¢|[ >0

I

for all ¢ such that (H — 2)"'¢ belongs to .
But such vectors ¢ form a dense set since in fact
(H —2)7'3¢ = D.

A similar argument establishes the continuity of
Q. as functions of H,. This completes the proof of
the first statement of the lemma.

From the proof given by Jauch'™ of the con-
vergence of the integral representation of the wave
operators in the case that conditions (I) and (II)
are valid, one can easily see that the limits of the
integrals of Egs. (5.1) and (5.2) exist uniformly with
respect to the Hamiltonlan operators whenever
the asymptotic limits of condition (I) exist uni-
formly with respect to the Hamiltonian operators.
This proves the second statement of the lemma.

6. CONDITIONS SUFFICIENT FOR A SOLUTION

As we have seen in the preceding section, suffi-
cient conditions for the existence of a unique solution
of the scattering problem are that the limits of the
integrals of Egs. (5.1)-(5.4) exist and that they
define wave operators which satisfy Eqs. (5.7) [which
are equivalent to condition («) of the scattering
problem]. In particular, this is true whenever con-
ditions (I) and (II) of the time-dependent formula-
tion are valid. But the problem of greatest interest
would be to find if there exists a set of Hamiltonian
operators for which conditions (I) and (II) are not
valid, while the conditions sufficient for the existence
of the integral representation solution are still
satisfied. This would permit solutions which could
not be treated from the time-dependent point of
view, and would carry the mathematical analysis
of the conditions sufficient for a solution beyond
the problem of the existence of the asymptotic limits.
We are unable to present any explicit characteriza-
tion of such a set of Hamiltonian operators or show
that such a set exists. But we can make some re-
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marks which will clarify the problem, and we can
make an argument which makes it appear quite
plausible that such a set of Hamiltonian operators
does exist.

First we show that if the limits of the integrals
of Egs. (5.1)-(5.4) exist and define wave operators

which satisfy the first of Eqs. (5.7),
Qro. = P, (6.1)

then these wave operators are partially isometric
with the initial set 9%,. This follows from the
boundedness property of the wave operators and
their adjoints that

el < llg]l

laZe!] < llgll
for any ¢ &€ 3C. Let ¢ & M,. Then
Q0.0 = Pp = ¢

and
llel] = 1eZ0.0]] < [l2.9]] < o],
which implies that
l[2-0]] = llall.
If ¢ & 9, then Py = 0, and
Q.0 = 0.

Hence Q.. are partially isometric with the domain 91Z,.

The conditions sufficient for a unique solution
of the scattering problem by the integral representa-
tion wave operators have thus been reduced to:
the limits of the integrals in Egs. (5.1)-(5.4) exist;
the wave operators thus defined satisfy the first
of Egs. (5.7); the ranges of the wave operators
coincide with 9.

It is easy to show directly that the wave operators
satisfy the first of Eqgs. (5.7) under the conditions
which have been used'®'”'**" most often to prove
the existence of the asymptotic limits (I) of the
time-dependent formulation.

Theorem 4: Let H and H, be self-adjoint operators
with V = H — H, defined in the common domain
D(V) = D(H) M D(H,) of H and H,. Let the limits
of the integrals in Eqgs. (5.1)—(5.4) exist and define
the wave operators Q.. A sufficient condition for

Q‘:Q* =P0

is that there exist a set ©, dense in 91, such that
for any ¢ & Dy M N,

el € DY)
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for every real ¢, and
[ nvemgliar < .

[This statement corresponds to the sufficiency of
these conditions for the existence of the asymptotic
limits (I) of the time-dependent formulation.]

Proof: Let ¢ € Dy M M. Then
e ' di lim
70+

Q'Q.¢ = lim

e—0+T VO

—-qs iH,t —iHt iHs —iHa
X f ne” ™ dsPoe e e e P
]

©

e < dt lim

70+

= lim

-0+ JO

-]
- ‘Hot (H(s—~ —iHo(s—t) —iHyt
Xf pe” " dsPoe' e T Ve e D D gy
0

If we substitute (see Rosenblum,*® Theorem 3.3)
s—t
en’H(s—t)e—iHo(x—t) — 1 + 'l f eiHJ: I/re—z'an d%‘
4
which is possible because
e—iHuze—iHotP0¢ e iD(V)7
we get that

Q¢ = Py + 7 lim

e—0t J0

@ o

e ¢ dt lim
-0+t J0

ne” " ds

s—¢
iHot tH. —if E
x[ deOez te: zVe i o(IFl)PO¢‘
[

But the norm of the second term is less than or
equal to

© )

e *' dt lim
n—0+ Jo

lim ne " ds

e—0t Jo

x f - dx H[/'e—iHo(z{-t)PO(bH

© ©

e ' di lim
n-20% JO

ne " ds

x [ ay i1ve sl

©

0 .
e ! dlff[ dy || Ve ]|

= lim
0+ Jo

+ lim

70+ V0O

we " ds [ dy [|Ve "l = 0
o

whenever the limits exist. The limits clearly will
exist when

fm Ve 'plldt < .

-
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Hence Q*Q_¢ = Py if ¢ & D, M N,. Since D, is
dense in 9, and ©:Q_ is a bounded operator, this
can be extended to any ¢ & 9M,. A similar argument
shows that Q{Q, = P, and completes the proof of
the theorem.

As we have already mentioned, our main interest
is in comparing the conditions sufficient for a unique
solution by the integral representation wave opera-
tors with the conditions (I) and (II) of the time-
dependent formulation. For this purposes we recall
[see Eq. (2.10)] that the latter conditions are equiva-
lent to the existence of the limits

lim e """'Pyop

=

(D

and

lim e 'e”""'Pg
for all ¢ & J¢. Now we know that whenever the limits
(I) and (II') exist the limits of the integrals of
Eqgs. (5.1)-(5.4) exist and are equal to the respective
limits (I) and (II'). But it may be possible for the
limits of the integrals of Eqs. (5.1)-(5.4) to exist
when (I) and (II’) do not. Consider the analogous
problem where instead of vector-valued functions
of ¢t we work with complex-valued functions of ¢.
In this case we can make the following statements:
If f(t) is a complex-valued function of the real
variable ¢, if |f(#)| is bounded uniformly in ¢, and
if ¢”’f(¢) is integrable for any ¢ > 0, then if

lim f(£)

£

(IT)

(6.2)

exists, the limit

lim ee “'f(t) di
-0+ J0
also exists and the limits (6.2) and (6.3) are identical.
However, if we add to such a function another
function which oscillates as ¢ — o, the limit (6.3)
remains unchanged but the limit (6.2) does not
exist. Now it could be possible that the analogous
statements are valid for the vector valued functions
occurring in the Eqgs. (5.1)~(5.4) and in the limits
(I) and (II') and that the integral representations
exist when the asymptotic limits do not.

Similarly there is a possibility that the other
conditions on the integral representation wave
operators, which are needed to insure that they
provide a unique solution, can be satisfied when
the limits (I) and (IT") do not exist. Consider the
Eq. (6.1). We write this in the form that

(¢, (Q1Q. — Pyo) = 0

for any ¢, ¢ & 3C. For the case of Q_ we can write

(6.3
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this out explicitly as
lim

-0+ Jo

ee” ' dt lim ne” " ds(Poy,

-0+ Jo

X (giHute—theiHse-'iHos

—1)Pg) =0 (6.9

which could possibly be satisfied when the limits
(I) and (II') do not exist. In fact when the limits
(I) do exist we have that

lim lim (Poy, (¢''e e e™*** — 1)Pygp)

t—w g

— llm llm (ethe-iHolPO‘,b’ eiHse—iHosP0¢)

t—w g—®

— llm (eiIIte—iH°1P0¢7 ei]]te—iHo!P0¢) — 0

t=sc0

(6.5)

which is apparently stronger than Eq. (6.4) in that
limits of the form (6.2) have replaced limits of the
form (6.3). The validity of Eq. (6.5) is a consequence
of the following properties of strongly converging
sequences of vectors in a Hilbert space: Let f, be
a sequence of vectors converging strongly to the
vector f, and let g, be a sequence of vectors con-
verging strongly to the vector g. Let the norm of
each f, equal the norm of f and let the norm of
each g, equal the norm of g. Then

lim lim (j,,, gm) = lim (fm gn) = (f) g)

We can prove this by writing that
!(jm gﬂ:) - (f: g)] < l(fn - f} g)] + ](jn: g — grn)l
< lfe = fll gl + 1N llg — gall

which goes to zero as n, m — «, and by writing out
a similar inequality with g, replaced by g, and
letting n — .

The remaining condition on the integral repre-
sentation wave operators in order that they provide
a unique solution is that their ranges coincide with
the continuum subspace 91 of the total Hamiltonian
operator. For any vector ¢ € 917, we must have that

Qi = 0. (6.6)

For the case of Q_ this has the explicit form

)

e P e dt = 0. (6.7

lim

e-0t [}
Jauch® has shown that Eq. (6.7) and the similar
equation for Q, are valid for the case that the
operator H, has a purely continuous spectrum. One
can easily see that Jauch’s proof is also good for
the case where H, also has a point spectrum since
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the reduction of H, by its continuum subspace
allows us to consider only the continuum part of
this operator. Hence the condition that the ranges
of Q. coincide with 9 reduces to the requirement
that for any ¢ € I

Qi = 0. (6.8)

For the case of Q. this will have the form of Eq.
(6.7) with the equals sign replaced by a not-equal
sign. It could be possible for this to be valid when
the limits (I) and (II') do not exist. When the
latter limits do exist, Eq. (6.8) will be true with
the limits of the form (6.3) as in Eq. (6.7) replaced
by limits of the form (6.2), resulting in an apparently
stronger condition.

By way of summary we can make the following
statements:

The conditions sufficient for the integral repre-
sentation wave operators to be a unique solution
of the scattering problem are that: the limits of
the integrals of Egs. (5.1)-(5.4) exist; the wave
operators thus defined satisfy the first of Eqgs. (5.7)
[Eq. (6.1)]; the ranges of these wave operators
coincide with 1.

These conditions are satisfied in the case where
the conditions (I) and (II) of the time-dependent
formulation are valid. Then the wave operators
defined by the asymptotic limits are identical to
those defined by the integral representation. Hence
we have a new physical interpretation of the asymp-
totic limits as a solution of the stationary-state
scattering problem. There is no need to interpret
the parameter ¢ occurring in these limits as having
anything to do with time.

It appears to be possible, because of the possibility
that limits of the form (6.3) can exist when limits
of the form (6.2) do not, that the conditions sufficient
for a solution are weaker than the asymptotic con-
ditions (I) and (II). The settlement of this question
has been reduced to a definite mathematical problem.
One should be able either to find Hamiltonian
operators for which the conditions (I) and (II) are
not valid while the conditions sufficient for the
integral representation solution are valid, or to
prove that the former conditions are implied by
the latter.

We have not been able to do either of these and
hence the questions as to whether such a set of
Hamiltonian operators exists as well as whether it
contains any Hamiltonians of physical interest re-
main as unsolved problems.

We can make some observations to roughly de-
termine what the properties of such Hamiltonian
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operators would be if they exist. If we can define a
self-adjoint potential operator V = H — H,, then
there is a nesting set of classes, defined by in-
creasingly restrictive conditions, to which such an
operator can belong: the class of all bounded self-
adjoint operators (finite norm of the operator);
the subclass of the latter of completely continuous
operators (spectrum consists of discrete points of
finite multiplicity, except possibly for the point
zero); the subclass of the latter of operators with
finite Schmidt norm (finite sum of squares of eigen-
values); the subclass of the latter of operators with
finite-trace norm (finite trace of absolute value or
finite sum of absolute values of eigenvalues). Now in
order to have a solution of the scattering problem
the continuum part of H, must be unitarily equiva-
lent to the continuum part of H, which means that
these operators must have the same continuous
spectrum. But there are potential operators V having
finite Schmidt norm such that H, has a purely con-
tinuous spectrum while H has a pure point spec-
trum.’® On the other hand, the existence of the
asymptotic limits has been established for potential
operators which form a slightly more general class
than those having finite trace norms.** Hence we
should expect that the class of Hamiltonians which
we are looking for would, if they exist, roughly cor-
respond to potential operators forming a class inter-
mediate between those having finite Schmidt norms
and those having finite trace norms.

7. ASYMPTOTIC OPERATORS

If we have wave operators which provide a
solution to a scattering problem we can use them
to define “‘asymptotic” operators as follows. Let
A be one of a set of operators defined on the con-
tinuum subspace of H. Let

Ain = QtAQ_
Aoe = QLAQ,.

These will have their range and domain in the
continuum subspace W, of H,. By multiplying the
second equation on the left by @, and on the right
by ©@:, and then multiplying on the left by QZ and
on the right by Q_, we get that

Q. A4,.Q7 = PAP

THOMAS F. JORDAN

Q0,400 = QT4Q_

or

‘Sf4out'S+ = Ain'

If the set of operators A is such that the set of
operators A;, and the set of operators 4,,. each
generate an irreducible operator ring in 9%, then
the latter equation determines S up to a phase
factor. In this case, the operators A;, and 4,,, can
be used to provide an alternative specification of
the scattering operator. In the case that the wave
operators are defined by asymptotic limits, Jauch
has shown that the operators A;, and A,,, are the
weak limits of

e—iHotethAe—theiHut

as t — F =, respectively. But our definition is more
general than this and does not depend on the exist-
ence of the weak limit since the wave operators may
be defined, for example, by the integral representa-
tion. When these limits do exist, the parameter ¢
need not be interpreted as a time variable. An
example of an “asymptotic” operator is the con-
tinuum part of the “free’” Hamiltonian operator.
From the equation

QﬁHO = HQ:.

we get that
PoHo = Q:HQ:.
so that

POHO = Hin = Hout;

which is consistent with the commutability of
S and H,.
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The study reported in an earlier paper of the single channel scattering problem is extended to

include the multi-channel case.

1. INTRODUCTION

N an earlier paper' we were concerned with a

mathematically rigorous formulation of the
single-channel scattering problem. This essentially
time-independent method was compared with the
rigorous time-dependent formulation of scattering
which had been given by Jauch® and it was shown
that, under the conditions which are necessary for
the time-dependent formulation, the wave oper-
ators that are defined by the asymptotic limits
provide a unique solution of the problem. The defini-
tion of wave operators by an integral representation
provided a method for investigating the possibility
that solutions can exist even when the asymptotic
conditions are not valid, and indeed it was shown
that the conditions sufficient for such solutions are
possibly weaker than the asymptotic conditions.
In the present paper these considerations will be
extended to the multi-channel scattering problem.

The distinguishing feature of the single-channel
scattering problem is that every state of the scat-
tering system can be related to a stationary state
of a single “free” Hamiltonian. The latter state
is considered either as an asymptotic limit of the
state of the system in the distant past or remote
future or as an unperturbed state, depending on
whether one views the situation from the time-
dependent or time-independent point of view. In
either case the continuum states of the ‘“free”
Hamiltonian correspond to the possible measure-
ments which can be made on the system. In the
time-dependent formalism they provide the initial
conditions at ¢ = — « and a basis with respect to
which the final state is analyzed at { = 4. In

* Supported in part by the Atomic Energy Commission.

t The contents of this paper are contained in a thesis
submitted by the author to the University of Rochester in
partial fulfillment of the requirements for the Ph.D. degree.

1T, ¥. Jordan, (preceding paper) J. Math. Phys. 3, 414
(1962). A more detailed discussion of some topics mentioned
in the present paper as well as references to the literature of
single channel scattering can be found in this reference.

z J. M. Jauch, Helv. Phys. Acta 31, 127 (1958).

the stationary state formalism they form the “free”
stationary states from which the interacting sta-
tionary states containing either “outgoing” or
“Incoming” scattered ‘“waves” are obtained by
perturbation.

A description of multi-channel scattering demands
a generalization due to the fact that the *free”
states to which the scattering states are made to
correspond, either as asymptotic limits or as un-
perturbed states, can not be thought of as stationary

.states of a single ‘“free” Hamiltonian. One can

produce and measure states of the scattering system
corresponding to several different configurations of
the system which in the absence of interaction would
have dynamical properties described by several
different ‘‘free’” Hamiltonians. This type of situation
has been described by Ekstein® and by Jauch.*

Each dynamically different “free” configuration
defines a different channel of the scattering system.
The “free’” states of a configuration are represented
by the continuum eigenvectors of a “free” Hamil-
tonian operator which is characteristic of that
channel and which we call the channel Hamiltonian.
Since we are not interested in distinguishing between
channels which differ only in properties which have
no effect on the dynamics of the scattering process,
two channels are considered to be different if and
only if they have different channel Hamiltonian
operators.

Examples of dynamiecally different channels are
those whose “free” configurations contain different
numbers or kinds of particles.’** We do not distin-
guish between elementary and composite particles.
Each configuration containing bound states or com-
posite fragments composed of any number of parti-
cles simply represents a different channel for each
different binding energy or mass of the fragment,
just as does each configuration of ‘“free” ‘‘ele-
mentary”’ particles.

3 H. Ekstein, PII_iys. Rev. 101, 880 (1956).
¢J. M. Jauch, Helv. Phys. Acta 31, 661 (1958).
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Tet H, be the channel Hamiltonian for channel
a, H the Hamiltonian of the interacting scattering
system, and define V, by H = H, 4+ V,. According
to the time-independent point of view we wish to
find eigenstates ¢ of H with eigenvalue E in the
continuous spectrum by considering V, as a pertur-
bation with the eigenstates ¢, of H, with the same
eigenvalue £ as the unperturbed states. The two
solutions

1 (=)

O = ¢, + lim V! (1.1)

e—~0+E - H,, =+ ’L.G

are identified as the stationary states of the scatter-
ing system which contain “outgoing’” or “incoming”’
scattered waves, respectively, and reduce to the
unperturbed states ¢, as the interaction vanishes.
The cross section for scattering from channel a to
channel b is obtained from the probability amplitude®

(7, ™).

If for each channel we define wave operators by
= Q4

the scattering amplitude has the form

(%"
with

) = (g, ) = (Bs, Seutd) (12

Sba = Qb_+ Qi .

We note that the scattering amplitude is a matrix
element of an operator which is dependent in an
essential manner on the channels involved. As
has been emphasized by Ekstein,® it is not in general
possible to define a single scattering operator S
such that the seattering amplitude for any process,
say for scattering from channel o to channel b,
is given by the matrix element (¢,, S¢.) of that
operator. Such an operator could be defined by
S = >, 9702 if it were true that Q@4¢, = 0 for
a # b, but Ekstein® has shown that in general this
will not be the case. Therefore, we are content to
describe the scattering by a family of wave operators,
two for each channel.

The time-dependent formulation of multi-channel
scattering must be approached in a manner that
is somewhat different from that which is customary
for single-channel scattering. This is because the
use of the interaction representation is made
impossible by the nonexistence of a single “free”
Hamiltonian of which all the asymptotic states

5 See the discussion for the single-channel case in refer-
ence 1.
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are eigenstates. However Ekstein® has shown how
these difficulties can be avoided and the scattering
amplitude defined in terms of the asymptotic
states.

In the distant past the system is thought of as
existing in one of its possible “free” configurations,
say in a state ¢, which is a stationary state of the
“free’”” Hamiltonian H, of channel a. In other words,
as t — — « the channel interaction V, = H — H,
becomes ineffective. After evolving during the
infinite time interval — « < t < o under the
influence of the Hamiltonian H, the state of the
system approaches, as ¢ — + =, one of the possible
“free” configurations. One can then compute the
cross section from the probability amplitude for
measuring, as ¢ — -4 «, a state ¢, which is an
eigenstate of the “free” Hamiltonian H, of channel b.

Just as in the single channel case, the asymptotic
limits play a central role in the time-dependent
description of multi-channel scattering. If ¢ repre-
sents the state of the system at ¢ = 0, then

e—th\b

represents the state of the system at time ¢. If this
state is one which, as t — — «, approaches a “free”
configuration of channel a, then its time dependence
should approach that of an eigenstate of the channel
Hamiltonian H,. In other words, there must exist
a continuum eigenstate ¢, of H, such that

e—thlp‘—)e_iHal¢)?n as t—) —,
This is equivalent to
efMle™ eyt~ as t— —w.

Hence for a set of continuum eigenstates ¢* of the
channel Hamiltonian H, the limits

. iHt —{Hg,
llm ez te +H, t¢a — Qi¢u

ts—m

(1.3)

exist and define the linear isometric operator Q2.
Similarly if

e—il{t¢

is a state which, as { — 4 «, approaches a “free”
state of channel b, its time dependence must ap-
proach that of an eigenstate of the channel Hamil-
tonian H,, so there must exist a continuum state
#°.: of H, such that

—iH -
ezt‘p__)ezm,td)(r;“t as t— + o

or
ethe—"Hbf

¢'2u:—>¢ as [ — + .
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Hence for a set of continuum states ¢° of H,, the
limit
li.m ethe—iHbt¢b = Qb¢b

t—+ o

(1.4)

exists and defines the linear isometric operator Q°.
Suppose that the system is initially, as ¢ > — o,
in the state

e—iH.,t¢a-

Then at ¢ = 0 it is in the state
o= 0l
The state which at ¢ = 0 is
;—) — Qb_¢b
approaches, as ¢ — + «, the final “free” state

e_iH“(ﬁb-

Hence the scattering amplitude for scattering from
the initial state ¢* of channel a to the final state ¢°
of channel b is

W7, ") = @, 2 2le)
which is to be compared with Eq. (1.2) of the
stationary-state formalism.

Just as in the time-independent formulation, the
scattering amplitude is a matrix element of an
operator which is different for different channels,
and it is in general impossible to define a single
scattertng operator as in the single-channel case.
According to the time-dependent interpretation
this means that there is no operator which takes
each initial state to a final state in the interaction
picture. In both the time-dependent and stationary-
state formulations the most immediate description
of scattertng is provided by the two families of
wave operators Q2 which map the “free” stationary
states ¢* of the channel Hamiltonian H, onto
the scattering states ¢!™’. In terms of these, we
can make some remarks which are of importance
from either point of view.

Any continuum eigenstate ¢ of the Hamiltonian
H should describe a possible state of the interacting
system, say at ¢ = 0. If this state is the result of a
mapping by a wave operator from a ‘“‘free” state
of some specific channel, then it should be orthogonal
to all states similarly obtained from ‘“free” states of
other channels,

(W7, 97) = (@', 2ig") = 0
(W7, 97) = (247, 07¢") = 0 for a5 b (1.9)
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In other words, any state of the interacting system
should be decomposable into states which, from the
time-dependent point of view, approach as
t - —o (t - + o) asymptotic states of the
different channels, or, from the stationary-state
point of view reduce, with the switching off of the
channel interaction and the resulting removal of
“outgoing scattered waves” (‘‘incoming scattered
waves”’), to unperturbed states of the different
channels. But we should not in general expect that
7, ¢!*’) vanishes for a % b because this would
mean that there is no scattering between different
channels.

A simple example might help to clarify the basic
ideas of this approach to the scattering problem.
Suppose we have a system on which we can make
measurements corresponding to just one of two
configurations: In configuration (1.) there are three
different free particles, n, p, and =; in configuration
(2.) there are two particles, = and d, the latter
being considered as a bound state of n and p. Let
H, be the Hamiltonian operator describing the
system (1.) of three free particles. The continuum
eigenstates of H, (products of three plane-wave
functions) span the whole Hilbert space and so we
have a free Hamiltonian and a complete set of free
states. If we know the Hamiltonian of the inter-
acting system, we can calculate the scattering from
a three-particle state to a three-particle state. In
other words, these are sufficient for a description
of scattering from channel (1.) to channel (1.).
But in order to describe scattering processes involv-
ing channel (2.) we need states of two free particles,
7 and d, the d being a bound state and having a
mass corresponding to the binding energy of n and p.
The free Hamiltonian H, describing this system
of two free particles is not the same as H, (see Jauch,*
Sec. 3) and the free 7 — d states are not in general
eigenstates of H, (see Ekstein,® Sec. VII). Thus,
while the introduction of a second free Hamiltonian
H, is not necessary to generate a complete set of
free states, it is necessary to define what we mean
by a measurement of a state of the system corre-
sponding to the free = — d configuration.

In the next section we outline the mathematical
structure of the multi-channel scattering problem
which is contained in the properties of the Hamil-
tonian operators. The form of the following sections
is similar to that of the discussion of the single-
channel case. In Sec. 3 we briefly review the rigorous
time-dependent formulation of multi-channel scat-
tering which was given by Jauch.* In Sec. 4 we give
a rigorous formulation of the scattering problem
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which reflects the stationary state point of view.
This will be entirely analogous to that given for
the single channel case. In Sec. 5 we show that the
wave operators defined by the asymptotic limits
provide a solution of this problem whenever the
conditions necessary for the time-dependent formu-
lation are valid. The possibility that a solution can
exist when the asymptotic conditions are not valid
is investigated in the following two sections. Wave
operators are defined by an integral representation
just as in the single-channel case and the conditions
sufficient for these to be a solution of the scattering
problem are shown to be possibly weaker than the
conditions necessary for the time-dependent formu-
lation. Hence in general there may be a class of
Hamiltonians for which a solution exists but for
which the asymptotic conditions are not wvalid.
However, just as in the single-channel case we do
not present any explicit demonstration of such a
set of Hamiltonian operators. The mathematical
problems involved are completely similar to those
encountered in the single-channel case. In the final
section we make some remarks about the form of the
Hamiltonian operators in nonrelativistic and rela-
tivistic theories.

2. STRUCTURE OF THE PROBLEM—HAMILTONIAN
OPERATORS

The structure of the mathematical description of
single-channel scattering is determined by two
self-adjoint linear operators, H and H, on a
separable Hilbert space 3C. The scattering problem
can be formulated without imposing any further
restrictions on these operators, but the existence of
a solution depends on their satisfying certain con-
ditions. In particular, a necessary condition for a
solution to exist is that the continuum parts of
these two operators be unitarily equivalent.

In the multi-channel case the structure of the
problem is determined by a self-adjoint operator H
representing the Hamiltonian of the interacting
system and a family of self-adjoint operators H,
representing the channel Hamiltonians. These are
assumed to be defined on a separable Hilbert space
3¢. While we are able to formulate the scattering
problem without imposing any further restrictions
on these operators, as in the single channel case,
the existence of solutions depends on their satisfying
certain conditions which are rather characteristic
of the problem. It is perhaps helpful then to state
these at the outset.

First it is convenient to introduce notation which
is used in all of the following sections: Let & be the
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subspace of 3¢ spanned by the eigenvectors of H,
M = &, the continuum subspace of H or the
orthogonal complement of X, and P the projection
operator whose range is 9, Similarly let X, be the
subspace spanned by the eigenvectors of H,,
M, = XK,. the continuum subspace of H, or the
orthogonal complement of %,, and P, the projection
operator whose range is 917,.

We will find that the following is a necessary
condition for the existence of any solution of the
scattering problem: 9 can be decomposed in two
ways into a direct sum of a finite or countably
infinite number of subspaces, one corresponding to
each channel and each reducing H. The part of H
in a subspace corresponding to channel a is unitarily
equivalent to the part of H, in a subspace of 91,
which reduces H,.

We have already indicated in the preceding
section that we consider channel a to be identical
with channel b if and only if H, = H,. According
to Stone’s theorem the latter is equivalent to

g Hat o i
for all real ¢. In addition, Jauch* assumed for the
time-dependent formulation that

e—iHat¢ -
implies that ¢ = 0 unless a = b. It was also assumed
that all of the channel Hamiltonian operators
commute

e "¢ for all real ¢,

[e—iH.,l} e-—iHba]_ — 0

for all e, b, ¢, s. Although these seem to be stronger
than is necessary, we have been unable to sub-
stitute a simple weaker set of conditions on the
Hamiltonian operators sufficient for the existence
of a solution of the scattertng problem.

3. TIME-DEPENDENT FORMULATION

The theory of multi-channel, as well as single-
channel scattering, has been formulated in a mathe-
matically rigorous way by Jauch® from the time-
dependent point of view. We briefly review some
of the essential features of this formulation. Our
discussion is slightly generalized to include channel
Hamiltonians which may have bound states.

In order to provide a rigorous time-dependent
description of scattering for a system described by
the Hamiltonian operator H and the family of
channel Hamiltonian operators H,, Jauch requires
that these operators satisfy the following conditions:
All of the channel Hamiltonian operators commute,

[e-iH“t, e—ima]_ =0 (3.1)
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for all @, b and real s, ¢, and
e—iHal¢ — e—iHbtd) (3.2)

for all real ¢ implies ¢ = O unless ¢ = b. For each
channel a there exists a subspace ®, of 91, such
that, if E, is the projection with range D,, the limits

lim e " "'E.¢p = Qo 3.3)

tomo

exist for any ¢ € 3¢.° This defines the linear operators
Q2 which are partially isometric with the initial
set ©,. Let ®R!® be the subspaces which are the
ranges of Q2, let ®, be the subspace spanned by
all subspaces ®."’, and let ®. the subspace spanned
by all the subspaces ® ™. Then it is further required
that

®, = B = IN. (3.4)

Under these conditions one can show that the
operators Q2 have all of the properties needed for
a description of scattering. Each Q2 is a partially
isometric operator from D, to ®R.*’. Let FZ2 be
the projection operators with ranges ®!*. Then
we have

Q0L = E,
QoL = Fe.

(3.5)

By using the conditions (3.1) and (3.2) one can
show that the ranges are orthogonal for different
channels, or

FiF, = F:F. =0 (3.6)

for a # b. This and the separability of 3¢ requires
that the number of channels be finite or countably
infinite. It also follows from Eqgs. (3.6) and (3.4) that

P= > F=>F, 3.7
and from equations (3.6) and (3.5) that
QR = 000" = E, 8. (3.8)

One can also prove that the wave operators have
the intertwining property

HQ. =

or more precisely,’

QiH, 3.9

¢ Actually Jauch showed that if lim,,..., eiH¢ e~iHat ¢ exists
for some ¢ € D,, then there exists an infinite-dimensional
subspace N, such that the limits (3.3) exist. We take D,
to be the largest subspace of I, with this property. One can
easily see that Jauch’s proof extends to the case where H,
has bound states; since we assume that O, C I, we need
only consider the continuum part of H.,.

7 See Sec. 3 of reference 1. A more direct logical procedure
is to consider the equation e?#? Q.¢ = Q.o giHat {0 be the
statement of the intertwining property and the equation
HQ.* = Q. H, to be implieg by it, as was shown by
Hack in Sec. 3 of reference 9.
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it iHat
e QL = Qi

for all real ¢, from which it follows that each sub-
space R’ reduces H and each subspace D, reduces
H,.

The conditions (3.1) and (3.2) are needed only
for the proof of the orthogonality condition (3.6)
and are stronger than is necessary. In fact Zinnes®
has shown that for a special class of channel Hamil-
tonian operators, the orthogonality property (3.6)
can still be proved if the condition (3.2) is replaced
by the weaker one that H, # H, for a # b. However
the conditions (3.3) and (3.4) are quite essential for
the time-dependent formulation. The former is the
asymptotic condition that the states of the scattering
system approach asymptotic “free’” states in the
distant past and remote future, and the latter is
the requirement that any state of the scattering
system be obtainable as a sum of states originating
(or terminating) in the different channels. The
mathematical investigation of the class of Hamil-
tonian operators for which these two conditions are
gatisfied has not been as extensive as for the corre-
sponding single-channel problem, although many
of the results of the latter can be made applicable
here.

One can show that a necessary requirement for
validity of all of these conditions is that the Hamil-
tonian operators have the structure described in
the preceding section®: 9% is decomposable into a
direct sum of the subspaces ®'*’ and into the sub-
spaces ®;” each of which reduces H. The part of
H in ®!" is unitarily equivalent to the part of H,
in the subspace D, of 9, which reduces H,.

4. FORMULATION OF THE SCATTERING PROBLEM

We now develop a formulation of the multi-
channel scattering problem which reflects the
stationary-state point of view. A solution of the
scattering problem consists of two families of wave
operators QI which map sets of “unperturbed’”
states ¢, belonging to the continuum subspaces of
the channel Hamiltonians H, onto the scattering
states

&= Q.. (4.1

The latter states belong to the continuum subspace
of H and satisfy conditions which select the solutions
containing ‘“outgoing’’ or “incoming’ scattered
“waves,” respectively.

For any channel a the set of ‘“unperturbed”

8 I. I. Zinnes, Nuovo cimento Suppl. 12, 87 (1959).
¢ M. N. Hack, Nuovo cimento 13, 231 (1959).
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states ¢, should form a subspace D, of 9, which
reduces H,. This has the physical interpretation
that this set of states is invariant under the
dynamical transformations generated by the “free”
Hamiltonian H,. In general we need not require that

(4.2)

but in many problems it may be desirable for the
physical interpretation to do so. Every vector of
the continuum subspace 9 of H should represent
a possible state of the scattering system and it
should be decomposable into vectors of the different
channels. If ®!™ are the ranges of Q2 this means
that 91T must be the direct sum of subspaces ®.*
and also the direct sum of the subspaces ®;™’. In
order that the mapping (4.1) from ‘“unperturbed”
to interacting states preserves the normalization we
must require that each Q2 be a partially isometric
operator from D, to RS

If E, is the projection operator with range D,,
and F? are the projection operators with ranges
®™, the above conditions can be summarized in
the form of the equations

D, = M,

el = E, (4.3)
QLY = Fu (4.4)
S = ) F =P (4.5)
We also require that
el = Qe (4.6)

for all real ¢. By an argument identical in form to
the discussion of the single-channel case one can
show that this condition is the rigorous statement
of the requirement that ¢, is an eigenvector of H,
with eigenvalue E in the continuous spectrum if
and only if ¢{*) = 02, are eigenvectors of H with
the same eigenvalue also in the continuous spectrum
of H. Also this means that the scattering and
“unperturbed” states have essentially the same time
dependence as well as the same mean value and
second moment of the energy.

Also we could require that Q2 be strongly con-
tinuous as functions of H and of H, and that
Q2 = E,if H = H,. This would be a rigorous state-
ment of the continuous reduction of the scattering
states to the ‘“‘unperturbed” states as the interaction
vanishes. But we do not need this condition to
specify a unique set of wave operators and it is
not necessarily desirable that it be satisfied for
every problem. Hence we do not include it in our
formulation.

Finally we need a condition which selects the
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scattering solutions corresponding to ‘‘outgoing”
and ‘“incoming” scattered waves. It is advan-
tageous to use a condition which is slightly dif-
ferent than that used for the single-channel case.
Namely, we require that
0
lim [ et Qe " E, dt = E,
o e 4.7

lim e et Qe R dl = E,.

e—0t J0
This condition can be motivated by an argument
which is entirely analogous to that used to arrive at
the condition used in the single channel case [see
the discussion preceding and following Eq. (3.10)
of reference 1]. We could have used a condition of
the form (4.7) to provide an alternative formulation
of the single-channel problem. In fact such a formu-
lation might provide a slight generalization. That
this condition is needed for the multi-channel
problem is due to the fact that in general we can
not establish the existence of integral representations
for the adjoints of the wave operators even in the
case that the conditions of the time-dependent
formulation are valid. As a result it is easier to work
with the Eqs. (4.7) which already contain the
adjoint operators, as becomes clearer in the fol-
lowing sections.

We can summarize all of the conditions of the
scattering problem in the following:

Definition: A family of linear operators Q2 on
3¢ are solutions of the scattering problem defined
by the self-adjoint operator H and family of self-
adjoint operators H, if they satisfy the following
conditions:

(a) Each QZ is a partially isometric operator from
D, C M, to RS C M. The subspace M is
the direct sum of the subspaces ®!" and is
also the direct sum of the subspaces ®.™.

B) e Q2 = Qe for all real ¢.

0
) . .
lim e Qe R dt = B,

e—0t —@

€]

lim | e “‘¢" Qe ""'E, dt = E,.
e—0t [4]

Just as in the single-channel case, this formulation
of the seattering problem does not depend on a con-
figuration space representation of the Hilbert space
and hence its applicability is not limited to situa-
tions where configuration space methods are useful.

From condition (8) it follows that

el & @l
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for any ¢ € 3¢ and any real ¢, which implies that ®*’
reduces H. It also follows that

eiHthi+¢ — Qfeim(ﬁ E D,

for any ¢ & 3¢, which implies that ©, reduces 3C..
The part of H in &' is clearly unitarily equivalent
to the part of H, in D,. Hence a necessary condition
for the existence of a solution of the scattering
problem is that the Hamiltonian operators have the
structure mentioned in Sec. 2, namely: 9 is the
direct sum of the ®!*’ or of the ®!™’, each of which
reduces H, and the part of H in ®!™ is unitarily
equivalent to the part of H, in a subspace D, of 9,
which reduces H,.

It should be observed that when the number of
channels is set equal to one, this formulation of the
multi-channel scattering problem does not reduce
to the formulation of the single-channel scattering
problem which was given in reference 1. In the first
place we have chosen a different form for condition
(v), and secondly we have not assumed that the
domain of the wave operators is the whole of the
continuum subspace of the ‘“free’”” Hamiltonian. It
may even be that the multi-channel formulation
provides, for the case of one channel, a nontrivial
generalization of the single-channel formulation;
there may be Hamiltonian operators for which the
former allows solutions but the latter does not. If
this is the case we would want to adopt the more
general formualtion since the single-channel formu-
lation was adopted for convenience in comparison
with other treatments and not out of necessity.

5. ASYMPTOTIC LIMITS AS A SOLUTION

In investigating possible solutions of the scattering
problem as formulated in the preceding section,
we first observe that a solution exists whenever the
conditions necessary for the time-dependent formu-
lation are valid. Specifically if the limits (3.3) exist
such that (3.4) is valid, and if Eq. (3.6) is satisfied
[in particular the orthogonality condition is satisfied
whenever the channel Hamiltonian operators
satisfy (3.1) and (3.2)], then the wave operators
defined by the limits (3.3) provide a solution of
the scattering problem which is unique in the sense
that there is no other solution with the same set
of domains D, and ranges ®RS*’ of the wave operators.

The necessary properties of the Q2 have essentially
already been proved. Equations (3.4)-(3.7) show
that condition («) is satisfied and Eq. (3.9) is
identical to condition (8). Just as in the single-
channel case (reference 1, Sec. 4) we can introduce
the integral representations
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1]

Q¢ = lim ee''ee T TE ¢ dt

€20t V—
w0

Qtl¢ = llm ee—etethe—iHatEa(ﬁ dt,

>0t 0

which have been shown by Jauch® to exist when the
asymptotic limits exist. In the next section we see
that these operators satisfy condition (y) and
provide a unique solution of the scattering problem.
This is completely analogous to the single-channel
case except for the changes introduced by the modi-
fied form of condition (v). Just as in the single-chan-
nel case one need not interpret the parameter ¢ occur-
ring in the asymptotic limits as having anything to do
with time. We may simply regard the resulting
wave operators as being a solution of the stationary
state problem.

6. INTEGRAL REPRESENTATIONS AS A SOLUTION

Just as in the single-channel ease, no asymptotic
condition appears in our formulation of the secat-
tering problem and there is a possibility that a
solution exists in cases where the asymptotic limits
fail to exist. A means of investigating this pos-
sibility is provided by the integral representation
definition of the wave operators

0

Q¢ = lim ee''e e T E b dit 6.1)
e—0+ —c

Q¢ = lim e ‘e E g dt.  (6.2)
=0t JO

The integrals in these equations will always exist
as Bochner integrals and whenever the limits of
the integrals exist they will define the linear wave
operators £2. These operators will then be bounded
by unity,

2] < llol]

for any ¢ & 3C, and will have the intertwining
property that

Qs = Qe

for all real ¢. In the case that the asymptotic limits
(3.3) of the time-dependent formulation exist, the
limits of the integrals in (6.1) and (6.2) will also
exist and the wave operators defined by the two sets
of limits will be identical if the domains ©, are
taken to be the same in each case. These statements
can be proved as in the proof of Theorem 2 of
reference 1.

The lemma of reference 1 also applies to the
multi-channel case. The wave operators will be
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strongly continuous functions of a set of Hamiltonian
operators if they are defined by limits of the integrals
of Egs. (6.1) and (6.2) which converge uniformly
with respect to the set of Hamiltonian operators.
This will be true in particular when the wave
operators are defined by asymptotic limits which
converge uniformly with respect to the Hamiltonian
operators.

Whenever the wave operators defined by Egs.
(6.1) and (6.2) exist and satisfy condition (a), they
provide a solution of the scattering problem which
is unique in the sense that there is no other solution
having the same domain ©, and ranges ®'™ of the
wave operators. The proof of this is similar to that
of Theorem 3 of reference 1. The only differences
are introduced by the different form of condition (v).
We have postulated that condition () holds, and
we know that condition (8) also holds. To prove
condition (y) we write

0

+ + . {Ht ~iHgt
E, = Q0 =0 lim ‘e Te R, dt
=0+ J -0
0 +
. iH, —iHg
= lim ee''e Qe 'R, dt
e—0t J—o
o
+ U et iHt —iH
E, = Q = lim e “e'Te T YR, dt
=0t JO
. —et iH, + —iHa
= lim e e Qe MR, dt.
e—0t Jo

(8),

Let w. be operators satisfying conditions (a),
and (y). Then

0

) o .
E, = lim ‘e’ iute Y dt
0t J -
0
. iHt ~iHg
= w; lim ee’'e’ e df = i Q%
=0t J~
[+~
. - iHa —iHgq
E, = lim e eV wle T E dt
e—0t JO
-]
. —et {Ht ~iff
= w’ lim e et eT YR df = 0t Q%
e—0t 0

so that the uniqueness of the operators which
satisfy both the above equations and condition (a)
implies that

wi = QY
or

we = QL.

This proves that the wave operators Q2 defined by
Egs. (6.1) and (6.2) are unique solutions when they
exist and satisfy condition (a).

Note that we have been able to develop a solution
in terms of the integral representation wave opera-
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tors without giving an integral representation for
their adjoints. It was to this end that we modified
the condition (v). For in general we can not expect
to be able to establish such a representation for the
adjoints as we did in the single-channel case.

In the time-dependent formulation, the domain
D, is determined to be the largest subspace of 91,
for which the limits (3.3) exist. Then of course the
ranges ®.”’ are determined as the images of D,
under the mappings Q2. But in the definition of
the wave operators by the integral representations
(6.1) and (6.2) the domains D, are not specified. It
is to be expected that the specification of D, will
be a critical factor in establishing the validity of
condition (a) for these wave operators. That is D,
must be chosen in such a way that equations (4.3),
(4.4), and (4.5) can be valid. Because of condition
(8) it is necessary, as we have seen, that D, reduce
H,. Of course it is also necessary that the subspaces
D, be such that the limits of the integrals of Eqgs.
(6.1) and (6.2) exist.

7. CONDITIONS SUFFICIENT FOR A SOLUTION

As we have seen in the preceding section, sufficient
conditions for the existence of a unique solution of
the scattering problem are that the limits of the
integrals of Eqs. (6.1) and (6.2) exist and that they
define wave operators which satisfy condition ().
In particular this is true whenever the conditions
necessary for the time-dependent formulation are
valid. But the problem of greatest interest would
be to find if there exists a set of Hamiltonian opera-
tors for which the conditions of the time-dependent
formulation are not valid while the conditions
sufficient for the existence of the integral representa-
tion solution are still satisfied. This would permit
solutions which could not be treated from the
time-dependent point of view and would carry
the mathematical analysis of the conditions suffi-
cient for a solution beyond the problem of the
existence of the asymptotic limits. We are unable
to present any explicit characterization of such a set
of Hamiltonian operators or show that such a set
exists. But we can make some remarks which will
clarify the problem, and we can make an argument
which makes it appear quite plausible that such a
set of Hamiltonian operators does exist. This is
identical to the situation of the single-channel case.

Condition (@) can be written in the form of
Egs. (4.3), (4.4), and (4.5). The Eqgs. (4.3) and (4.4),
which state that Q2 must be partially isometric
operators from D, to & ™, together with the require-
ment that the two sets of ranges ®'™’ must each span
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9% are analogous to condition («) of the single-
channel problem. But Eq. (4.5) implies the ortho-
gonality condition

FiF, = F'F> =0 (7.1)

for a = b which is characteristic of the multi-channel
problem only.

One can show that if the limits of the integrals
of Eqs. (6.1) and (6.2) exist, and if they define wave
operators which satisfy Eqs. (4.3), then these wave
operators are partially isometric with the initial
set ®,. This follows from the boundedness property
of the wave operators just as in the single-channel
case. Hence if we let ®'® be the ranges of the wave
operators Q2 and if we let F ¢ be the projections onto
these subspaces, we have that Eqs. (4.4) are valid.
In other words Eqgs. (4.4) are a consequence of
Eqs. (4.3) for the integral-representation wave
operators.

The conditions sufficient for a unique solution of
the scattering problem by the integral representation
wave operators have thus been reduced to (1) The
limits of the integrals in Eqs. (6.1) and (6.2) exist;
(2) the wave operators thus defined satisfy Egs.
(4.3); and (3) the continuum subspace 9N of H is
the direct sum of the ranges ®'"’ of the Q¢ and is
also the direct sum of the ranges ®{~ of the Q°.
The last condition implies the orthogonality property
of the ranges and also implies that the two sets of
ranges each span 91.

The sufficient conditions for the existence of the
asymptotic limits of the time-dependent formulation
which have been developed for the single-channel
case can in general be made to apply to the multi-
channel case with only minor modifications. Simi-
larly, in complete analogy to the single channel case,
one can prove the following statement®: If
V, = H — H, is defined in the common domain
DV, = DH) N D(H,) of H and H,, a sufficient
condition in order that

QoL = K,
is that there exists a subset @, of D, dense in D,
such that, for any ¢ € €,,

el € D(VL)

for any real ¢, and

f Ve gl| di < . 7.2)

As we have already mentioned, our main interest

19 The proof is identical to that of Theorem 4, reference 1.
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is comparing the conditions sufficient for a unique
solution by the integral-representation wave opera-
tors with the conditions necessary for the time-
dependent formulation. We know that when the
asymptotic limits (3.3) exist the limits of the
integrals of Eqs. (6.1) and (6.2) also exist and the
two kinds of limits define identical wave operators
as long as the domains D, are taken to be identical.
Just as in the single-channel case one can argue that
it may be possible for the limits of the integrals of
Egs. (6.1) and (6.2) to exist in cases where the
asymptotic limits (3.3) do not exist analogously to
the fact that limits of the form

o

lim ee” f(t) dit (7.3)
e—0t Jo
can exist for functions for which the limits
lim §(2) (7.4)

t—m

do not exist.

In a manner completely analogous to that of the
single channel case, we can write our Egs. (4.3) in
an explicit form for the integral representation wave
operators. In this form it appears to be possible for
these equations to be valid when the asymptotic
limits (3.3) do not exist. In fact we can show, just
as in the single-channel case, that the existence of
the latter limits implies an apparently stronger
equation [see Eqgs. (6.4) and (6.5) and the accom-
panying discussion of reference 1].

The remaining condition on the integral-repre-
sentation wave operators in order that they provide
a unique solution is that 9 must be the direct sum
of the ranges ® "’ of Q¢ and also the direct sum of
the ranges ®.™ of Q2. This condition contains three
parts: All of the ranges ®.™ are contained in 9n;
the set of ranges ®.*’ and the set of ranges ®.™
each span 91; the ranges have the orthogonality
property that ®!*’ is orthogonal to ®{* and ®
is orthogonal to ®;™ for a # b.

The first part of this condition is always true for
the integral-representation wave operators. One can
prove this as follows: The adjoints of the wave
operators have the integral representation

0

+ . iHot —iH
¢ = lim e’ Fee™ ' dt
0t V-
+ . = iHat —iH
02¢ = lim ee 'E e’ ¢ dt
-0t Jo

whenever the limits of the integrals exist. This can
be proved just as in Theorem 2 of reference 1. But
Jauch’ [see discussion following Eq. (6.7) of reference
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1] has shown that these limits do exist and are equal
to zero when ¢ is an eigenvector of H. Hence we
have that Q2*¢ = 0for all ¢ belonging to the orthog-
onal complement of the subspace 9. This implies
that the ranges @™ of the Q2 are subspaces of 9.

The condition that the two sets of ranges each span
9 can be stated as follows: For any ¢ & 9 there
exists a channel a such that

Q7Y =0
and a channel b such that
QY #0;

or for any ¥ € 9N there exists a channel ¢ and a
¢ € D, such that

(¢, Q%¢.) = 0 (7.5)
and there exists a channel b and a ¢, © D, such that

(¢, e, #= 0. (7.6)

For the integral-representation definition of the
wave operators, (7.6) has the explicit form

o

lim e (Y, e B, dt =< 0,  (7.7)

e—0+ 0
and (7.5) for Q, has a similar form. If the wave
operators are defined by the asymptotic limits,
then (7.6) has a form identical to (7.7) except that
the limits of the form (7.3) are replaced by limits
of the form (7.4) resulting in an apparently stronger
condition. It appears to be possible for (7.5) and
(7.6) to be valid when the asymptotic limits do
not exist.
The orthogonality condition can be written as

(¢, 24y) = (2%, 22¢) = 0

for a = b and ¢, ¥ & 3C. For the case of Q_ and the
integral representation of the wave operators this
has the explicit form

© ©

e ' di lim
70t Jo

X (eiHle—iHatEu‘b, eiHse—iHMEb\b) — 0

lim e " ds
e~0t+ JO

(7.8

for a = b and ¢, ¥ &€ 3C. It appears to be possible that
this is also valid for cases where the asymptotic
limits do not exist. A similar equation results for
the case of Q,. If the wave operators are defined
by the asymptotic limits the orthogonality condition
has the form of Eq. (7.8) except again the limits of
the form (7.3) are replaced by limits of the form
(7.4) resulting in an apparently stronger condition.

By the way of summary we can make the fol-
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lowing statements in analogy to the single-channel
case:

The conditions sufficient for the integral-repre-
sentation wave operators to be a unique solution of
the scattering problem are that: the limits of the
integrals of Eqgs. (6.1) and (6.2) exist; the wave
operators thus defined satisfy Eqgs. (4.3); the two
sets of ranges of the wave operators each span 917
and have the orthogonality property.

The conditions are satisfied in the case where the
conditions of the time-dependent formulation are
valid. Then the wave operators defined by the
agsymptotic limits are identical to those defined by
the integral representation. Hence we have a new
physical interpretation of the asymptotic limits as
a solution of the stationary-state scattering problem.
There is no need to interpret the parameter ¢
occurring in these limits as having anything to do
with time.

It appears to be possible, because of the possibility
that limits of the form (7.3) can exist when limits
of the form (7.4) do not, that the conditions suf-
ficient for a solution are weaker than the asymp-
totic conditions. The settlement of this question
has been reduced to a definite mathematical problem.
One should be able either to find Hamiltonian
operators for which the conditions of the time-
dependent formulation are not valid while the con-
ditions sufficient for the integral representation are
valid, or to prove that the former conditions are
implied by the latter.

We have been unable to do either of these and
hence the questions as to whether such a set of
Hamiltonian operators exists as well as to whether
it contains any Hamiltonians of physical interest
remain as unsolved problems,

8. REMARKS ON THE HAMILTONIAN OPERATOR
FOR NONRELATIVISTIC AND RELATIVISTIC
THEORIES

We have said very little about how the Hamil-
tonian operators are to be defined. Usually they
will be defined in terms of a basic set of operators,
for example the coordinate and momentum opera-
tors of the particles involved, to which a natural
physical interpretation can be attached. The “free”
Hamiltonians corresponding to the various channels
determine the various kinds and numbers of particles
whoes measurement can be described by the theory,
and the relation of the ‘“free” Hamiltonians to the
“total” Hamiltonian determines the dynamics of
the interaction or scattering process.

We have developed our formulation according to
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the traditional framework of nonrelativistic quantum
mechanics. However this framework is not neces-
sarily restricted to nonrelativistic theories; whether
the theory is relativistic or nonrelativistic depends
on the form of the Hamiltonian operators.

The “free’’ Hamiltonian associated with a given
channel must describe the dynamics associated with
the unperturbed motion of the particles of that
channel. For the purpose of illustrating our ideas
suppose that for a given channel this unperturbed
dynamies is that of N free particles. If we wish to
give a nonrelativistic description of the scattering
of those particles, then the channel Hamiltonian
operator should have the form of the nonrelativistic
expression for the energy of the N free particles,
while if we want to give a relativistic description it
should have the form of the relativistic expression
for the energy of the free particles (see Jauch,*
Sec. 3).

The “total” Hamiltonian operator must satisfy
conditions which are required for a meaningful
physical interpretation of the theory. Among these
are the existence of operators which commute with
the Hamiltonian operator and represent the total
momentum and angular momentum of the system.
In a nonrelativistic theory the conditions of Galilean
invariance must be satisfied.'* This means that the
" 18 Okubo and R. E. Marshak, Ann. Phys. (New York)

4, 166 (1958); L. Eisenbud and E. P. Wigner, Proc. Natl.
Acad. Sci. U. 8. 27, 281 (1941).
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Hamiltonian, momentum, and angular momentum
operators, together with the generators of Galilean
transformations, must form a set of ten operators
which have the correct commutation relations to be
infinitesimal generators for a representation of the
Galilean group. A relativistic theory must satisfy
the conditions of Lorentz invariance, the main one
of which is that the Hamiltonian, momentum and
angular momentum operators, together with the
generators of Lorentz transformations, form a set
of 10 operators which have the correct commutation
relations to be the infinitesimal generators for a
representation of the inhomogeneous Lorentz
group.’’

Thus relativistic as well as nonrelativistic theories
can fit into the framework which we have used,
provided they contain “total’” and “free” Hamil-
tonian operators. It is only these operators, their
relationships, and the structure of the Hilbert space
determined by their relationships that are funda-
mental to our formulation of the scattering problem.
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The exact amplitude for scattering of a Schridinger or Dirac particle by a static potential is re-
written in a two-potential form by splitting the potential into two parts, one of which contributes
only to exactly forward scattering. Replacement of the exact wave function by a modified plane wave
gives a high-energy approximation that is shown to be equivalent to the Saxon-Schiff approximation
in the Schrédinger case. Corrections to the approximation are obtained in principle from a simplified
series expansion of the exact wave function having the modified plane wave as leading term. The
approximate amplitude reduces at small scattering angles to a well-known result; at large angles,
it reduces to Schiff’s stationary-phase approximation in the Dirac case but not, as shown by the
example of a Gaussian potential, in the Schrédinger case.

1. INTRODUCTION

LASTIC scattering of a high-energy particle by

a static potential can be calculated either by
partial-wave analysis, if the potential has spherical
symmetry; by the Born approximation, if the
potential is sufficiently weak; or by a less familiar
high-energy approximation, if the scattering angle
is sufficiently small. The last of these methods was
initiated by Molidre,' but has been developed and
expounded primarily by Glauber.? Briefly, it consists
in approximating the unknown exact wave function
by a plane wave modified in phase to take account
of the shift in de Broglie wavelength while the
particle is passing through the potential. Its virtue
is its applicability to potentials so strong that the
Born approximation is useless. Its weakness is the
restriction to small angles: Although most of the
scattering at high energies is nearly forward, the
large-angle scattering is often crucial for the inter-
pretation of an experiment.

An extension of the high-energy approximation
to large angles was made by Schiff,> who summed
the infinite Born series after approximating each
term by the method of stationary phase. For both
Schrodinger and Dirac particles, Schiff obtained a
large-angle scattering amplitude that differs from

* Based in part on a thesis presented by one of the authors
(P. J. L.) in partial fulfillment of requirements for the Ph. D.
degree at Iowa State University. The work was performed in
the Ames Laboratory of the U. 8. Atomic Energy Commission.

t Preliminary accounts have been given by B. C. Carlson
and P. J. Lynch, Bull. Am. Phys. Soc. 5, 35 (1960) and by
P. J. Lynch, thesis, Ames Laboratory Report IS-203 (un-
published).

{ Now at Space Technology Laboratories, Los Angeles,
California.

1 (. Moliére, Z. Naturforsch. 24, 133 (1947).

2 R. J. Glauber, Lectures in Theoretical Physics (Inter-
science Publishers, Inc., New York, 1959), Vol. I, p. 315.

¢ L. 1. Schiff, Phys. Rev. 103, 443 (1956).

the Born approximation by phase modification of
both the initial and final plane waves. He also
recovered by the same method the small-angle ap-
proximation (in which only the initial plane wave
is modified in phase), but obtained no results for
intermediate angles. This gap was remedied by
Saxon and Schiff* in a paper dealing only with the
Schrodinger equation. The exact scattering ampli-
tude was recast in a form that reduces to the small-
angle approximation if the exact wave function is
replaced by a plane wave. The high-energy approxi-
mation consists in replacing it instead by a plane
wave modified in phase. Beside providing a well-
defined (although somewhat cumbersome) approxi-
mation for all angles, this new approach to the
problem was used to rederive the simplified small-
angle and large-angle formulas and to revise their
estimated ranges of validity.

The present paper develops a two-potential formu-
lation of the high-energy approximation for both
the Schrédinger and Dirac equations. The scattering
potential (assumed real, although this is not essential
to the method) is split into two parts, one of which
is chosen to be the potential oceurring in the wave
equation satisfied by a modified plane wave. Since
this part contributes only to exactly forward scatter-
ing, the remaining part provides a compact rear-
rangement of the exact scattering amplitude for
nonzero angles. The exact wave function is then
replaced by a modified plane wave as a high-energy
approximation.

Although an approximation of this kind for all
angles has not been given previously in the Dirac
case, our procedure is related to earlier work on
the Schrodinger scattering problem in two ways.

+ D. 8. Saxon and L. I. Schiff, Nuovo cimento 6, 614 (1957).
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Lippmann® proposed a two-potential formalism and
used it to obtain an integral equation for the wave
function, but his splitting of the potential is different
from ours. Secondly, our form of the high-energy
approximation will be shown in Sec. III to be equiva-~
lent to Saxon and Schiff’s, although the conclusions
that we draw from it are at variance with theirs.
Specifically, for 180° scattering from a Gaussian
potential, we shall find in Sec. V the Schiff large-
angle formula multiplied by %, plus additional
terms that are small in a wide range of parameters
(not including the range of validity of the Born
approximation). The discrepancy is attributed to
the method by which Saxon and Schiff estimate
the size of discarded terms. For large-angle Dirac
scattering, on the other hand, we recover the Schiff
large-angle formula with no factor 3, its absence
being due to the linearity of the Dirac Hamiltonian
in space derivatives.

II. TWO-POTENTIAL FORM OF THE
SCATTERING AMPLITUDE

The exact amplitude for scattering of a Schro-
dinger particle by a scalar potential will first be
rearranged in a form that is characteristic of two-
potential theory and has certain advantages at high
energies. In order to simplify the derivation, the
potential V(r) will be assumed to vanish outside
a bounded region. If the particle has energy I =
B’k?/2m, its wave function satisfies

[V + k' — Uy = 0, 2.1)

where U(r) = (2m/k*)V(xr). Solutions having the
asymptotic form of a plane wave plus outgoing or
incoming spherical waves will be denoted by ¢*
or ¢, respectively. The exact scattering amplitude
f is given by the well-known expressions’

—4nf(k,, ko) = (o7, U¥0) (2.22)
= (7, Ueo), (2.2b)

where the plane waves ¢ satisfy
(V* + K)olt) = 0. (2.3)

The subscripts on the wave functions specify whether
the plane wave (or plane-wave part of the asymptotic
form) has the initial wave vector k, or the final wave
vector k,. Each of these vectors has magnitude &
and direction given by the umit vector %, or %,

5 B. A. Lippmann, Ann. Phys. 1, 113 (1957).
( 6 B) A. Lippmann and J. Schwinger, Phys. Rev. 79, 469
1950).
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The momentum transfer ¢ = k, — k; has magnitude
g = 2k sin (4/2), where 6 is the scattering angle.

A high-energy approximation to ¢7 is the modified
plane wave®

Xo() = @o(r) exp 7 8(r), (2.4)

where

eo(r) = exp tko°1, (2.5)

61) = —(2)~" fo TUG - B ds. (2.6)

The phase modification &, takes account, to first
order in U/k?, of the shift in de Broglie wavelength
when the particle is inside the potential. By observing
that

fiorV 8o(x) = —(2k)7'U(), 2.7)

it is easily verified that the modified plane wave
satisfies the differential equation

(V? + & = Us@)xo@) = 0, 2.8

where
Us=U-—-U, 2.9
Uy = —exp (—i 8)V?* exp 1 . (2.10)

To express the scattering amplitude in terms of
X5, we apply Green's theorem to x} — ¢, and
(Y7 — @)%, the star denoting complex conjugation:

[ #1067 = 09 — o0
= (b — @) V(¥7 — en)*]
= de[(tﬁ} = e)*Vxb — ¢o)

— (xo — e V(¥7 — @)*].

The right side is proportional to a transition current
through the surface of a large sphere; we shall first
show that this current vanishes as the radius of the
sphere becomes infinite. The quantities §,(r) and
x6(r) — @o(r) vanish unless r lies either in the
potential or in a semi-infinite cylinder such that
a straight line proceeding from r in the direction
—k, pierces the potential. This second region will
be called the forward cylinder with axis in the
direction %£,. Thus the surface integral reduces to
an integral over the area of intersection of the
forward cylinder with the sphere. As the radius of
the sphere tends to infinity, this area remains

(2.11)
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bounded because the potential vanishes outside a
bounded region, but (¥ — ¢,)* and its gradient
decrease as the reciprocal radius; hence the surface
integral tends to zero.

If Egs. (2.1), (2.3), and (2.8) are substituted in
the volume integral in Eq. (2.11), we obtain (for
real U)

(W7 — ¢, Usxo) = (¥, Ulxb — o))

By use of Egs. (2.2b) and (2.9), this equation
becomes

—47rf(kf;ko) = (ﬁpf: USXT)) + ('P;: ULXT))'

Equation (2.13) has a form characteristic of
scattering by two potentials: the first term is the
scattering by Us alone and the second term is the
scattering by U, as modified by the presence of Us.
A similar division of the amplitude is familiar’
in scattering problems where two physically distinct
forees are acting, particularly when the scattering
produced by one of them alone can be calculated
exactly. In the present situation a single potential
has been divided into two parts in a convenient but
artificial way by introducing x%; the separate parts
are not real, and they differ from zero throughout
both the potential region and the forward cylinder.
Because of these peculiarities, we shall have to
discuss the existence of the separate terms of Eq.
(2.13); also, we have felt it desirable to derive this
equation by an elementary procedure for which
the conditions of validity are more evident than
for the operator method.” Our method can be used
also when the two potentials both have finite range,
for the surface integral in Eq. (2.11) then vanishes
because of cancellation between the two terms in
the integrand. With a different choice of outgoing
or incoming spherical waves, the same procedure
1s convenient for deriving other identities between
different forms of the scattering amplitude; for
instance, replacement of x5 — ¢ by ¥5 — o in
Eq. (2.11) shows the equivalence of Egs. (2.2a)
and (2.2b).

As mentioned, both Ug and U, are nonzero
throughout the forward cylinder. This implies that
each term of Eq. (2.13) is an integral that appears
to oscillate rather than converge, although the sum
of the two terms is well defined. For exactly forward
or backward scattering, this appearance is illusory
as each term can actually be shown to converge

(2.12)

(2.13)

7 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(1953). A misprint in Eq. (4.4) is corrected by Lippmann.s
See also M. Hack, Phys. Rev. 108, 1636 (1957).
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separately. At all other angles, it will be convenient
to define the integrals separately by adding a small
positive imaginary part to the component of mo-
mentum transfer along the direction £,. That is,
if the 2 axis is chosen along this direction, we replace
g. by g. 4+ 7¢ and take the limit of each integral
as e goes to zero. The use of this Abelian definition
of the integrals cannot change their sum, which is
well defined in any case. One may like to think of
the convergence factor exp (—ez) as a device for
representing the attenuation of the geometrical
shadow by diffraction effects.

Because x} describes a particle whose direction
of motion is unchanged as it passes through the
potential, Ug may be expected to contribute only
to exactly forward scattering, while U, produces
seattering through finite angles. The idea of splitting
the potential into two parts of this kind has been
discussed by Lippmann,® but his division of the
potential is different and less explicit than the one
given by Egs. (2.9) and (2.10).

One's qualitative view of the contributions of Usg
and U, to the scattering process is confirmed by
the following exact result:

((007 UXB); 0 = O)
0 , 6>0.

(pr, Usxo) = { (2.14)

Since the secattering amplitude is a continuous
function of 6, this discontinuity in the first term
of Eq. (2.13) must of course be accompanied by a
compensating discontinuity in the second term. In
order to prove Eq. (2.14), we consider first the
matrix element

(or, Uxo) = —f dr (exp iq-1)V° exp 7 8,(r). (2.15)

When the scattering is forward, ¢ vanishes and the
volume integral can be rewritten as an integral
over the surface of a large sphere:

(0, Urxs) = —f dS-V expi &) =0, 6=0.
(2.16)

Because ¥V exp ¢ §; is nonzero only on the inter-
section of the sphere with the forward cylinder,
only its component along the axis of the cylinder
contributes to the integral when the sphere has
infinite radius. However, this axial component is
proportional to U(r) by Eq. (2.7) and therefore
vanishes at large distances.

For nonzero angles, it is convenient to integrate
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by parts with respect to z in Eq. (2.15):
(er, Urx) = i(g. + 19"

X f f: dx dy exp (ig.x + 1q.y)

X [exp (ig.z — )V’ exp 1 8,(1)]7-_=
— (2k) 7 (g. + i7"

X f dr exp (iq-r) VU exp 7 6,). (2.17)
The boundary term vanishes because the con-
vergence factor is zero at the upper limit and the
factor V' exp 7 &, is zero at the lower limit. In the
second term, the quantity ¢ may be set equal to
zero (when 8 > 0), for the integration is limited to
the potential region. The Laplacian operator can
be transferred to the factor exp ¢q-r by an applica-
tion of Green's theorem, the surface integral vanish-
ing beeause the potential is bounded in space. Since
the quantity ¢*/2kq, is unity, Eq. (2.17) becomes,
in conjunction with Eq. (2.16),

0 , 6=0,
(‘Ph fo.;)l 0 > 0
[A unified proof of both parts of Eq. (2.18) may be
obtained by observing that the limit as ¢ — 0 of
(2k) ™ (q. + i) ¢ isOfor & = 0 and 1 for § > 0.]

Because U = U + Uy, Eq. (2.14) follows directly.
Finally, we can rewrite Eq. (2.13) as

(e, Urxo) = { (2.18)

_47rf(kfr kO)

=¥%JR$+WEUM& 6 =0,
(‘l/;, ULX;) ’ 0 > 0

Equation (2.19) is a rearrangement (without ap-
proximation) of the exact scattering amplitude,
Eq. (2.2b), in a form that is expected to be useful
at high energies. This expectation is supported by
a comparison of the results of replacing y; by the
plane wave ¢, in the two expressions. Equation
(2.2b) gives the Born approximation, while Eq.
(2.19) becomes

(2.19)

_47rf(kfr kO) ~ (90/: UVXT)) (220)

by virtue of Eq. (2.18). The last equation is a well-
known approximation for high-energy scattering
valid at small angles.” The use of a better approxi-
mate wave function in Eq. (2.19) will be discussed
in See. V.
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III. DERIVATION OF THE SAXON-SCHIFF
AMPLITUDE
Saxon and Schiff* have rewritten the exact
scattering amplitude in another form that is useful
for obtaining high-energy approximations. We shall
now show that the two-potential form of the ampli-
tude, Eq. (2.13), is closely related to the Saxon-
Schiff form and incidentally provides a substantially
simpler way of deriving it than that given originally
by Saxon and Schiff. Secondly, we shall show the
equivalence of the high-energy approximations ob-
tained when 7 is replaced by a modified plane wave
x7 in these two forms of the amplitude.
The Saxon-Schiff amplitude is

—4nf(k;, ko) = (o7, Ux0)

+ o [ U@ i 6019 [ drane)vxe),
3.1)

where ' = (z, y, 2/) and
Volt) = Y1) — /(). 3.2)

To obtain this result from Eq. (2.13), we first
substitute Us = U — U;:

_47rf(kf) kO) = (ﬂpfi CXJB)
- [llbscy (\72 eXpZ 50)900]'

With the z axis parallel to %, integration by parts
with respect to z and use of Eq. (2.7) change the
second term of Eq. (3.3) to

(3.3)

_ﬁm@wwmmmJ

z=3®

X [ doay )

z=—

_ﬁfﬁwﬂwﬂm%w}

X [ de)yiw). (3.4)
Since the asymptotic form of ¢,, is an incoming spher-
ical wave, ¢o(r’) Y X*(r') varies as (1/2') exp (2tkz")
at large positive 2’ for fixed x and y. Hence the
integral over 2’ exists and tends to zero as z — + .
Since V7 exp (¢ 8,) vanishes at large negative z,
the first term of Eq. (3.4) clearly vanishes at both
limits. Green’s theorem applied to the second term
now yields Eq. (3.1), the surface integral in Green's
theorem having a vanishing integrand because U
vanishes at large distances.

If ¢7 is replaced by a modified plane wave x7,
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the only part of this demonstration that needs
changing is the reason why the boundary term
vanishes at the upper limit. When x; is defined in
more detail in Sec. IV, it will be seen that x; — ¢,
vanishes at large positive z for fixed z and y unless
the scattering angle is 180°. In this exceptional
case, the integral over 2/ must be defined in the
Abelian sense, and the convergence factor then
causes the boundary term to vanish at the upper
limit.
IV. ITERATION SCHEME

In order to make use of Eq. (2.19), the unknown
exact wave function y¥; must be replaced by an
approximate wave function or, more systematically,
by the leading term or terms of a series expansion.
For example, Eq. (2.20) resulted from replacing 7
by the leading term of its Born series. At high
energies, a better choice should be the modified
plane wave x7, which is a good approximation to ¢
in the potential region provided that kR > 1,
U < k% and (U/E)(UR/k) < 1.* (The potential
is assumed to be smooth and to occupy a region of
dimension R.) Postponing until Sec. V a further
discussion of this approximation, we consider here
the problem of expanding ¢ in a series having x7
as its leading term.

For convenience of notation we shall actually
work with 7 instead of ¢7; one can be obtained
from the other by use of the relation®

vim = im0, (4.1)

where —f refers to the wave vector —k;. Similarly,
x~ and x” are related by

x5@) = xILm]* =
5_,(1') = '—(2k)_1 fm U(r + ]ej's) ds.

exp [ik,r — 7 §_,(1)], (4.2)

4.3)

The phase modification is nonzero if r lies in the
potential or in the backward cylinder with axis in
the direction —%, (a semi-infinite cylinder such
that a straight line proceeding from r in the direction
I, pierces the potential).

Saxon and Schiff* obtained a series for ¥ with
x5 as leading term by iterating an integral equation
for Y. We shall instead obtain an integral equation
for the exact Green's function and substitute its
iteration series in a suitable expression for y3, to
be derived in the next paragraph. Although our
procedure is more complicated, the results are in
one respect simpler.

8 L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon Press, New York, 1958), p. 422,
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Whereas Saxon and Schiff applied Green’s theorem
to ¢} and an approximate Green's function, we
shall apply it to x% and the exact Green's function,
which satisfies

[V +F — UG, ) = =6 —1'). (4.4)
From Green’s theorem and Eq. (2.8), it follows that

00 = [ 48"16°0, DV )

— X5@)V'G W, D] (4.5)

=) = [ 6w, DUNE).  (46)
Equation (4.6) shows that the surface integral Q
satisfies the same Schriodinger equation as 3.
However, it is not obvious that @ has the asymptotic
form of a plane wave plus outgoing spherical waves
[the asymptotic form of the volume integral cannot
be obtained by simply substituting for G* its
asymptotic form, since the integration in Eq. (4.6)
extends over both the potential region and the
forward cylinder]. To show that Q is indeed y3,
we observe that the same procedure, applied to ¢,
instead of x%, leads to a familiar equation® for y3,
with no difficulties about the asymptotic form:

i) = [ 486", )V ele)

— o(tYV'G (', D)] 4.7

= 1) — f dr'G*(z, v ) Ut )eo(t)). (4.8)
But the surface integrals (4.5) and (4.7) are equal,
for x% — ¢o and its gradient are zero on the surface
of a large sphere except at its intersection with the
forward cylinder, while G*(r’, r) decreases at large
" as 1/r'. Finally, by the reciprocity property of
the Green’s function, Eq. (4.6) becomes
U0 = xh@) — f G, ) UL ENHE).  (4.9)
This eguation bears the same relation to Saxon and
Schiff’s integral equation for ¢ as does Eq. (4.8)
to the integral equation

Vi) = e — [ drGie, nUE)E).

The iteration series to be substituted for G* in
Eq. (4.9) is chosen to have as its first term the
approximate high-energy Green’s function proposed

¢ G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778
(1952).
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by Saxon and Schiff*:
Fi(r,r') = G(p) exp ¢ 4(r, 1), (4.10)
where
e=r— I",
G;(P) = (47!'[))_1 eXp ka7 (4.11)

or, 1) = —(2k) f Ul = p3) ds.

The approximate Green's function satisfies the dif-
ferential equation

(VP+E — Ul + W, t)F'r, ) = -6 — 1),
(4.12)
with

Wk, r') = —exp [—7 5, )]V
X exp [¢ 8(r, r')] — (t/kp)U).  (4.13)

When Green’s theorem is applied to G* and F*,
the surface integral vanishes and we obtain the
integral equation

G'(r,1') = F'(r,r)

- fdr”F*(r, rYWa’, G @, ). (4.14)
Iteration of this equation gives a series for G
that can be substituted in Eq. (4.9) to yield the
desired series expansion of ¢§:

Vi) = x40 ~ [ drF e TR
+fdr’ de”’Fi(x, 'YWk, 1)

X F'@, eYU &)xo’) + -+ . (4.15)

The series obtained by iterating Saxon and
Schiff's integral equation differs from this in only
one respect: the factor U.(r') that precedes x}(r")
in all terms but the first of Eq. (4.15) is replaced
by the more complicated W(r’, ) of Eq. (4.13).
This replacement does not change the values of
the individual terms of the series; by a proof that
begins with the application of Green’s theorem to
F* and x%, one can show that

f QP e, )[UL) — W, DhGE) = 0. (4.16)

Before turning to other questions, we should like
to mention a further use for Eq. (4.9): it provides
an alternative derivation of the exact scattering
amplitude in the form of Eq. (3.3). We observe
that the argument of ¢} in Eq. (4.9) occurs in the
integrand only as an argument of the exact Green’s
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function. As a result, a familiar integral occurs
when Eq. (4.9) is substituted in Eq. (2.2a) and the
order of integration is reversed in the second term:

—~4rfl,, k) = (o, Ux) = [ drUa@xito)
X f ar'AaH U@ )G (', 1). (4.17)
Now the solution of the Schrédinger equation having

the asymptotic form of a plane wave ¢, plus in-
coming spherical waves is

Vi) = o) = [ @6 @O UEew).  (18)
By Eq. (3.2) and the identity
6, 0)]* = G, 1),
it follows that
v = - [ w6 @, pUEE).  @19)

This identification of the integral shows Eq. (4.17)
to be the same as Eq. (3.3).

V. SMALL-ANGLE AND LARGE-ANGLE
APPROXIMATIONS
When y7 is replaced in Eq. (2.19) by the approxi-
mate high-energy wave function x7, we obtain an
approximate scattering amplitude

_47rf1(kfy ko)
- {(wo, Uxs) + (3, Usx?), 6=0,
(X_fr ULXT)) ’ 6> 0.

In spite of its very different appearance, this ex-
pression is equivalent, as shown already in See. III,
to the high-energy approximation given by Saxon
and Schiff.* They have discussed its accuracy, as
well as the ranges of energy and angle in which it
reduces to the simplified small-angle approximation,
Eq. (2.20), or to Schiff's large-angle formula,
(x7 Uxv)?

To discuss these questions again would surely be
superfluous if Saxon and Schiff had not found it
necessary to make order-of-magnitude estimates
[following their Eq. (32), for example] of some
rather complicated integrals containing rapidly oscil-
lating factors in their integrands. Such estimates
are very difficult to make with certainty; for instance,
the relative magnitudes of two functions are no
guide to the relative magnitudes of their Fourier
transforms, except for the low-frequency com-
ponents. In view of this, we have thought it worth-
while to see what conditions of validity can be

(5.1)
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established by taking the form (5.1) of f; as an
alternative starting point and abstaining from
order-of-magnitude estimates of the kind just
mentioned.

The conclusions that we have reached by this
route are very limited. The first is that f, reduces to
the small-angle approximation for scattering angles
6 < 1/kR; that is, for such small angles, it is im-
material whether ¢ is approximated in Eq. (2.19)
by a modified or unmodified plane wave. For reasons
to be explained presently, we are not able to extend
this conclusion to the wider range of angles, § «
(kR)™}, given by Saxon and Schiff. For angles near
180°, our attempt to recover the Schiff large-angle
formula will serve only to underline the hazards
of making order-of-magnitude estimates. An effort
to avoid them in a particular case, by an approxi-
mate saddle-point integration, will be found to sug-
gest that the Schiff large-angle formula should be
multiplied by % and its range of validity restricted
to avoid overlap with that of the Born approxima-
tion. (For a Dirac particle, on the other hand, the
Schiff large-angle formula will be obtained without
difficulty in Sec. VI.)

For small scattering angles, it is convenient first
to rearrange Eq. (5.1) in the form

"47"fl(kf,k0) = (‘P/, UX+0) + (X_f @1, ULXJB)- (52)

The first term is the familiar small-angle formula
of Eq. (2.20); the second term is a correction whose
relative order of magnitude we wish to estimate.
(The second term is well-defined, with one exception,
because the integrand vanishes except in the poten-
tial region and in the intersection of the forward
and backward cylinders; at § = 180°, these cylinders
coincide, but convergence can be restored by adding
a small positive imaginary part to ¢, as in Sec. II.)
We suppose that the potential is smooth and oc-
cupies a region of dimension R, that kR >> 1 and
U « K, and that UR/k is not large compared to
unity. Then the only factor in either integrand that
can oscillate rapidly in a distance R is exp (iq-1).
If 6 < 1/kR, this factor too is slowly varying, and
a straightforward estimate of orders of magnitude
gives roughly UR? for the first term of Eq. (5.2)
and UR®/k® for the second term. Thus the second
term is of relative order U/k® and can be neglected.
But if 6 >> 1/kR, the integrand of each term contains
the rapidly oscillating factor exp (iq-r), and order-
of-magnitude estimates, whether of the individual
terms or of their ratio, become unreliable.

At large scattering angles, this difficulty of esti-
mating high-frequency Fourier components is ag-

LYNCH AND B. C. CARLSON

gravated. Reflection from a one-dimensional barrier
will illustrate how one can be deceived by apparent
orders of magnitude; the same hazards will then be
encountered in a discussion of 180° scattering from
a Gaussian potential in three dimensions.

The reflection amplitude from a one-dimensional
barrier is"

r = (2ik) " (¢s, U¥y). (5.3)

This can be rewritten in the two-potential formal-
ism as

2ukr = (¢r, Usxo) + (7, Urxv), (5.4)
where

¢/(2) = exp (—ikz), (56.5)

xo(2) = exp [ikz + ¢ 8,()] = x7(@1*, (5.6)

6o2) = —(2h) f LU dz, 5.7)

UL) = —exp (—1 80)(d*/de®) exp (i 8,). (5.8)

As expected, the first term of Eq. (5.4) is easily shown
to vanish. Replacement of ¢ in the second term
by x7 gives a high-energy approximation analogous
to Eq. (5.1):

2ikr, = (X;, ULXB)

dZ

- - f dz exp (2ikz + 3 80) T expi b (5.9)

The integral can be rewritten in two ways by substi-
tuting the identities
d2

3 exp (24 &)

. d . 1
exp (7 &) e exp i 6, = 2%

2
+ (Zid_z 60) exp (27 8,) (5.10a)
14 .
= 137 &P (24 &)
(& o
-+ 1 o \g2 8] exp (27 §y). (5.10b)

In each case, we integrate the first term by parts

to obtain

2ikry = (X7, (U — (U*/4K%)1x35)

2|1 1 dU | .,
= <Xf7 [5 U+ Zk:ﬁ;]h)-

A glance at Eq. (5.11a) suggests that the second
term is of order U,/k* compared to the first and can
10 P. M. Morse and H. Feshbach, Methods of Theoretical

Physics (MceGraw-Hill Book Company, Inc., New York,
1953), Vol. 11, p. 1071.

(5.11a)

(5.11b)
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be neglected at high energies, leaving (x7, Ux%)
as expected by analogy with the Schiff large-angle
formula in three dimensions. A fallacy in this argu-
ment is that U” usually varies more rapidly than U
and consequently has larger high-frequency com-
ponents. Moreover, a contradictory conclusion is
reached by estimating the second term of Eq.
(5.11b) to be of order 1/kR compared to the first.

We shall try to resolve this dilemma by con-
sidering a Gaussian potential, U = U, exp (—2°/d”).
The integrand of Eq. (5.11a) has no singularities
for finite complex z, but the quantity

z 12
In [6)*x6] = 2ikz — «(Uo/k) f exp (—Z—a§) de’
(5.12)
has a saddle point at
z = dalln @K/ UN]E = dyo, (5.13)

Lv(iyo) = 2k2.

If the integration contour is shifted from the real
axis to the line z = = 4 7y,, then the real part of
Eq. (5.12) has a sufficiently sharp maximum as x
goes through zero that the variation of the remaining
terms of the integrand can be neglected, provided
that y, << ka®’. Instead of recording the rather
cumbersome result of the saddle-point integration,
we observe only that U?/4k* has the same value
as U/2 at the saddle point; thus, in this approxima-
tion, we simply recover the first term of Eq. (5.11b).

A better approximation should result from apply-
ing the same procedure to Eq. (5.11b), because
dU/dz = —2:U/a® varies less rapidly than U
Indeed, only z need be replaced by its value at the
saddle point to obtain a small correction term:

2kr, & Hx, UxD + k) 'yl (5.14)

If the saddle point is defined more carefully by
adding In U to Eq. (5.12), the algebra becomes
more complicated but the saddle point is shifted by
a negligible amount to approximately iy, — 7(2k)™".

An objection to this saddle-point approximation
is that the real part of Eq. (5.12) does not continue
to decrease with further increase of [x] but oscillates
and reaches a local maximum (never as large as the
one at the saddle point) whenever |z| is an integral
multiple of wa®’/y,. However, if y, < wa, ie., if
Uy/k* 2, 107*, the heights of these subsidiary
maxima decrease rapidly from one to the next.
Even at the first and largest of them, the exponential
of the real part is small compared to its value at
the saddle point, and the exponential of the imagi-
nary part is oscillating rapidly. Consequently, we
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believe that the value of the integral comes almost
entirely from the saddle point.

Since the high-energy approximation requires
ka > 1 and (Uy/k*)(Usa/k) < 1, we find that r,
is half as large as the analog of the Schiff large-
angle formula in the range of parameters 107* <
Us/k* < (ka)™*. No inconsistency with the Born
approximation arises from the factor %, because the
second Born approximation for a Gaussian potential
is large compared to the first in this range.

The factor 2 does not seem to be a peculiarity of
the one-dimensional ecase. In three dimensions, the
approximate amplitude for 180° scattering is

_47rf1(—k07k0) = (X_f; ULXT))

= —-f dr exp (2ikz + ¢ 8,)V° exp © &,. (5.15)
As in one dimension, we avoid terms explicitly
quadratic in U by substituting an identity similar
to Eq. (5.10b):

exp (1 8)V7 exp i &

= 1Y% exp 21 8, + 3i(V? &) exp 2i 4. (5.16)

When the first term is integrated by parts, the
surface integral vanishes by the reasoning applied
earlier to Eq. (2.16), and the volume integral is
just one-half the Schiff large-angle formula. If the
second term is evaluated for a Gaussian potential,
U = U, exp (—r*/a*), Eq. (5.15) becomes

—4xf, = f dr exp (2ikz + 21 68,)

X AU — Li(ka®) '2U

— 2ia7 2" + ¥ — a°) 6. (5.17)

The integrations over z and y can be carried
out exactly, a convenient variable being { =
exp [—(2® + ¥°)/d’]. The first two terms present
no difficulties; the third term, which is defined in the
Abelian sense by the convergence factor exp (— ez),
is first integrated by parts with respect to z and
then with respect to {. The result is

—4zf, = nad’ f dz exp (2ikz + 24 8,)1U(2)

X A[1 — i(ka®) 2 — (ka) (24 65)"

X [1 — exp (—2i 6)] + (ka)™?}. (5.18)
In this last equation, but not in Eq. (5.17), U
and &, are functions of z alone: U(z) stands for
U, exp (—2°/a®) and &, is related to it by Eq. (5.7).
The terms in (ka) * come from the third term of
Eq. (56.17).
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As in the earlier discussion of the reflection
amplitude, we estimate the relative importance of
the slowly varying factors by evaluating them at
the same saddle point, z = 4y,. Admittedly, the
variation of {1 — exp (—2¢ §,)] is not slow near
the saddle point, but its value remains very close
to unity. The term in (ka®)™'z is then of relative
order y,/ka’, and the square bracket containing
this term is effectively unity. The last term in
Eq. (5.18) is of relative order (ka)~® 6, & (ky,) " < 1.
We conclude that only the first term of Eq. (5.17)
is important, again provided that y, < =a:

—4rfi(—ko, ko) & 3(x7, Ux%). (5.19)

One would like to know whether Eq. (5.19) is
correct for potentials other than a Gaussian, in a
suitable range of parameters, and whether it can be
extended to scattering angles other than 180°. The
assumption of a Gaussian potential was not used
in obtaining this expression directly from the first
term of Eq. (5.16), and we speculate that this term
will in general have substantially larger high-fre-
quency components than the second term because
it contains the square of the z derivative of the
potential. As in the Gaussian case, the effect of its
more rapid variation will be compensated by its
quadratic dependence on U, when U, becomes
sufficiently small that the Born approximation is
valid. The first term leads directly to the right-
hand side of Eq. (5.19) also at scattering angles
other than 180° provided that x7 is approximated
by ¢, exp (—1 8,). We have not been able to estimate
reliably the range of angles about 180° in which no
serious error is caused by this approximation.

VI. DIRAC SCATTERING

In order to describe high-energy potential scatter-
ing of physical electrons, one must use the Dirac
equation to satisfy the requirements of special
relativity. We shall find that the two-potential
formalism developed earlier for the Schriodinger
equation can be applied also to the single-particle
Dirac equation with only minor changes. Aside from
the complications of spin, the resulting high-energy
approximation is in fact simpler in the Dirac case;
for 180° scattering, in particular, we shall recover
the Schiff large-angle formula® with no factor 1
and with no additive terms. These simplifications
occur because the Dirac Hamiltonian is linear rather
than quadratic in space derivatives.

The Dirac equation for a particle in a scalar
potential V(r) is"'

U L. I. Schiff, Quantum Mechanics (McGraw-Hill Book
Company, Inc., New York, 1955), 2nd ed., p. 329.
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(£ — H, — VIOl = 0, 6.1)

where
H, = thca*V — Bmc’. (6.2)

If no potential is present, the plane-wave solutions
with positive energy will be denoted by

oir) = (k) exp (dk-r), 7= £},
K = (B/he)® — 2, (6.3)
k., = me/h.

The four-component spinors u, satisfy the ortho-
gonality relations

ufui = (E/mcz) 0i; = v 9y, (6.4)

u:ﬁu;‘ = —0d,. (6.5)

The exact amplitude for scattering from an initial
state with wave veetor k, and spin s, (spinor wu;
with ¢ = s,) to a final state with k; and s, is given by

_47rf(kf)3f;k0780) = (‘P!) U‘p:-)) = (‘p—f’ U‘Po): (66)
Ulr) = @m/B)V().

The differential cross section |f|* must of course be
averaged over initial spins if the beam is unpolarized
and summed over final spins if the spin direction is
not observed.

To split the potential into two parts, we again
use a plane wave modified by a phase factor that
corrects for the change of wavelength in the potential
region:

Xo(T) = @oT) exp [2 8,(T)],
. 6.7)
So() = —y(2K)™" f Ut — hys) ds.

The only differences from the Schrédinger case are
that the plane waves are now spinors and that §,
is now proportional to ¥ = E/mc®. The origin of the
factor v becomes obvious when the relativistic
expression for the wave number is expanded to first
order in V. The Dirac equation satisfied by the
modified plane wave is

[E — Hy — Vs®xo = 0, (6.8)
Vs) = —ific exp (—1% 8o)a-V exp ¢ 6, = hca+ V §.
(6.9)

To express the scattering amplitude in two-
potential form, we again integrate the transition
current between (¥; — ¢,) and (x3 — ¢,) over the
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surface of a large sphere:
[ as-v7 = o)'ats = 0

= [ &V-107 ~ e)alxs — 93], (6.10)
The surface integral vanishes because the factor
(x5 — ¢o) limits the integration to the intersection
of the forward cylinder with the sphere, while
(¥; — ¢;) decreases asymptotically as 1/r. By sub-
stituting Egs. (6.1) and (6.8) in the volume integral
and using Eq. (6.6), we obtain

—4rf = (¢, Usx®) + (07, Uxo),  (6.11)

where
Us = @m/B)Vs = 2.0V 8,  (6.12)
Uy = U~ Us. (6.13)

As in Sec. II, the two terms of Eq. (6.11) can be
defined separately in the Abelian sense. The first
term again contributes only to exactly forward
scattering:

. ,Uxh, 60=0,
(@f, USX 0) — {(90/' XO)’
0o , 6>0.

(6.14)

(Even at zero angle, it must be remembered that ¢,
and ¢, may describe different spin states.) To prove
Eq. (6.14), we first write out the matrix element in
detail:

- o t
(o7, Usxt) = —2tkueu,

X fdr (exp 1q-1)V exp ¢ 8. (6.15)
In the case of forward scattering, the spinor product
is proportional to the incident current density if
the initial and final spin states are the same, and
vanishes otherwise:

koK) euolks) = —ko 8(s;, So). (6.16)

Use of Eq. (6.4) and the second of Eqgs. (6.7) leads
at once to

(o, Usxth) = v 865,59 | drU exp'i 5,

(6.17)
= (‘Pl: UXB); 6 = 0

Since this proof makes no demands on the spatial
dependence of ¢;, we observe for future reference
that also

§=0. (6.18)

For nonzero angles, we perform an integration

(X—}"i USXT)) = (X-/’ YX-'(.)))
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by parts with respect to z in Eq. (6.15):
(er, Usxo) = —2k.(q, + ie)_lu;ozuo

X { f f dz dy exp (ig.x + ig,y)
X [exp (1.2 — )V exp 2 8)ie-ow
+ v (2k)7 f dr exp (iq-1) V(U exp i 80)}. (6.19)

The boundary term vanishes at the upper limit
because of the convergence factor and at the lower
limit because of the factor ¥ exp (¢ §,). Integration
of the second term by parts transfers the gradient
operator to the factor exp (¢q-r), the surface integral
vanishing because the potential vanishes at large
distances. The second half of Eq. (6.14) now follows
from the identity

ujeterq = 0. (6.20)

Alternatively, the two parts of Eq. (6.14) can be
proved in a unified way by observing that

lim wjoue-(q + i8)(g, + i

0

_ {—5(8;,80>(k/kc)a 6=0, (621

0 , 6>0.

The exact scattering amplitude can now be
written as

dnf = {(w, Uxs) + (47, Uix®), 6 =0,
W5 Ux®  , 0> 0.

As in the Schrodinger case, replacement of 7 by ¢
gives the familiar approximation

_47rf ~ (¢’!: UXTJ)) (623)

where we have used Eq. (6.14). A better replace-
ment for the exact wave function is the modified
plane wave

(6.22)

X71) = o) exp [—2 5_,(n)], (6.24)

5_,1) = —y(28)" f Ue + s ds.  (6.25)
[¢]

The parameters are assumed to satisfy the same
conditions as in the Schrodinger case, with U re-
placed by vU; in addition, we assume that v > 1.
Because of Eq. (6.18), the resulting high-energy
approximation is simpler at 0° than in the Schro-
dinger case:

—47rf1 — { (‘PI‘) UXT)) , 0= 0:
(X-f) ULX‘:)): 6 > 0.

(6.26)
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For small scattering angles 8 < 1/kR, it is again
immaterial whether a modified or unmodified plane
wave is used as the approximate wave function, and
we are again unable to extend this conclusion to
the wider range of angles 8 << (kR) !> We first re-
arrange Eq. (6.26) in the form

(s, Uxo) + (X7 — s, Urxd),
U — 2k,a-V 8.

—4rf,
U,

(6.27)

I

If yUR/k is not large compared to unity, the
integrals contain no rapidly oscillating factors, and
their orders of magnitude can be safely estimated.
On evaluating the matrix elements of e, the terms
in a, and a, are found to be at most of order @ relative
to (¢;, Ux%t). When the remaining terms of U, are
combined in the form U(l + cv'a,), where v is
the speed of the particle, their contribution is at
most of order 1/y relative to (¢, Ux%), and only
of order 6°/ if the spin state is unchanged.

At a scattering angle of 180°, Eq. (6.26) will be
shown to reduce to the Schiff large-angle formula®
with no approximations:
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—4xf, = (x7, Uxs), 6 = 180°.  (6.28)
We consider first the matrix element
(7, Usxs) = —2ikaujeu,
X f dr exp (iq+r + 7 6.)V exp ¢ §. (6.29)

The phase modification §_, is equal to §, for 8 = 180°;
in contrast with Eq. (5.16), we have

(exp 7 6,)V exp i 8, = 3V exp (27 dy). (6.30)

Thus, Eq. (6.29) has the same structure for 180°
scattering as Eq. (6.15), and the same steps that
were used earlier to prove the second half of Eg.
(6.14) now lead to

(x7, Usxs) =0, (6.31)

Equation (6.28) follows immediately, and its de-
rivation clearly remains valid in a range of angles
about 180° provided that x7; is approximated by
¢r exp (—1 §;). As in the Schrodinger case, we are
unable to estimate reliably the accuracy of this
approximation.

6 = 180°.
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An approach to perturbation theory is considered based on
the formula exp (—iB) A exp (t+B) = A exp (¢B]), where
[AB] = AB — BA is the commutator. The operators A
constitute a linear space @ and the operators B considered
are such that B] take G into itself. The present discussion
considers the case where @ is finite dimensional with coordi-
nates ¢;, -+« , ca;i.e., @ isisomorphic with the set of n-dimen-
sional vectors c¢. Under these circumstances sufficient con-
ditions for the basic formula are given in terms of the “ana-
lytic vectors” of Nelson. The set, @, of B’s available can be
considered closed under the processes of taking linear combi-
nations and forming the commutator. Thus ® is a Lie algebra.
Exponentiation leads to a Lie group of operators U, and 4
and A’ are said to be B equivalent if 4’ = U~1AU. For @
finite dimensional each B is associated with an n X n matrix,
b, which specifies the operation B] relative to the vectors c.
Effectively then, ® is finite dimensional. The matrices b
form a Lie algebra with a corresponding Lie group of matrices
u such that 4 and A’ are B equivalent if and only if the
corresponding two vectors ¢ and ¢’ are w images;i.e., ¢/’ =wuc.

Computationally, therefore, the set of A’ equivalent to a
given A is obtained by considering the orbit of a given vector
¢ under the Lie group; i.e., the set of uc. A neighborhood @’
of a given A consists of those operators A’ in the form A 4 34
where 6A is arbitrary except for a restriction on the size of
its coordinates, c;. Given A, a neighborhood @’ can be found
for which one can obtain by a well-known construction on
the orbits a set of functionally complete and functionally
independent invariants for B equivalence. Computationally
global and rational invariants are desirable and these can be
obtained in the form of similarity invariants, provided that
@ can be mapped onto a set of n X n matrices a in such a way
that if ¢ corresponds to a, then bc corresponds to @’ = [ab].
If the sets @ and ® are identical such a mapping is immedi-
ately available and if, in addition, the corresponding Lie
algebra is semisimple, in general, given A, the A’s in some
neighborhood are each equivalent to an A’ which is a function
of A. This corresponds to a case in which a very simple per-
turbation of A levels occurs. Two examples are discussed.

INTRODUCTION

ERTURBATION theory is concerned with

establishing the spectral characteristics of an
operator A’ = A 4 64, where A is an operator
whose spectral resolution is known and 64 is a
“perturbation.” Procedures for investigating this
problem are of great practical importance (cf.
Dalgarno; Dalgarno and Stewart; Dirac; Gell-Mann
and Goldberger; Gunthard and Primas; Hugenholtz;
Karplus et al.; March and Young; Nakanishi;
Nambu; Schwartz; Speisman; Sysmanik; Young).!
In the classic approach, one chooses a coordinate
system or its continuous equivalent in which A is

diagonal and seeks a unitary operator U such that-

U™A'U is also diagonal; i.e., commutes with A4 and
may even be a function of A. However, it is a well-
known result of Weyl that, even when 64 is com-
pletely continuous, A’ may have a different spectral
type from A (cf. Aronszajn; Kuroda; Rosenbloom)
and because of this the structure of 4 + 84 has
been intensely investigated (cf. S. Goldberg; V. N.
Goldberg; Kato; Porath; Zaidman). These investi-
gations have often been based very strongly on the
spectral structure of A (cf. Castoldi; Faddeev and
Ladyzenskaya; Folguel; Friedrichs; Rellich; Rosen-
blum; Schroder; Van Hove).

There is however another procedure by which
off diagonal terms can be eliminated. We denote

1 See the references given at the end of this paper.

AB — BA by [AB] and write U in the form exp (iB).
One has the formal relationship

exp (—iB)A exp (¢B)
= A + [AiB] + (1/2H[[4:Bl:B]
+ (1/3%(D°AGB)* + ---
= (say) 4 exp (:B]) 0

to specify a rotation (cf. Foldy and Wouthuysen;
Garrido and Pascual; Newton and Wigner; Pryce).
The commutator operator has been investigated
from a number of points of view (cf. van Kampen;
Kermack and MecCrea; Putnam; Putnam and
Wintner; Sack; Vidav). We consider then a linear
set @ of operators A and suppose that ¢B] takes
@ into itself. Formally, (1) implies that exp (¢B})
also takes @ into itself. If B, B,, - - is a sequence
of B’sfor which ¢B,] takes @ into itself, then formally
> uaB. also has this property and the “‘diagonali-
zation” of A’ = A + 64 then consists in choosing
the u, so that A" = A’ exp (¢ Z u.B.]) does not
have off-diagonal terms. If the operator A, whose
spectral resolution has determined the coordinate
system, has simple spectrum, this can be accom-
plished by choosing the u, so that A’ is in the set
of A's which commute with A.

The present discussion considers the case where
@ is n dimensional. If 4,, --- , A, is a basis for @,
we use the notation A = Y."_, c, 4, = c-A;i.e.,
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A is a vector {4,, --- , A4,} and ¢ is the vector
{er, -+, ¢.}. We suppose that each such A has a
closure A. Since ¢B] takes @ into itself, there is an
n X n matrix b, which has the corresponding effect
on the veector ¢; ie., ¢c:A(zB]) = (bc)-A. Under
these circumstances, sufficient conditions can be
formulated in terms of the ‘“‘analytic vectors” of
Nelson for the basic formula (1) to hold for a given
element f (ef. Nelson). These conditions can be
fulfilled on a nondense subset of Hilbert space and
thus we can consider rotating A’ on linear subspace
rather than on the whole space.

If @ is isomorphic with a linear vector space @
to each B for which {B] takes @ into itself, we have
a transformation b of @ into itself. The set of such
B is of course linear and furthermore if certain
domain conditions are verified, [B,B,] is such a B,
if B, and B, are. The correspondence B ~ b is
linear and [B,B.] will correspond to [b,b,]. If @€ is
finite dimensional, the set of b’s constitutes a finite-
dimensional Lie algebra and a finite-dimensional
linear set ®, of B’s can be obtained which are in
one-to-one correspondence with the b's. We suppose
that there is an appropriate domain such that for
every B in ®,, the basic formula (1) holds.

The set of b's constitutes a finite-dimensional Lie
algebra. Exponentiation and multiplication of a
finite number of exponents will yield the corre-
sponding Lie group of elements, u [c¢f. Chevalley
(1946)]. In view of (1), we also have for each B of &;,
a V = exp (¢B) which corresponds to the Lie-group
element, v = exp b, in such a way that if 4 and A’
are two operators of @ with corresponding ¢ and ¢’
in @, then V'AV = A’ on an appropriate domain
is equivalent to ¢ = c¢’. Clearly a product U of a
finite number of such V’s will also correspond to
the product u of the corresponding » in such a way
that U'AU = A’ on an appropriate domain is
equivalent to uc = ¢’. We say that A and A’ are B
equivalent if there is such a U such that UT'AU = A’
on an appropriate domain and it is clear that B
equivalence for A and A’ corresponds to uc = ¢’
for a u in the Lie group.

The finite-dimensional set ®, is linear but not
necessarily closed under the operation of forming
the commutator. If there is a finite-dimensional set
®} of B’s which contains ®, and closed under forming
the commutator, then ®/ is a finite-dimensional
Lie algebra and sufficient conditions are known so
that one can consider the set of U’s as a unitary
representation of the corresponding Lie group (cf.
Nelson, Theorem 5, p. 602). In general we are con-
cerned with the unitary character of the individual
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U’s either on the whole space or on an appropriate
subspace and this can be investigated directly. For
instance, if B is self-adjoint, exp (¢B) is unitary
(cf. Stone).

The B equivalence of A and A’ corresponds to the
existence of a u in the Lie group for the Lie algebra
of the b’s such that uc = ¢’. Thus the problem of
determining the set of A’ equivalent to a given A
is the same as determining the ‘‘orbit’ of c; ie.,
the set of elements in the form uc for u in the Lie
group. The topological character of the set of orbits
which occur in a representation of a Lie group has
been extensively investigated (cf. Cartan; Conner;
Conner and Floyd; Karube; Mills and Seligman;
Montgomery; Montgomery and Yang; Montgomery
and Zippen; Mostov; Nono) and a study of B
equivalence could be based on these, in particular,
on the theory of “‘cross-sections.”

However, it is possible to present a somewhat
more elementary discussion using a construction
given by Weyl and a choice of coordinate systems
similar to those described by Pontrjagin. Let 4
be given and the corresponding vector c. A ‘‘neigh-
borhood” of A consists of the A” = A + 64 where
8A has a ¢ in a neighborhood of the origin. Let ®,
consist of the vectors bc in @, b as defined above. Let
8. denote a set complementary to ®, in @in the linear
sense. Let A’ denote an element in the form 4 + 44
where 94 has a ¢ in §,. One can show that there is
a neighborhood of A such that every A’ in this
neighborhood is equivalent to an A” in the form
specified. The set of operators A for which 8§, has
minimum dimensions, has a complement in @ of
lower dimensionality and for an A in this set, if a
coordinate system in 8, is given with coordinates
z, -+, 2, then the coordinates of the veector cor-
responding to 94 constitute, locally, a functionally

‘complete and functionally independent system of

invariants for B equivalence within the neighbor-
hood of 4.

However, from the computational point of view
it is desirable to obtain global and rational invariants
for B equivalence. This can be done if the vectors ¢
can be mapped on n X n matrices a, ¢ — a(c),
in such a way that for the b defined above which
corresponds to the operation ¢B] we have [a(c)b] =
a(bc). This implies that exp b a(c) exp (—=b) =
a(c) exp (b)) = a (exp bc) and thus a(uc) is ob-
tained from a(c) by a similarity transformation
and all similarity invariants of a(c) are invariants
for A under B equivalence. If the mapping ¢ — a(c)
is one-to-one, all invariants of B equivalence can
be expressed in terms of the elements of the matrix



PERTURBATION THEORY AND LIE ALGEBRAS

a(c) (the similarity invariants are examples of this),
but if the mapping ¢ — a(c) is not one-to-one, the
situation is more complex.

A mapping ¢ — a(c) is immediately available if
the set of A’s coincides with the set of B’s; ie.,
we take a(c) to be the b matrix associated with A.
If, under these circumstances, the Lie algebra of
the b’s is semisimple, then (in general) A’ is B
equivalent with an A"’ which commutes with A.

In view of the detailed investigations of Lie
algebras and Lie groups now available, the present
discussion could be continued into a categorical
specification of the case considered (cf. Borel;
Chevalley). But the assumption of @ finite dimen-
sional is intended merely to develop background
material for the more interesting and more per-
tinent infinite-dimensional case, which will be con-
sidered in the future.

Normally the unitary equivalence of the A's
relative to B’s would be studied by the use of the
ring of operators determined by the B and A’s.
(cf. Kadison and Singer). However, under the
circumstances indicated above, a smaller structure
can be used;i.e., the B set itself, and this is significant
in the infinite-dimensional case. The relation between
B equivalence and more general equivalence rela-
tions is also extremely important.

Our discussion concludes with consideration of
two examples. Operators p and ¢ are defined on
the set of summable squared functions of z for
—o <z < o, by ¢f = af(z), pf = i(d/dz)f(z).
One example has 4,, A,, A; defined as p, ¢ and the
identity; the other is based on p°, ¢°, and 2qp + 1.
Apparently if p or ¢ occur to a higher degree in
similar examples, one does not have a finite di-
mensional Q.

SECTION 1

We consider a finite-dimensional linear set @ of
operators A on Hilbert space with basis 4,, --- , 4,
and an operator B such that for every A in @,
[AB] is in @. (This assumption will be modified by
domain restrictions later.)

The commutator [AB] as an operator can be
iterated

[[AB]B] = (D*A(B])
[[[4B]BIB] = ([)’A(B))’
e (1.1)

We ignore the multiplicity of the first bracket
and hence can express a polynomial or power series
in the commutator operator with a single first

453
bracket. For instance

[A exp (B) = 3 @) (OB (12

In this terminology we wish to establish the
relation

exp (—iB)A4 exp (iB) = [A4 exp (iB]), (1.3)

which is the formal basis for the study of equivalence.
Our procedures are analogous to those of Nelson
and we use his terminology for analytic vector.
The type of generality we want is determined by
various practical considerations and thus it is
desirable to make the current discussion self-con-
tained. Thus no properties of the operators not
explicitly given here will be used. This permits one
to apply these formulas to cases where operators
are not known to be self-adjoint and on sets of
elements in Hilbert space not known to be dense.

Lemma 1.1. Let A, -+- , A, be n operators such
that the linear combination, A = Z'[,=1 c.A, has a
closure A. Let f be an element of the Hilbert space $
and B an operator such that

[4.B)f = ; baiAof (1.4)

and such that f and A.f are analytic vectors for B.
Then there exists an s > 0, such that if |z| < s, then
exp (—B2)4 exp (B2)f = [A exp @B])f.  (1.5)

, ¢}. We define
(1.6)

and use the notation A = {4,, --- , A,} and c-A
as in the introduction. Equation (1.4) is equivalent to

[c-A B]f = (bc)-Af (1.7)

for all ¢ and for the matrix b = {b;;}. There is a
C > 0 determined by the matrix b such that

|bclin = lle'lln < C [lc]ln (1.8)

for all c. The obvious triangle property of || ||.
can be used then to show the existence of

Let ¢ denote the vector {c;, - --

”ch = mMaX, ’cal

[c+A exp (¢B])f = (exp tb)c-Af (1.9)
for every complex ¢ and
([c-A exp (4,B]) exp (&B])
= [c-A exp {(#, + ¢,)B]}. (1.10)

Since A.f is an analytic vector for B, it is in the
domain of B” forp = 1, 2, --- . We define

B’A = {B*4,,--- ,B"A,} (1.11)
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and there is an s; > 0 such that

> B;vAJ < @

a=0

(1.12)
Thus we can find a s > 0 and a K such that for
every ¢,
I1B*4f|| < Ka!s™*.
Now Eqgs. (1.7), (1.8), and (1.13) imply
||B*LAB)} = ||B*(¥"c)-Af||
= ||("c)-B"Af||
< C° flella (X2 11B=4,11D)
< |le]|m EnCPals™® = (say) K'CPals™®
for K’ = ||c||. Kn.

(1.13)

(1.19)

[In the current discussion of the basic formula
(1.3), the finite dimensionality of the set & is used
only in the derivation of (1.14).] It is worthwhile
to point out here precisely what is needed to obtain
(1.14) by the above argument independently of the
finite-dimensionality assumption.

We suppose that the set @ is isomorphic to a
linear vector space € with norm ||¢|], and let A
correspond to ¢. Let a subset @, of @ be specified. (In
the finite~-dimensional case @, is the set 4,, --- , 4,
but it may be @ itself in some cases.) Let F denote
a set of elements, g, in Hilbert space, such that
there is a g corresponding to each 4 in @G,. For
instance if f is in the domain of every 4 in &,, then
the set A,/ which consists of the Af, 4 in @, is
such an &. The sum, §, + F. can be defined as the
g for which ¢ = ¢, + g, where ¢y, ¢;, and ¢ corre-
spond to the same A in @, and similarly ¢¥, for a
scalar ¢ is the set ¥ of g in the form ¢g,, ¢, and ¢,
corresponding to the same A. Thus the set of &'s
constitutes a linear vector space and we suppose a
norm ||F||, is defined at least for a subset of &’s
which will constitute a normed linear veector space
with the above definitions of + and ¢ -. If Bg is
defined for every g in &, we define BF as the set of
Bg’s for g in &.

The three critical assumptions we need for the
above discussion of (1.14) are:

O I A~c, JAf]] < o]l [|Af]]..

(2) A,f is an analytic vector for B; i.e., there is
an s > 0, such that

@

Z sa(a!)_l ||EaAlf||2 < .

a=0
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(3) The transformation b on @ corresponding to
B] should be bounded.

These are adequate to replace the finite dimen-
sionality of @ and of course the condition of ana-
lyticity for the A.f in the present lemma. However
the other conditions such as the analyticity of §
relative to the transformation B and the existence
of the closure of A must be retained.]

Let

3 3 (el BY BTAGBYY

P
{Z (a)7'*B*

Y4

PQ __
Jra =

,2: (ﬁ!)—l[A(tB])"}f (1.15)

and
kp = aio :-3:;: (a!)’ll“(ﬂ!)—IB"[A(tB])Bf (1.16)
and
M= Y > @B AGBYY. (LI

a=P+1 f=0

Now (1.14) permits one to apply the usual
limiting arguments to show both the existence of
certain limits and the relations

lim ¢5% = lim (lim ¢%$
Pow Pom Qe
= exp (¢B)[A exp (¢B))f  (1.18)
and
Ll_rg kp =0 and 1101_1.12 kit = (1.19)
for |t] < s.

The assumption that A.f and f are analytic vectors
implies that f and A,f are in the domain of B®,
p=1,2 --. . We also have the relation

apy = 3 (P)peramyy

o=

(1.20)

which can be proven inductively. It is valid for
p = 1. The induction must be concerned only with
operations on the left since only one f is involved.
The result is assumed for AB*™'f and, since A
is arbitrary, for [AB]B*"‘f. Then the relation
AB”f = BAB*'f -+ [AB]|B*"'f and the addition
formula for binary coefficients yields the result for p.
Since A is arbitrary, we also get the corresponding
[AB] result.
Now (1.20) yields by summing from 0 to 2P

A{ f (8 !)“t"B"}f

B=0
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n

2P f
2, 2 {al(B — Y B [AUB) " °f

=0 a=0
2P 2P-a

2 > (@ BY(B)[AUBIYf

a=0 f=0
= goo -+ ke + k4. (1.21)

Since f is an analytic vector for B, we have the
existence of

2 (BY7UBYY = exp (1B)f (1.22)
for ¢ in a certain neighborhood of the origin. We can
adjust the s of (1.13) so that (1.22) converges for
It} < s. Now (1.18) and (1.19) imply that the right-
hand side of (1.21) has a limit as P — . Further-
more A has a closure A and hence (1.22) and the
above yields

A (exp tB)f = exp tB[A exp {B)f.  (1.23)

Since the A.f are analytic vectors for B, one can
readily show that exp (—tB) and exp (tB) are in-
verses on the linear combinations of the A.f for
l{] < s. Since [A exp (tB))f is such a linear com-
bination, Eq. (1.23) implies the desired Eq. (1.5),

SECTION 2

Lemma 2.1. Let Ay, -+ , A, be n operators with
the property that each linear combination A = c-A
has a closure, A. Let an operator B, a set D in $
and an n X n matriz b, {b;}, be given with the
property that if f isin

(1) f4s in domain of A;

(2) [4:Blf = 2on . baiAlf

(3) f is an analytic vector for B

(4) A.f s an analytic vector for B

(5) For 0 <t < T, exp (iB)f isin D.

Then for 0 <t < T and all f in ©:
exp (—itB) A4 exp (itB)f = [A exp (iBf}f. 2.1)

(Note that no denseness or completeness require-
ment is imposed on 5.)

Proof. For { ¢ D, A.f exists and hence Af. Thus
Af = Af. Now let a ¢ with 0 < ¢t < T be given
and a f ¢ ©. Consider then a ¢ with 0 < ¢ < &
It is clear that the hypothesis of Lemma 1.1 holds
for exp (it'B)f and thus there exists an s > 0, de-
pendent on ¢’ such that if J¢] < s

exp (—zB)A exp (zB) exp (it'B)f

= [A exp (¢B]) exp ({¢'B){. (2.2
To each such ¢/, we define the neighborhood con-
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sisting of those real ¢/ for which ¢/ — | < s/2.
These neighborhoods are defined for the real ¢
such that 0 < ¢ < t. Since this set is compact, a
finite number of these neighborhoods cover this
interval in an overlapping manner. Let 0 = ¢, <
l, < --- < t, = t denote the center points of these
neighborhoods and s, the value of s corresponding
to t,.

Since the neighborhoods overlap, for each « there
is a ¢’ such that

[# — t.] < 82/2 and [ — fes1] < 8441/2.  (2.3)

Depending on whether s, is larger than s,.,:/2 or not,
we have

[fass — Ba]l < 8o OF |lair — ] < Sasr- (2.9)
The last inequality implies that for 4' = c¢-A
exp {i(lars — t)B} A’

X exp {i(fa — ta.1)B} exp (it,..B)f

= [A’ exp {i(t. — t.:1)B]} exp (it...B)f.  (2.5)

Now let 4 = [4’ exp {i(¢, — f..1)B]}. This
implies then that for all A

[A exp {i(fass — t)Bl} exp (i.B)f

= exp {—#(fass — t.)B}4A

X exp {i(ta-ﬂ - tu)B} €xp (itaB)f'
This also holds for the case |t,+: — L] < 3.

Suppose now that for i, we have for all A’
exp (—it,BYA’ exp (it B)f = [A’ exp (il B]}. (2.7)
Let A’ = [A exp {i(tos:1 — to)B]} in (2.7) and apply
exp (—t,B) to (2.6). One then obtains by (1.10),
exp (—ila 1 B) 4 exp (i, B)f

= [[A4 exp {i(fas1 — t)B]} exp (it.BDf

= [A exp (il...B]f. 2.8)
Since this will hold for « = 0, we have it then also
fort = t,, QE.D.

We consider now a set of B's, with the property
that [AB]isin @ for each A4 in @. A linear combina-
tion of B's with this property has this property
also and thus we can suppose that we are dealing
with a linear set of such B’s. This set we denote ®.
Now suppose B; and B, are two elements of & for

which (1.4) holds on a set ©. This implies that for
t=12

2.6)

[c-A B} = (b.c)-Af
[see (1.7)] for { in © and also

2.9
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([b.b:]c)-Af = [[c-A B,]Bilf — [[c-A B(]B,]f
= [c+A[B,B]}f. (2.10)

Thus we can suppose that the set ® is both linear
and closed under the operation of forming the
commutator and this also holds for the set b of b’s.
Both sets are, therefore, Lie algebras and the
mapping B — b is a homomorphism. If 9, is
the set of B’s which are mapped on the zero n X n
matrix, then there exists a finite dimensional linear
set of B’s, ®, which are mapped in a one to one way
and linearly onto b. From the point of view of
computational effectiveness, we need only concern
ourselves with the properties of the B’s in ®,.

Assumption. Let @ and ®; be two finite-dimensional
linear sets of operators onm Hilbert space and © a
linear set in Hilbert space which 1s in the domain of
each A4 in Q. Let A, --- , A, denote a basis for Q.

We assume

(1) To each B in &, there is a matriz b, {b;},
such that

TABY = 3 baid.f @2.11)

a=1
for f & D. If c-A denotes D_"_, c.A, this can also
be written

ilc-A Blf = (bc)-Af (2.12)

(2) For each A in @, there is a closure A and
for B in ®;, f in D we have for A = ¢-A

exp (—iB)4 exp (iB)f = [A exp (iB])f = exp bc-Af
(2.13)

(3) The set b of matrices b is closed relative to the
operation of forming the commutator and hence, since
it s linear, is a Lie algebra.

Since b is a Lie algebra, exponentiation and re-
peated multiplications determine a Lie group g
(cf. Chevalley or Pontrjagin).

Definition. If @, ®;, and b are as in the above
assumption and ¢ is the Lie group generated by b,
then two operators A and A’ of G well be said to be B
equivalent if for the vectors ¢ and ¢’ such that A = c-A,
A’ = ¢'-A, there exists a u in g such that ¢’ = wuc.

Lemma 2.2. The relation B equivalence is fransitive
and reflexive. If A and A’ are B equivalent, and the
set D in the assumption is tnvariant under the operators
V = exp (¢B) for B in ®&;, then there exists an operator
Uinthe form V, - --- - V_ where V, = exp (iB,)
such that UTTAUf = A'f for all f in ©.

F. J. MURRAY

The first sentence is a consequence of the group
property of the u’s. If V = exp (¢{B), then g = Vf
is in © and hence for 4 in @ we have Ag = Ag.
Thus (2.13) becomes V'AVf = f. If we have two
such Vs, V,, V,,

(MiV) T AV, Vof
= V'VITAV, Vof = VU VITAV)Vof
= V' (exp bic-A)V.f = exp b, exp b.c-Af.

Repeated application of this argument will yield
the desired result.

We now explore the definition of B equivalence.
The characteristics of the operators U or V, do not
enter into this discussion.

The set of matrices u are usually described as a
“representation” of an abstract Lie group and the
set ¢’ in the form we constitute an “‘orbit” for c
in this “‘representation.”

(2.14)

SECTION 3

We suppose that @ and ®, are as in the assumption
of Sec. 2 and let By, --- , B,, be a basis for &, and
let by, --- , b, denote the corresponding matrices b.
Let b = > %_, uab. and v = exp b. The set of ¢’
in the form ¢’ = vc in general has dimensionality
less than m, the number of parameters y. The set
of v in the form v = exp b fill out a neighborhood
of the identity in the Lie group and thus for a
neighborhood of the origin, B equivalence for A and
A’ is equivalent to the existence of such a » with
¢ = uc.

We seek a complete set of local “invariants’ for
the orbit relationship; i.e., we want a set of functions
of the coordinates of ¢/, f., --- , f. such that f,(c) =
f«(c"), if and only if ¢/ = wc. It is desirable that
these f's be functionally independent.

Let @ denote the set of ¢’. If we fix ¢, the relation

(2 pabo)e = ¢ (3.1)

describes a linear transformation 7, from b to €.
There is a set N, of b's for which

be = 0, (3.2)

and a set ®, of ¢/ which constitutes the range of 7';
i.e., those ¢’ in the form bc for some b and the given c.
Let 8, denote a set of ¢’ which is complementary
to ®, and let us choose a basis for the ¢’

3.3)

such that ¢, -+, c,isa basisfor §, and c,,,, - -+, €,
is a basis for ®,. Let b* denote a set of b’s com-
plementary to M. and let

Ciy, v Cpy Cot1y =" 5 Cny
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b17 ) bn—m ’ bm*y (34)

whereb,, - -+ ,b,_,isabasisfor b*and b,_,.1, - -, bpe
is a basis for M.. We can suppose ¢,.. = b.c for
a=1,---,n — p. Now consider the set of vectors

bn—p+l) te

¢ =c+ X z.C,. (3.5)
a=1

By a ‘“neighborhood of the origin” in the set 8,
we mean the set of » 2 _, z.c, for which |z,] < &
for some specified positive 6 and this expression will
be applied to other linear sets. Similarly we consider
the set of vectors

¢ =

> YaCa-

a=p+1

¢+ 3 zca + (3.6)

We now consider ¢’/ and ¢’ as given by (3.5) and
(3.6) and the relation
)c” = ¢/,

exp (;1 Baba

It is clear that this relation is equivalent to n
relations

3.7

Ta = Fa(zl) Tt Ry Myt 7/“n—17>

(3.8

Ya = Ga(zh Tty Rpy My, 7”n—p))

where the F, and G, are analytic functions of the
indicated variables and for u; = 0, these relations
become

3.9

Lemma 3.1. There is a neighborhood of the origin
tn the space €, ZZ=1 lxa‘z + Z:lx=p+l lyal2 < 4,
such that on this neighborhood there exists analytic
functions

To = 24, Yau = 0.

» Yn)
» Yn)

Za = ¢a(xl; Crt y Xpy Ypery

(3.10)
Mo = \ba(xla 0ty Xpy Ypuay t

which are inverse to the relation (3.9).

Proof. Tt follows from (3.9) that if zero is substi-
tuted on both sides of (3.8) it is satisfied. We must
show that the Jacobean of the Egs. (3.8) is not
zero at zero.

If we take differentials of (3.7) at the zero point
we have by (3.5) and (3.6):

> draca + 3 dusboc

a=1 a=1

= deaca -+ Z dy.C,.

=1 a=p+1

By (3.1) we have that

(3.11)
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S duabac = T dub)  (3.12)
a=1

and since the range of T., ®,, is determined by

Cpity *°° , Gy, it follows that (3.11) is equivalent to
n—1 n
> dusbae = To(D dusbs) = 2 dy.c, (3.13)
a=] a=p+1
and

D dzaCa = 2. drac, (3.14)

a=1

At the zero point, the Eqs. (3.8) specify a linear
transformation of the vectors

dey, -+, dz,, duy, -+, dun-,
onto the vectors
dxh Tty dxm dyp+1r Tt dyn-

The Jacobean is the determinant of this trans-
formation regarded as a linear transformation of
n space. Now T, takes b* in a one to one manner
into ®, and consequently (3.13) and (3.14) imply
that this linear transformation is nonsingular and
hence the Jacobean is not zero, Q.E.D.

SECTION 4

Lemma 3.1 describes the relation vc’”” = ¢’ for
a v in the form exp () ”2% u,b.). The more general
case for » must be considered. To do this we must
get a number of results on the product of such v's.
These results are either in Pontrjagin or are minor
variations from results given there. The proofs are
relatively straightforward in our present context
and are merely indicated here.

Consider now a finite Lie algebra which consists
of » X n matrices b which are linear combinations

of a basis by, -+, b,. We have
[bibi] = Zcio;ba- (4-1)
Lemma 4.1. If b and b’ are matrices, then
v = 3 (provey, a2

where ()°'(b])° = ¥'.
This is simply the n-dimensional matrix equivalent
of (1.20).

Lemma 4.2. Le b(t) be a mairiz function, wilth
dertvative b'(t). Then
- n
=,

¥=0 -

Ly = oy @)

This follows from (4.2) by a straightforward ma-
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nipulation. Similarly, we obtain

Lemma 4.3. If b({) is a matriz function with a
continuous derivative b’ on a closed interval ¢; < t < ¢,,
then for this interval

(d/dt) {exp b(5)} = (4.9)

exp b(#)[b'g(b)),
where

g(x) = (expz — 1)/x (4.5)

Lemma 4.4. Let a, be a given constant matriz and
a(t) a matriz function of t with a continuous derivative
on some closed interval 0 < t < c. Then the differential
equation

db/dt = bla’g(a]) (4.6)

[see (4.5) above] has a unique solution b=exp {a(t)}a,
in the t interval 0 < £ < ¢, if b(0) = exp {a(ty)}ao.

In view of Lemma 4.3, we must establish the
uniqueness. Now (4.6) can be regarded as n* equa-
tions which express the n® derivatives of the com-
ponents of b as linear combinations with coefficients
which are continuous functions of ¢ on the interval.
The solution of such a system is uniquely specified
by its initial condition. [Since exp {a(f,)} is non-
singular, an arbitrary choice of a, corresponds to
an arbitrary choice of b,.]

Lemma 4.5. Let b denote a Lie algebra of n X n
matrices with basis by, - -+ , by; i.e., we have
[b:b;] = Zcﬁba 4.7

Let r be an integer, 1 < r < m. There exists an n, > 0
and n, > O such that for Do, p? < m and

ZZ’,,H wl < 1, there exists v, +-- , v, which are
functions of py, - -+ , u, such that

exp (Z uaba) = exp (Z v,,ba> exp ( > vaba)
(4.8)

Proof. Let us consider the equation

i #aba)

a=r+1

exp (Z paba + ¢

a=1

= exp {Z va(t)ba} exp{ 2 va(t)ba} 4.9
a=1 a=r+1

as determining », as functions of {. At ¢ = 0, this

has a solution v, = g, a =1, -+ ,r, v, = 0, =

r4+1, ---, m. Now let

m

> baba

asr+l

b(t) = Z aba 4 (4.10)
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m

b = Z taba (4.11)
b = ;\fju‘,(t)bm (4.12)
b = i (Db, (4.13)
Differentiating and using (4.9) yield
[6°9(b]) = [[b*'g(b]) exp (b]) + [b7g(6])  (4.14)

Because of (4.7), both sides of (4.14) can be ex-
pressed as a linear combination of &, --- , b,.
Hence (4.14) can be regarded as m equations on
v, **- , v, and their first derivatives. These equa-
tions are linear in the derivatives of »,, ---
At ¢ = 0, (4.14) reduces to

[b"g(ﬁ:yaba]) - S uwh. @19)

a=1

It follows then that there is a tinterval 0 < ¢ < ¢
and a », --- , v, neighborhood of u;, --- , 4,
0, --- , 0 within which it is possible to solve the
m differential equations equivalent to (4.14) for
vl, -+ , »,. This yields m differential equations
depending on the parameters g, ., ** - , pn and with
initial conditions u,, ++ -, &,, 0, - -+ ,0for», -
The existence theory for differential equations (cf.
Miller and Murray) shows that there exists 7, and »
greater than 0 and a ¢ interval 0 < ¢ < ¢ such that
there is a solution »,(f, ui, +-- , u.) of (4.14) on
this ¢ interval defined for every set of u’s for which
2o bk < mand 20wl <o

Let us consider then such a solution of the dif-
ferential equation (4.14). Then differentiating the
right side of (4.9) and using (4.14), we obtain

(d/dt) {exp (b*) exp (b)) = exp b* exp b'[6°g(b])

* Vm°

‘3 Vme

(4.16)
We also have
(d/dt) (exp {b(8)}) = exp (b))} [D°g(b])  (4.17)
Let
D(f) = exp (b*) exp (b)) — exp (b(§))  (4.18)
Then (4.16) and (4.17) imply
(d/a){D(t)} = D[ g(b]) (4.19)

By Lemma 4.4, D(f) = aq exp b({). But D) = 0
and hence a, = 0 and thus D(f) = 0, for the solution
of (4.14) which we obtained. This is easily seen to
be equivalent to the conclusion of Lemma 4.5 with
72 = c°n. [See discussion between (4.15) and (4.16)
above.]
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The essential part of the above discussion is to
obtain a system of m equations by means of (4.14)
and then pass to n® relations by the argument of
(4.16) to (4.18). The following is proved in a similar
fashion.

Lemma 4.6. Let ¢ > 0 be given. There exists an
m > 0and n, > 0, such that if D", p2 < m, and

™ w? <y, then there exists a sel vy, -+ , ¥,
with Y ¥ < ¢ for which
exp (Z uaba) exp (Z uéba> = exp (D vabe)-
a=1 a=1
(4.20)

Lemma 4.7. Let u; be an exponential in the form
exp (Z Babe) for ¢ = 1, +-- |, r. Then there is a
neighborhood of the origin such thatif foré =1, - ,r,
the corresponding Z Labg are in this meighborhood
and for 7 < r, |]io1 ua s an exponential in this
neighborhood in the specified form, then HL=1 Uy
18 also an exponential in this form.

Lemma 4.7 follows from Lemma 4.6 by an obvious
induction. This lemma is essentially the statement
that u,, - -+ , . can be used as a coordinate system
for the local group obtained by exponentiation from
the Lie algebra of the b’s (cf. Pontrjagin).

Lemma 4.8. Let U denote the set of vectors ¢’ in
the form

¢’ = exp (Z uaba)c, (4.21)
a=]
where ¢ is given as in Sec. 3 above and by, -+ , b._,

are as in (34). Let u denole an exponential
exp (O.™. waba). The set U is of n — p dimensions
and there exists a neighborhood of the origin such that if
Z';_l paba 18 tn this neighborhood then uc is in Al.

Proof. Consider the ¢’ in the form given by Eq.
(3.6). The c,, are linearly independent and hence the
>t ps1 Ya€a will form an n — p dimensional set
if the y.'s are arbitrary. Furthermore, if the z,
are given as analytic functions of y,.:, == , Ya
the ¢’ will still constitute an » — p dimensional set.
Now the set U of (4.21) can be obtained by setting
2, = 01in (3.7). [See Eq. (3.5).] But the argument
of Lemma 3.1 shows that for 2 = 0, we can insert
the second set of equations of (3.8) and express
the gy, -+ , tin—p as functions of y,.1, -+ , ¥, and
if we substitute these in the first set of (3.8) with
z = 0 we will have z, as an analytic function of
Yptsr "+ 2 Yo for @ = 1, --- | p. To each choice
then of 9,.1, - - - , ¥ in the neighborhood, in which
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we can insert y, = G., we have then a ¢’ in the
form specified for which there is a set ui, -+ , fayp
which yields that ¢’ is in the set U. This shows then
that U contains the set of ¢’ in the form specified;
ie., with the y,,:, --- , y, arbitrary and z, as a
function of the y’s. On the other hand, the second
set of equations of (3.8) shows that for z, = 0,
the u, * , Ma-p determine the y’s and hence
every ¢’ in U is in the form specified. Thus U is
n — p dimensional.

Now let 4 = exp (Z:’;,1 peba). Let us apply
Lemma 4.5 and, for an appropriate neighborhood,
express w in the form u = w'u’’ where

w = exp <:Z::; v,,bo,), u'’ = exp (a=,,‘i,,+1 v;b,,) (4.22)
Since b,_p41, *+- , b, is a basis for N, [ef. (3.2)
and (3.4))]

(a_ﬂmz;ﬂ v;ba)c =0 (4.23)
and u”’c = c. Hence we have uc = w'u’’c = u'c

which is in 4.

SECTION 5

Theorem. We make the assumption of Sec. 2 and
specify an A = c¢-A by means of the vector ¢. Let
n — p denole the dimensionality of ®,, the set of
vectors tn the form be. Then p is the same for all ¢’
equivalent to ¢ and the dimensionality of the set of A’
equivalent to A isn — p. If 8, is a set complementary
to ®R.and ¢y, -+- ,C, 18 a basis for S, and ¢y, -+ , C,
a basis for ©, then there exists a neighborhood of A
such that for all A’ in this nerghborhood,

A" = A+ Yz dat+ 2 yuds,  (5)
a=] a=p+1
then A’ is B equivalent to an A" in the form
A+ 32,4, (5.2)
=]

Proof. Since ¢’ ~ ¢ is equivalent to exp be = ¢’
and exp (—b)c’ = ¢, one can readily show that p
is the same for ¢ and ¢’ if they are equivalent.
Lemma 4.8 shows that for each A, there exists a
neighborhood for which the set of equivalent A's
is n — p dimensional.

The last sentence of the Theorem is essentially
Lemma 3.1. For Egs. (3.10) show how, for an
arbitrary set of 2, -+ , Z,, Ype1, *-* , Yu, W€ can
find a set of z’s and p's for which (3.7) holds, and
hence for which the required B equivalence holds
(definition, Sec. 2).
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Notice then that the ¢, of (3.10) do constitute a
complete set of invariants for the restricted type
of B equivalence associated with ».72% u,B. [see
(3.7)] and for the appropriate neighborhood. Two
A’ in the form (5.1) will be equivalent under this
restricted B equivalence to the same A" in the
form (5.2) if and only if all the ¢, functions agree.
Now an A’ in the form (5.1) will be equivalent to
a set U’ of dimension n — p’. This U must include
the set of those equivalent to a transformation in
the form (5.2) under the restricted B set and argu-
ment of the proof of Lemma 4.8 with the specified
values of z, will show that the latter set has di-
mension n — p. Hence n — p’ > n — p and the
¢. will constitute a set of invariants for the full B
equivalence if the equality holds.

Corollary 1. Given an A, there exists a neighborhood
such that for all A’ in this neighborhood p' > p.

Since p is positive and integral, there is a least
value that it assumes. Suppose A has been chosen
so that p has this value. Then in a neighborhood
p’ = p and we have a local set of invariants. If we
recall the definition of p [cf. (3.3)], we see that
there must be a determinant of order n — p in the
matrix for 7. which is not zero. For A’ in the form
(5.1) this determinant becomes a polynomial in
Ty, Ty, Yper, *° 5 Ya and hence not zero except
on a set of dimensionality lower than =.

Corollary 2. If p, is the minimum value assumed
by p, then p assumes the value p, except possibly on
a set of dimensionality less than n and we can in each
netghborhood find an A for which there is a neighbor-
hood for which p, tnvariants can be defined so that
two A's in this neighborhood are B equivalent if and
only if they have the same values for these tnvariants.

SECTION 6

We have seen that B equivalence relations can
be specified by the equation
)c = ¢/,
(see Sec. 2).

exp (Z; Haba

As indicated in the previous section, in general,
the dimensionality of the set of ¢’ is less than n.
Thus given a ¢ in the form (3.6) with ¢ chosen so
as to make p a minimum, there will be p functions
¢, of (3.10) such that two such ¢’ will be equivalent
if they have the same values of ¢,. [Each is equiva-
lent to a ¢’ in the form (3.5) under an appropriate
exponential transformation and Lemma 4.6 permits

(6.1)
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us to compound exponentials into a single exponen-
tial.] These p functions are then a set of invariants.
However they are basically nonunique because of
the possible arbitrariness in the choice of ¢, - - - , c,.
(Since these are merely required to determine a
manifold complementary to &,, we may substitute
forc,, ---, ¢, any set

¢l = ; @asCs + Zl besCs (6.2)
provided that the determinant of the a.; matrix is
not zero. The transformation rule for the new ¢.
is readily determined in terms of the original set.)
It is also true that these invariants are defined in
a local manner and, while analytic extension is
possible, this process presents grave computational
problems.

It seems desirable therefore to replace these in-
variants if possible by similarity invariants. Suppose
for instance that we have a linear mapping of the
vectors ¢ onto n X n matrices a, ¢ — a(¢) in such
a way that

[ba(c)] = albe). 6.3)

This relation and the linearity of the mapping of
¢ onto @ shows that for an arbitrary polynomial

P([b)a(c)] = a{P(b)c} (6.4)
and by a well known limiting procedure

exp ba(c) exp (—b) = exp ([b)a(c)] = a (exp bc).
(6.5)

Thus (6.3) implies that a (exp bc) is obtained
from a(c) by a similarity transformation using the
matrix exp (—b). Furthermore this result implies
that even when a number of exponentials are applied
in sequence, the resulting matrix is still obtainable
by a similarity from the original. Thus similarity
invariants of the matrix a(c) are preserved when ¢
is replaced by an equivalent ¢ under the whole
non local group and yield therefore invariants.

Lemma 6.1. If we have a linear mapping of the
vectors ¢ onfo matrices a(c) such that (6.3) holds,
then (6.5) holds and all similarity invariants of a(c)
are tnvariants of B equivalence in the global sense.

Naturally one must not expect the similarity in-
variants to be complete. This is true even if we
consider invariants for only those similarities
associated with transformations in the form exp (b).
For suppose

a(c’) = exp ba(c) exp (—b) = a (exp bec) (6.6)
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[the second equality follows from (6.5)] or

(6.7

Thus the first equality of (6.6) implies simply that
¢’ = (exp b)e + ¢”, (6.8)

where ¢’/ is such that a(c’’) = 0. Hence:

a(c’ — exp be) = 0.

Lemma 6.2. If the mapping ¢ — a(c) is faithful,
i.e., one to one, then equivalence under the similarities
1s the form exp (b) a exp (—Db) for the a(c) determines
the equivalence of the c.

Let @ denote the set of ¢'s for which a(c) = 0.

SECTION 7

The condition of Lemma 6.2 is too restrictive in
general although there are certain interesting ex-
amples where it is fulfilled. However, to obtain
precise information concerning the b equivalence
situation, we apply an argument similar to the
argument of Lemma 3.1.

We consider a fixed ¢ and the corresponding a(c)
and define a transformation from the set of b’s to
the a’s by means of the equation

T.b = [a(c), b] = a’ = a(be). (7.1)

Let p, denote the range of 7,. We recall that ®,
consists of the vectors in the form bc. It is clear
from (7.1) that p, consists of matrices in the form
a(bc). We can consider the set 9 of those vectors in
the form be for which a(bc) = 0. Thus ' = Q- R,
for @ as defined after Lemma 6.2 in the previous
section. The vectors ¢,,,, -+ , ¢, of (3.3) which
form a basis for ®, can be chosen in such a way

that ¢,.1, --+ , C,up form a basis for 9¢'. Then
a(Cpirrr), == 5 alc,) (7.2)
are linearly independent. The vectors ¢,, -+ , ¢,

determine a manifold 8, complementary to Q..
These can be chosen so that if @ is the set of vectors
¢ for which, a(c) = 0, then c,.,, --- , ¢, determine
a complementary manifold for 9’ relative to @ and
¢, -+ , ¢, determine a manifold complementary
to that containing ®. and Q. Thus an arbitrary
vector ¢’ can be written

r P
¢ =c+ Dalc.t+ 2 'l

a=1 a=r+1
p+k n

+ X yieat+ 2 Yic.. (73
a=p+1 a=p+k+l

The first two sums are in 8., the last two in ®;
the second and third are in @,
Correspondingly,
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a' = a(c’) = alc) + Z ria, + yla., (7.4)
a=1 1

a=p+k+
where a, = a(c,). By the above construction
alc,) =0 for r<a<p+Ek. (7.5)

We recall that N, has been defined as the set
of b's for which bc = 0. We now consider a larger
set of b’s for which a(bc) = 0. If this set is termed N,
then N, C N}, We also have that
= b,¢ (7.6)

-+, b, are in E)?: by the choice of

ca+p

by (3.4) and b,, -

€y -, Cyur above. Thus [ef. (3.4)]
by vty bay bucginy o0, by (7.7
is a basis for 9} and the
biriy 0y bacy (7.8)

determine a manifold b* complementary to 9. Each
b £ b can be written b = b’ + b’’ where

k mn
b = Z#aba + Z I-laba

a=1 a=m-—p+1 (7.9)
= D paba.

a=k+1

We can now repeat the argument of Lemma 3.1
relative to the a's rather than the ¢'s but retaining
the connections between ¢ and a. Consider then the
¢’ in the form (7.3) and the corresponding a(c’) in
the form (7.4). Consider also the corresponding

r
“ =c+ 2 zlc,

a=1
P Ptk
+ D dle.+ D 2le.  (7.10)
a=r+1 a=p+1
and
a(*c’’) = a(c) + 2 zla(c,). (7.11)
a=]1
Consider then the relationship
exp (b")¢" = ¢’ (7.12)
and the corresponding matrix equation
exp b/la(“cll) exp (__bll)
= exp ([b')a(c’)] = alc’). (7.13)

This last equation shows by (7.4), (7.9), and (7.11)
that

xvf = f«:(zi'y e 73:)M-k+1) e ;ﬂn-—p)

a=1’...,r

(7.14)
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’ Nn—p)
a=p+k+1,-- ,n
The Jacobian argument of Lemma 3.1 is now

applicable and shows that Egs. (7.14) can be in-
verted and thus

Y o= gl@l, e 2l e,

2e = Ga@l, v T, Yohaery 200 5 YD
a=1,---,r (7.15)

pa = YUl oo T, Yhkary 0, YA)
a=k+1,--- ,n—p.

But we can also consider ¢’ as given by (3.5)
and for this we will have

a(e’’) = a(c) + 2. z.a(c.). (7.16)
a=1
Then (3.7) implies
exp (E pab‘,)a(c”) exp (— > uaba) = a(c’),
a=1 a=1
(7.17)
and this again yields
x; = fzx(zl; Tt g Ry Myttt g MEy Meely Tt #n—p)
(7.18)
y;’ = ga(zl; oty Ryy M1y Tty My Me+ry "0 Fn—p)-

Now clearly (7.14) corresponds to the case
p = --- = w, = 0. Since the Eqgs. (7.14) can be
inverted, it follows that for a neighborhood of
these values of ui, --- , u, it must be possible to

solve (7.18) for z;, -+ , 2, Ma+1, *** ) Boepe
Zo = Ga(xl, o0 X, Ylrer, Yy B, e, )
a=1, - r,
ke = Vaol&l, <o, 2, Yohuer, - s Ynly py ) Hi)
a=k-+4+1,:-+ ,n —p. (7.19)

Now the z,, « = 1, --- , r cannot be regarded as
invariants for the matrix a(c’) since they depend
on the quantities y,, - - - , ux which are not associated
with this matrix. However, if we eliminate these
quantities between these expressions, we will get
r — k’ expressions

Zo(yy -+ ) =0

(7.20)

which are expressible purely in terms of matrix
coefficients. We have £’ < k. The similarity in-
variants must yield equations of this type when
they do not yield expressions which are identically

’ Y
12y X1y 0ty Ty Yprks1s
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zero. One equates the invariant expression in terms
of 2/ and y”" to the corresponding expression in 2.

Notice that, in general, given a(c), a(c”) will
not be determined unless &’ = 0. This would happen
if either £ = 0 or the ¢, in (7.19) do not contain
M, -, u since (7.19) shows that the z,, which
determine a(c’’) by (7.16), depend on wu,, -+ , u
which are not specified by a(c). These possibilities
can be explored but we will not do so at present.

Lemma 7.1. Let a linear mapping ¢ — a(c) where
a is an n X n matriz, such that (6.3) holds. Let Q
denote the set of vectors ¢ for which a(c) = 0. Suppose
¢ 78 giwen and &, denoles the vectors tn the form bc.
Let 9U denote the intersection of ®, and Q. N’ is
the set of vectors in the form ¢’ = be for which a(¢’) = 0.
Let k denote the dimensionality of W and p — r 4+ k
denote the dimensionality of Q. If ¢’ is an arbitrary
vector in a certain neighborhood of ¢ [cf. (3.6)], then
a(c’) s equivalent under similarities determined by
exponentials exp (b) to matrices a(c’’) determined by
r constants z,, - -+ , 2.. There ts a non-negative integer
k' < k such that there are r — k' relations between
the coefficients of the a(c’) mairiz and 2z, --- , 2,.
[See (7.19) and (7.20) above.] The similarity in-
variants are either identically zero or yield relations
of this character. (See the discussion after (7.20).)
The matrix a(c’’) is determined by a(c’) if and only
if k' = 0.

Lemma 7.1 shows the limitations which appear
when one endeavors to consider the matrices a(c)
instead of ¢ themselves. If welet ¢ = p — r + &k
denote the dimensionality of @, and ¢’ = p — r + ¥/,
then instead of p invariants for the ¢'s, we have
p — ¢ relations on the elements of the a's. Since
q’' < ¢, if the dimensionality of @ is zero, we have
equivalence. However the relations for the a ele-
ments obtained when they exist are useful in the
global study of B equivalence.

SECTION 8

We consider the special case in which the A,
and B,'s coincide. We have a basis for the set @,

A17 ) Am with
A A;) = 2 a%d,. (8.1)
a=1
For the vectors ¢ = {¢;, -+, ¢,}, constituting an

n-dimensional space €, we have a correspondence
with the linear combinations of the 4,, --. , A4,

c~ A= D c,A, = c-A. (8.2)

We also have a correspondence with the n X »n
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matrices
a = ac) = {Zﬂ:a,‘:ﬁc[,} i,j=1,---,n, (8.2)
such that by (8.1) we have
ifc-A ¢’-A] = {a(c’)c}-A. (8.3)

Thus if A = ¢-A, B = ¢-A, b = a(¢)) we have
ilc-A B] = (be)-A.
Hence by (8.3)
{a(be)e’’} -A = dlc'’+A be-A] = d[c”’+A i[c-A B]]
= (e’ A c-A] B] — dli[c”’+A B] c-A]
(bfa(c)}c’”)-A — ({alc)b}c’)-A

= {[ba(c)]c"’}-A (8.4)
This implies
a(bc)c’’ = [ba]c’’ (8.5)
for all ¢’/ and hence
a(bc) = [ba]. (6.3)

Thus, if A; = B,, we have a correspondence ¢ ~ a(c),
of the type of Sec. 6. The set @ consists of those ¢
for which

a(c) = 0. (8.6)
Now Eq. (8.3) implies
a{c)c = —alc)e’. 8.7

For a given c, the transformation 7', has been defined
for the set b = a(c’) with range ®, included in € with

T.b = ¢’/ equivalent to be = ¢’’. (8.8)
But by (8.7) this could be stated
T.a(c’) = ¢'’ equivalent to — a(c)c’ = ¢”’.  (8.9)

Thus ®, is also the range of a(c).

In Sec. 3, a number of sets were mentioned. One
of these is ®, which is also seen to be the range of
the transformation a(c). Another is the set 8, which
is defined as complementary to ®, in €. We also
have 9%,, the set of those b’s for which bc = 0 and
a set b* complementary to 9. in the set of b’s. The
set 8, and b* are not uniquely determined, but, in
this case, a specific choice can be made, in terms of
the structure of the transformation associated with
a(c). It will be convenient to denote both the matrix
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a(c) and its associated transformation by a(c).
The associated structure is part of the Jordan
structure of a(c). The Jordan structure of a(c) is
not available, in general, since normally some
characteristic roots of a(c) are complex. But certain
constructions can be completed in the real field.
Let ¢(A) denote the minimal polynomial for a(c).
This ¢(7) is a factor of the characteristic polynomial
for a(c), with leading coefficient one, characterized
by the statement that ¢{a(c)} = 0, but no proper
factor of ¢ has this property. This ¢(A) has real
coefficients. [Note that since the elements of a are
real, ¢(a) = 0 implies #(a) = 0 and hence ¢’ =
3(¢ + &) is of the same degree as ¢ with leading
coefficient one and such that ¢’(a¢) = 0. Thus
¢ = ¢’ which has real coefficients.] We can write

o(\) as
o(N) = N¢M) (8.10)

where ¢ does not have \ as a factor. Let 917, denote
the vectors ¢’ such that

vla(c)}e’ = 0 (8.11)
and N, denote the set for which
a(c)’c’ = 0. (8.12)

Now 91, and 91, are supplementary. Furthermore
a(c) has an inverse on 91, and 9, C &,. We also
have that a(c) takes 9, into a subset 9] of itself.
Thus 9] = ®.-N,. We choose a 8, so that §, D
9N; = N,;. Then

R, = 9 P, (8.13)
and
C=NPEM =8 PRPwm, =8.Pa..

The set N, consists of those b = a(c’) for which
bc = 0. In view of (8.9), this is equivalent to
a(c)c’ = 0 and we let ®, consist of those ¢’ for which

(8.14)

a(c)c’ = 0. (8.15)

Clearly, ®, C 9, by (8.12). Let ®, be comple-
mentary to @, in 9,. Let W = @, @ 9,. Now
W and ®, are complementary and thus if ¢’ is in
W, then a(c)c = —a(c)c’”” # 0. Thus b* can be
taken as those b = a(c’) for ¢/ is in W.

Lemma 8.1. For the case in which @ = ®, a natural
mapping ¢ — alc) of Sec. 6 is available. Further-
more, given c, the sets ®, and 8, of Sec. 3, following
(3.2), can be obtained by means of the sets M, and N,
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[ef. (8.11) and (8.12)] as follows. Let 9, = ®, N,.
Then ®, = M, P N and 8, can be chosen as a
complement to 9] relative to 9M,.

The set M., which has been defined in (3.2) as the
set of b's for which bc = 0, consists of those b = a(c’)
for which a(c)c’ = 0. Let ®, consist of the ¢’ for which
a(c)e’ = 0. Then ®, C N, and let ®, be comple-
mentary to @ tn N,. Let W = @, @ M, C C. The
set b*, which has been defined in (3.4) as a com-
plementary set for N, can be taken as the set of b
in form a(c’) with ¢’ in W.

Now consider a(c) on 9,. Since a(c) is nil-potent,
we can reduce a(c) on 9, to a Jordan normal form.
This means we have a set of linearly independent
vectors

e, t=1,---,p, 7=0,1, -+ 7, (8.16)
which constitute a basis for 97, and such that
a(cle;; = €;;4, t=1,.--,p,
g=1,, 4 (8.17)
and
a(c)e;,, = 0, t=14,-,r (8.18)

The e;, can be chosen so that a subset determines
@ [see (8.6) and (8.7)].
We also introduce vectors

(8.19)

I. Crir; *°* , Ca

which form a basis for 9m,.

Although the choice of the e;; is not unique, in
general, the e;; are easily constructed and hence
permit a relatively simple statement of our results.
We denote the linearly independent set of vectors
(8.19) by I, and define other linearly independent
vectors by

II. e, 7 =20, §<i
III. e, i=1,,p (8.20
Iv. e, >0, j=>1

V. €, 7:=17"';P

Notice that II and IIT are disjoint and together
determine 9, and that a similar statement holds
for IV and V. Furthermore, the set II determines
N] by (8.17) and consequently III can be used to
determine 8.. (It may be mentioned that for every
permissible 8, a normal form of the above sort can
be set up with the corresponding set ITI determining
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8..) The set @, is determined by the set V and a
set @, can be determined by IV.

Lemma 8.2. The sets I and II determine ®,. We
can take the set S, as that determined by I1I. The
set V determines a linear set of vectors ¢’ such that
a(c’) is in N.. The sets I and IV determine a linear
set of vectors ¢’ such that the set of a(c’) can be taken
to be b*.

This lemma translates the results of Lemma 8.1
to the present situation.

Theorem. Let sets of operators @ and a set D in
Hilbert space be given for which (8.1) and assumption
I of Sec. 2 holds, with the B, replaced by A; and ®
replaced by @. A correspondence ¢ ~ A — a(c) is
specified by (8.2) and (8.2'). Consider then a given A
and the corresponding ¢ and a (c). Let ¢(A) = AP\
denote the minimal polynomial for a(c) [cf. (8.10)].
Let 9, denote the null manifold of ¢(a) and 9,
the null manifold for a® [cf. (8.11) and (8.12)]. Let r
denote the dimenston of N,. Let ¢.yy, -+ , C, denote
a basis for 9, [ef. (8.19)] and e;5, 2 = 1, -+- , p,
i =20,1, ---, j; denote a basis for N, which corre-
sponds to the Jordan structure of a tn 9, [cf. (8.20)].
We define

(8.21)
(8.22)

C,»=Ci'A, ’i=p+1,-~-,n

Eij=eii'A;7:= 15 )p1j=03”' }ji

The C; and E;; are linearly independent and together
constitute a basis for the set A,, --- , A,. For each
n > 0 a neighborhood of A can be defined as the
transformations in the form

A=A+ Y zusBop+ 2yl (823)
with x5 and Y. real and such that
Tos + ys < 7" (8.24)
Let A" denote a transformation in the form
A" = A+ Dzl (8.25)
Let B’ denote a transformation in the form
B' = 2, wislar + 2 paCa  (8.26)

and B a stmilar transformation without the restriction
B > 0. Then there exists an n > 0 such that for every
A’ of (8.23) there exists a B’ and A’ such that on D

exp B'A” exp (—B’) = A’ (8.27)
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Also there is an 1, > 0, with the property that if B
is such that

2wl Xoua < (8.28)
then there exists a B’ such that on D
exp BA exp (—B) = exp B’A exp (—B’) (8.29)

Let A be chosen so that p s @ minimum [cf. (8.20)].
Then the n which determines an A mneighborhood
[ef. (8.23) and (8.24)] and the 5. which defermines
a B netghborhood [cf. (8.26) and (8.28)] can be chosen
so that ¢f there is A', A" in the A neighborhood [cf.
(8.23) and (8.25)] and a B in the B netghborhood
for which

exp BA" exp (—B) = A’, (8.30)
then there is also a B’ [cf. (8.26)] for which
exp (B)A’ exp (—B’) = A’. (8.31)
If
exp (B)A exp (—B) = A’ (8.32)

then a(c) and a(c’) are equivalent under a similarity.
If k s the dimensionality of Q, the set of ¢ for which
a(c) = 0, then there exists a k' such that 0 < k' < k
such that there are p — k' invariants of B equivalence
which depend only on the components of the matriz
a(c) and these must contatn all stmilarity invariants
of the matriz a(c).

We next show: The set of matrices a(c’) with ¢’
i M, 18 closed under the operation of forming the
commutator.

Proof. We can characterize the set of ¢’ in 9,
by the property that there exists a positive integer
s’ such that

(D*"'a(e(a(0))" = 0. (8.33)
For by (6.3) and (8.5)
afa(c’)e} = [a(¢), alc)] = —ala(c)c’}  (8.34)
and consequently (6.3) yields
(D"'ale(a(@)])"” = (=D""alale)¢’}.  (8.35)

Thus if ¢’ & 9%, (8.10) implies (8.33) for &' > s.
Now the set of ¢/ which satisfy (8.33) is a linear
set. It includes 97;. Now if it were a proper linear
extension of 9, it would have an intersection with
9, which contains a non-zero ¢’. Since a(c) takes
9, into itself and has an inverse on 9N, a(c)’’c’
is not zero for ¢ in 9N, and for every &'. By (8.6)
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and (8.7) @-9M, consists simply of the zero vector
and thus a(a(c)”'c’) # 0. Hence (8.35) and (8.33)
yield a contradiction which shows that 91, is charac-
terized by (8.33).

It is a simple consequence of the Jacobian identity
that

O, b ey
- = (Mo ver a6

(cf. Weyl, p. 70). This implies that if (8.33) holds
for b’ = a(c’) and ¢ and for b’ = a(c¢”) and s”,
then it holds for [b’, b'] and ¢ = s’ 4+ s”. Since the
set of a(c) is closed under commutation, [a(c’), a{c’")]
must be in the form a(c*) for which (8.33) holds
and hence c¢* must be in M,. Consequently the
a(c’y with ¢’ in 9%, are seen to form a Lie sub-
group. This Lie subgroup will be called the zero
group for a(c) (cf. Weyl).

In the particular case in which the a(c) are semi-
simple, and @ is chosen so that p is a minimum,
the zero subgroup will be Abelian, @ will be {0}
and £ = 0 (cf. Weyl, p. 86.)

Corollary. If the set of a(c) s a semi-stimple Lie
algebra and A is chosen so that p ts & minimum,
then the Y .o 2aEaj. cotncides with 3. zaEa.o and
this set constitutes an Abelian ring which contains A.
In this case, k = 0 and every tnvariant ts expressible
in terms of the components of a(c).

This means that every operator of the neighbor-
hood in the given set can be formally rotated into
an operator which commutes with the original A.
If A and the rotated A’ have a common set of
characteristic vectors, the variation in the charac-
teristic values between these two operators is de-
termined by the invariants. This difference is in a
special case in quantum mechanics the variation
of the energy due to the perturbation.

SECTION 9

There are two relatively straightforward examples
available to illustrate the theory. These are based
on the Hilbert space £, of summable squared func-
tions f(x) defined for — » < x < «, We introduce
the operators ¢ and p by the equations

qf = zf(x), pf = idf/dzx.

For the present we will ignore domain questions
which have been thoroughly explored in other
contexts; i.e., we will just proceed formally.

9.1)
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Example 1 is obtained by taking A, = 1 (the
identity) A, = ¢, 4, = p. Then #[4,4,] = A,
and of course 7[4,4,] = i[4,4,] = 0. We obtain
a set of B,’s by letting A, = B,. If ¢ = {c,, €1, ¢}
denotes a vector with three components, A = c-A,
and B = podo + pid; + pd,, then

1[AB] = (cipe — mic) 4o = (be)-A 9.2
for
pe 0 0
b={—m 0 0 (9.3
0 00

Consider now a ¢ for which ¢ + ¢ > 0. Then
in terms of Sec. 3, ®R. = k¢, and we have a com-
plementary set to ®, determined by ¢, and ¢,. We
can choose b* as the multiples of b, which corresponds
to the B for which u, = ¢; and u, = —¢, [see (9.3)].
Notice that 0 = b = b% = ... . It is immediately
apparent that the set of ¢’ equivalent to ¢ is given by

feo + plcl + €2), ¢, 2} 9.4
Thus two, A and A’ are B equivalent if and only
if they differ by a multiple of A,. The coefficients
¢: and ¢, are B invariants.
Example 2. Let
4, = 87H=p"), 4, = 87}, 4; = fgp + 1. (9.5)
‘We then have
i[AA,] = As, i[4:4,] = Ay, i[4:45] = A,. (9.6)

Thus we can use for B,, B, B; the corresponding
A.'s. If we correspond to B, the matrix b by the
equation

¢ =cexpub, =

[c-AB] = (b-c)A 9.7
then
0 O 1
Ai~a =10 0 0,
0 —1 0
0 0 0
A, ~a, = |0 0 -1 (9.9
1 0 0
-1 0 0
Ay>~a, =] 0 1 0
00 O

This is a case where we may take a(c) equal to
the corresponding b. (see Sec. 8).
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—Cs 0 G

ac)y =1 0 3 9.9

—Cz .
Co -—C 0

Clearly a(c) = O implies ¢ = 0. Thus every in-
variant function is a function of the matrix elements
and every similarity invariant of a(c) is an equiva-
lence invariant. The characteristic polynomial of
a(c) is

—A =0 0 €
la(c) — A} = 0 s — N —¢ (9.10)
C2 —c, -A
= =3 4 (G + 2cie).
We have therefore the invariant
Ale) = ¢ + 2cic.. (9.11)

Notice that if A = 0, 0 is a simple root. Thus the
range of a(c) which is also ®, is two dimensional.

Furthermore if A(c) # 0, c is not in the range
of a(c). For suppose we can find an z, ¥, z such that
¢ = alc){z, y, 2} or

¢ = —C¥ + ¢z

C2 = C3lY — Co7 (9.12)

Cz3 = CT — QY.

If we multiply these equations by ¢, ¢, and c,,
respectively, and add, we obtain ¢ + 2¢,¢, = 0.
Thus ¢ is not in the range of a(c) and the set {kc}
of multiples of ¢ is a complementary manifold to
®.. Our result in Sec. 3 shows that there is a neighbor-
hood of ¢ such that for every ¢’ in this neighborhood
we have ¢’ equivalent to (1 4 z)c and if the neighbor-
hood is taken small, z will be small. Because of the
invariant character of A, we must have

Ale") = (1 + 2" Ac) . (9.13)

Thus the ¢’ with A(¢’) = A(c) in this neighborhood
have z = 0 or z = —2. But the latter possibility
is excluded if the neighborhood is small enough.
Hence, if A(c) # 0 then there is a neighborhood of
¢, such that all ¢’ with A(c’) = A(c) in this neighbor-
hood are equivalent to ¢. Thus if we consider the
connected sheet of the surface A(¢c’) = A which
contains ¢, all these ¢’ are equivalent c. It is also
true that every ¢’ equivalent to ¢ must be cornected
to it by a path consisting of equivalent ¢”’. Thus by
these rather simple arguments, we have established

Lemma 9.1. If A(c) = 0, the set of ¢’ equivalent
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to ¢ form the connected sheet of the surface A(c’) = A(c)
which contains c.

We must still examine the case A(c) = 0. The
argument of (9.12) in this case shows that we can
consider, in general, one equation to be a conse-
quence of the other two if ¢ 5 0. Now let ¢ # 0
and suppose for definiteness that ¢, is not zero.
Then, by using Egs. (9.12), we can find three
vectors ¢o, €1, €, With properties

c.. (9.14)

In particular if we choose ¢, and ¢, with first
component zero, we obtain

{0: _63/617 1}
{0, —1/c,, 0}.

Equations (9.14) imply that a(c) has a nil-potency
of three and hence its range ®. is two dimensional
and the multiples {zc,} of ¢, form a complementary
set.

Again our basic equivalence result shows that
there is a neighborhood of ¢ such that every ¢’
in this neighborhood is equivalent to a ¢’’ in the
form

¢ = ¢, alc)e, = 0, alc)e, = ¢, alc)c, =

@ = (9.15)

C, =

If

¢’ = ¢+ z2¢ = {¢,c — 2/c1, cs}.

Since A(c) = 0, A{c”) = —2z Hence if ¢’ in this
neighborhood has A(¢’) = 0, then 2 = 0 and ¢’
is equivalent to ¢. Thus if A(c) = 0 and ¢, # 0
there is a neighborhood of ¢ such that all ¢’ with
A(¢/) = 0 in this neighborhood are equivalent to c.

If Ac) =0ande¢, = 0, then¢, = 0 and ¢ =
10, ¢, 0} with ¢, not zero. We can apply an argument
similar to the above with ¢, = ¢, ¢; = {0, 0, 1}
and ¢, = {~—1/¢,, 0, 0}. We obtain a neighborhood
whose elements ¢’ are equivalent to vectors

{—2/c:, 2,0}  (9.16)

and the previous argument clearly applies. Thus
we have

¢ =c+z2c =

Theorem. For example 2, the set of ¢’ equivalent
to ¢ form the connected sheet of the surface A(c’) = A(c)
which contains ¢. If A = ¢; + 2c,¢, is positive, the
surface ts stmply connected. If A < 0, the surface
consists of two disjoint sheets. If A = 0, removing
¢ = 0 divides the surface inio two disjoint sets which
are the nappes of a cone.

One can readily see that ¢ 4+ 2c.c, = a* > 0
is a hyperboloid of revolution of one sheet while
¢ + 2c6; = —a® is a hyperboloid of revolution
of two sheets. One also has ¢; + 2¢,¢, = 0 is a cone
with apex at. the origin.
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The above discussion of the second example has
been directed toward illustrating the previous
theoretical results. One could also calculate the
results directly and this calculation would specify
the unitary transformations exp (¢B) which yield
the equivalence. These calculations however are
quite lengthy and yet do not reveal the structure
of the equivalence as well as the above discussion.
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A new procedure is given for calculation of lower bounds to the eigenvalues of self-adjoint operators.
Computation of the lower bounds is reduced to the solution of linear algebraic problems.

I. INTRODUCTION

N this paper we give a new procedure for the

calculation of lower bounds to eigenvalues. We
modify the method of intermediate problems® based
on a comparison of operators’ by introducing a
second projection. Our procedure makes possible
the determination of the lower bounds from finite,
linear, algebraic computations. The inner products
which appear are just those which are needed in
the method of truncation.®* Parts of the work
presented here were previously summarized.’

II. INTERMEDIATE OPERATORS

We suppose A to be a self-adjoint operator in a
separable Hilbert space $ with the inner product
(u, v). We assume A is bounded below and that the
initial part of its spectrum consists of eigenvalues
of finite multiplicity before the first limit point of
the spectrum. We denote the ordered eigenvalues
by A1, Ag, -+, and the corresponding ortho-normal
eigenvectors by u,, u,, --+ . If the spectrum of A
contains limit points we denote the first by A,. We
assume further that A may be decomposed as the
sum of two operators

A=A+ 4, (1)

in which A° is a self-adjoint operator and A’ is a
non-negative symmetric operator. We also require
that the initial spectrum of A° consists of at least a

* This work was supported in part by the Department
of the Navy under Contract NOrd 7386 with the Bureau
of Naval Weapons, and in part by the Advanced Studies
Branch of the Wright-Patterson AFB under Contract
AROF 140071.

1 A, Weinstein, Mém, sci. math. No. 88, (1937).

2 N. Aronszajn, Proceedings of the Symposium on Speciral
Theory and Differential Problems (Oklahoma A & M, Still-
water, Oklahoma, 1951) (reprinted in 1955), p. 179.

3 N. W. Bazley and D. W. Fox, J. Research Natl. Bur.
Standards 65B, 105 (1961).

+ N. W. Bazley and D. W. Fox, Phys. Rev. 124 483 (1961).

8 N. W. Bazley and D. W. Fox, Am. Math. Soc. Notices
8, 151 (1961).

finite number of known eigenvalues A%, A2, - -« with
corresponding known ortho-normal eigenvectors u?,
us, -+ . We denote the first limit point of the spec-
trum of A° by \.. Denoting the domains of 4, A°,
and 4’ by Dy, Dy., and D,., respectively, we have
Dy, = Dy M Dy, Since A’ is non-negative and
D, C D,. we have

4° < 4. )

Consequently, the ordered eigenvalues of A° and 4
satisfy the inequalities,®

)\?S)\,‘, 2=

3
and

A<, (4)

In order to improve the rough lower bounds
given by (3) to the eigenvalues of A, we construct
a sequence’ {A*} of self-adjoint operators that
satisfy the inequalities A® < A* < A*"' < 4 so
that their eigenvalues give improved lower bounds.

To construct the operators A* we introduce
temporarily the inner product® [u, »] defined by
fu, v] = (A’u, v) on the elements of D,.. Let P*
be the projection with respect to this inner product
on the span of the first k& vectors of a given sequence
{P1, P2, --} of linearly independent elements of
D,.. The projection P* has the explicit representation

k

Z [v, p:]biips,

i,i=1

P = 4
where b;; are the elements of the matrix inverse
to that with elements [p;, p;]. For any vector »
in D4 the operator A'P* is given by

x
A'PYy = Z (v, A'p)bi; A'p;.

T,i=1

(5)

¢ If A° has but n eignevalues before A\,% then we also
have that A.® < A, for every ¢ > n.

7 Here we follow the construction of Aronszajn.?

8 We assume here that A’ is positive definite; the extension
to the semidefinite case is easily made.
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Since P* is a projection we have
0 < [P, 0] < [P*',4] £ [o,0]. (6

It is clear from (5) that A’P* may be extended by
continuity to all of $. There it is a symmetric
operator of finite rank and from (6) satisfies

0< A'PF < AP < 4. (7
The operators A* are now defined by
AF = A° + AP ®)

they are clearly self-adjoint, have domains D, equal
to D, and satisfy the desired inequalities,

Ao S Ak S Ak+1 S A. (9)
Their eigenvalues A} satisfy the parallel inequalities,
AT AT S AT L (10)

The difficulties in the determination of the
spectrum of A* have been discussed elsewhere.”?
In order to overcome these difficulties we introduce
here smaller operators A'* of which the spectra
can be determined by finite algebraic computations.

III. INTRODUCTION OF A SECOND PROJECTION

For each positive number v, the operator A*
may be rewritten

A" =[A° ~ y] + [A’P* + 7).

Since A’P* + v is greater than v, we may introduce
for each v and % a new inner product (u, v) defined by

(w,v) = ([A'P* + 7]u,v) 1D

on the elements of §. Let @' be the projection with
respect to this inner product on the span of the
first ! vectors of a given sequence {q, ¢, ---} of
linearly independent elements of 9. It follows by
arguments similar to those used in establishing (7)
that for fixed &k and v

0 < [A'P* 4+ 4]Q' < [A'P* +4]Q'" < A'P* + v.
(12)

The operators [A’P* + 4]Q' are bounded, sym-
metric, and of finite rank. They have the explicit
representation

[AP* + 7]Qu

= Z (’LL, [AIPk + ‘Y]qrn)cmn[A,Pk + 7]qn)

m,n=1

(13)

where ¢,,, are elements of the matrix inverse to that
with elements ([A'P* 4 Ylg., ¢.). We now define
the operators A*"* by

N. W. BAZLEY AND D. W.
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A=A =]+ AP +0]Q. (19

It follows that these operators have domains D,:..
equal to D,. and satisfy the inequalities

A —y S AP S AP L AP <A (15)
Their eigenvalues )} '* satisfy the parallel inequalities
Moy SMNFSNTELSMN SN (16)

Conditions sufficient to insure the convergence
of the eigenvalues of A* to those of A have been
given by Aronszajn.” These conditions also suffice
to ensure the convergence of the eigenvalues of
A"* to those of A* when the ¢'s are complete in $.
Thus under these assumptions the eigenvalues of
A"* converge to those of A as I and k become large.

1IV. DETERMINATION OF THE SPECTRUM OF A%

In general, the determination of the spectrum
of A** for arbitrarily given elements q,, gz, -~ , qu
is as difficult as that for A* itself. However, the
operator A*'* has been constructed so that a “‘special
choice’”®"® of the ¢'s is always possible.

In fact, since [A’P* + v]™* may be regarded as an
explicitly known operator'® on ©, we may make the
choice of elements

g: = [AP' +7]7wi, Q= (17)

With this it follows from (13) and (14) that the
operator A*'* has the form

1,2, -, L

14

Ay = [A° —ylu + 2 (u, udcn.ue,

m,n=1

(18)

where the ¢,.., are now elements of the matrix inverse
to that with elements (u.2, [A'P* 4+ 7] 7"u?).

We observe that the subspace 91T of © spanned
by «, ul, --- , 4’ now reduces the operator A",
and that A'*u equals A« — yu for u orthogonal
to 9. Since this is true, 4" has the same spectrum
as A° — ¥ on this orthogonal complement. The
spectrum of A*'* is completely determined by finding
its eigenvectors of the form

u = IZI B.ul. (19)
This leads to the algebraic eigenvalue problem
A0 =) b F e =2 8] = 0,
i=1,2,---,1L (20)

? N. W. Bazley, J. Math. Mech. 10, 289 (1961).
10 See Sec. V.



PROCEDURE

The eigenvalues A" are found by ordering those
found from (20) with A,, — v, A, — v, -~
These give improved lower bounds according to (16)

V. THE OPERATOR [4'P* 4 y]1

An expression for {A’P" 4 ¥]™' can be obtained
from its spectral resolution. In fact, from the
expression,

k

[A’Pk + vy = Z w, A’p)b;;A'p; + v,

i.7=1

(21)

it is clear that the subspace of $ spanned by A'p,,
A'py, -+, A'p, reduces A'P* 4 ~. Consequently
A'P* + v has v as an eigenvalue of infinite multi-
plicity with characteristic subspace all vectors
orthogonal to A'p,, , A'pr. The remaining
eigenvalues, u; + v, g2 + v, + -, ws + 7, all greater
than 4, and the corresponding normalized eigen-
vectors, vy, ¥s, +-- , U are obtained by putting

k
v = Z d,’A’p,',

(22)
i=1
and lead to the algebraic system
k
= X2 dd(d'ps, A'p) = w(d'ps, P,
i=1,2,--- k. (23)
Hence
[A’P* + v]'u
(u, v )v d
= Z y [u - 25 (u,vi)vf]. (24)
§=1 #1 'Y i=1

The matrix ¢,, of (18) is just that inverse to the
matrix with elements

1{ .
- 5mn'—
Ha- 3

el _{_ ¥ (u12; Ui)(l),-, ug)}y (25)
where the v;’s and u.'s are determined from (22)
and (23).

An alternative expression for the matrix given in
(25) was suggested to the authors by W. Bérsch-
Supan. It is

At

where d;;(v) is the matrix inverse to that with
elements (A’p;, A'p;) + v(A'p., p;). This expression
follows directly from (25) or from initial considera-
tions. The expression (25) requires the explicit solu-
tion of the algebraic eigenvalue problem (23); the

Smn — Z U, A'DS) dii(V)(Ap;, Ul )} (26)

€, 7=1
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expression (26) requires the inversion of a £ X &
matrix for each value of «.

VI. DEPENDENCE ON v

In this section we consider the dependence of the
operator 4'"* on the parameter ¥ when the elements
¢: are chosen according to (17). First we show that
A'* is monotonically increasing in ¥ on the space
M spanned by uj, us, --- , u). In fact, on 9 this
operator may be represented by the matrix A® —
vI 4 C, where A° is the diagonal matrix of eigen-
values of A°, I the identity, and € the matrix intro-
duced in Eq. (18). To demonstrate the monotonicity
we show that the matrix,

(d/d)[A° — yI + C] = —I — C{dC'/dy)C, (27)
is positive, or equivalently that
— dC™dy > C. (28)

Since C is inverse to the matrix having elements
(ul, [A'P* + 4]7'u9), it follows that

dC7V/dy)i; = — @), [A'P* 4+ ] 7)) = — (g5, ¢))-

(29)

The inequality between quadratic forms correspond-
ing to the matrix inequality (28) may be written

i i

.Zl adi(g:, 45) 2 Z_l @i;(giy Un)(Um,y ;). (30)
Setting v equal to 2., a.q:, (30) becomes
,v) 2 E , ) Um, V), 31)
m=1

which is Bessel’s inequality.

The monotonicity of A'** on 91 implies that the
ordered eigenvalues of the matrix problem (20) are
also monotonically increasing in y. Examination of
the matrices involved also shows that asy approaches
zero these eigenvalues approach A}, Aj, --- , A,
and as v approaches infinity they approach the
Rayleigh-Ritz upper bounds to the operator A° +
A’P* obtained with the trial vectors u?, u3, - -- , u®.

Since A'* equals A° — 4 on the orthogonal
complement of 9, it is there monotonically de-
creasing in v and has eigenvalues \},, — v, Al,, —
v, +++ . Thus for each [ and k, the best value of v
for the estimation of A, (v < 1) is that value for
which A},; — ¥ is equal to the »th eigenvalue of the
matrix problem (20). Suitable choices of ¥ may be
obtained from other (possibly experimental or non-
rigorous) estimates of \,.
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It is shown that for a particle in periodic or nearly periodic motion, an integrated form of the
equations of motion may be the better starting point for an approximate calculation of the orbit.
The motion of a charged particle in a static, inhomogeneous magnetic field is used to illustrate how
this approach avoids the difficulty of the spurious secular terms to all orders of the approximation.

INTRODUCTION

INCE there exists no general method capable
of yielding exact solutions to nonlinear dif-
ferential equations, one is usually forced to employ
approximate methods. One nonlinear equation
frequently encountered in physics is the simple
harmonic oscillator equation with a small nonlinear
term added. The solutions to such equations cannot
differ much from those of the corresponding linear
equation, i.e., they must be periodic or nearly
periodic. With the nonlinear term small, it would
seem natural to try a solution in the form of a
power series in the parameter of smallness and to
solve the resulting equation order by order, as was
done by Poisson and by Poincaré.’ The zeroth order
term would be the solution of the linear equation,
which is harmonic in time, ¢, i.e., of the form sin wt.
The difficulty with this approach is the appearance
in the nth order of the series of so-called secular
terms of the form " sin of, terms which seem to
grow indefinitely, but which in fact arise from an
expansion of terms periodic in time. The astronomers
Gylden and Lindstedt® found a way to eliminate
such secular terms in each order of the expansion,
and applied their method to problems in celestial
mechanics. More recently Krylov and Bogoliubov®
have adapted this procedure to the theory of non-
linear oscillations.

The purpose of this note is to point out that in
dealing with motion which is periodic or nearly
periodic, an integrated form of the equations of
motion may be the better starting point for an
approximate calculation of the orbit. An example

t H. Poincaré, Les méthodes nouvelles de la mécanigue
céleste (Gauthier-Villars, Paris, 1892), Vol. 1.

2 A. Lindstedt, Mem. Acad. Impériale Sci. St. Petersbourg
31 (1883).

iN. Krylov and N. Bogoliubov, Infroduction to Non-
Linear Mechanics (Kiev, U. 8. S. R., 1937), in Russian;
English version by S. Lefschetz (Princeton University Press,
Princeton, New Jersey, 1943).

is given below to illustrate how this approach
avoids the difficulty of spurious secular terms.

MOTION IN THE MAGNETIC FIELD: B(x, y)e.

1. General Results

Let us consider the motion of a nonrelativistic
particle of mass m and charge ¢ in the statie, inhomo-
geneous magnetic field, B = B(z, y)e,, where e, is
the unit vector in the z direction. We shall not be
concerned with the motion along the z direction,
which is unaffected by the magnetic field. Intro-
ducing the Larmor frequency, Q(z, y) = ¢B(z, y)/me,
the equations of motion take the form:

&= Q(x) ?/)?/, (1)
¥ = —z, vz, ()

where the dot represents the time derivative.
Alternatively the orbit, z(¢'), y(t'), of the particle
which at time ¢ = ¢ has the position x, y and the
velocity #, 7, may be obtained from the integral
equations:

[ aratee, wenaw)

= asin o) + il = con )], @)
[ arateen, wenuwn
= gsin 7(#) — {1 — cos 7(#)}, 4
where
wry= [ arreen, ). @

The integrals in Eqgs. (3)-(5) are along the
(unknown) particle orbit z(¢'"), y(t’’).
Let us now restrict ourselves to the case

Az, y) = b + Uz, v, (6)
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where Q, is a constant and |Q,(z, ¥)| K @, for all
z, y. While , is small in magnitude, no restriction
is placed on its derivative, i.e., @, may vary rapidly
over distances of the order of the Larmor radius.
Approximate solutions to the equations of motion of
charged particles in slowly varying electric and
magnetic fields have been developed by Alfvén®*
and more recently by Bogoliubov and Zubarev®
and by Kruskal.® In these treatments the assump-
tion is made that the magnetic field may be repre-
sented by: B(r) = B(r,) + (r — r,): VB(r,), over
distances from r, greater than the Larmor radius.
We do not restriet ourselves in this way here.

If we base our perturbation theory on Eqs. (1)
and (2), secular terms of the form ¢* sin Q4 and
£ cos Q,t show up in the n’th order. These may of
course be eliminated by the method of Krylov and
Bogoliubov.> However, if we proceed from the
integral equations (3) and (4), it is possible to
develop a systematic approximation in which
spurious terms never appear. With Eq. (6) we may
rewrite Eqgs. (3) and (4) as follows:

Qo{z(@) — 2} = &sin (&) + {1l — cos 7(¢')}

= [ arraugeen, o)

X [& cos 7(t"") + g sin +(¢")], (7
Qiy(t) — y} = gsin () — &{1 — cos 7(#)}

~ [ avraytaer, yen)

X [4 cos (') — & sin 7(¢")]. (8)

In the last terms of Eqgs. (7) and (8) we have inserted
the expressions for &(t') and #(¢’), which result upon
differentiating Eqs. (3) and (4) with respect to ¢'.
To the zeroth order in €, Eqgs. (7) and (8) yield the
circular orbit z,(t'), yo(t'):

Qoizo(t") — z} = @sin () + {1 — cos 7(t)}, (9)
Qo{yo(t’) — y} = ysin (') — #{1 — cos 7o(#)}, (10)
) = Qt’ — b). (11)

The form of Egs. (7) and (8) immediately suggests
the following n'th order approximation, z,(t'), y.(t),
to the orbit:

4 H. Alfvén, Cosmical Electrodynamics (Clarendon Press,
Oxford, England, 1950).

5 N. Bogoliubov and D. Zubarev, Ukrain., Mat. Zhur 7,
5 (1955). Translation by B. D. Fried available as a Space
Technology Laboratories Report (1960).

8 M. Kruskal, Proceedings of the Third Inlernational
Conference on Ionization Phenomena in Gases (Venice, 1957),
or AEC Report NYO-7903 (1958).
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iz, () — z} = &sin 7,(¢) + {1 — cos 7,(¥)}

B f at" Q{2 ('), Yarr (')}
¢

X [ cos 7,-4(t'") + g sin =,_,(#'")], (12)
Qiy(t") — y} = gsin 7,(¢') — {1 — cos 7.(¢)}

t,

X [g cos 7as(t'') — Esin 1., (#7)],  (13)

(') = Q' — ?)
+ f A (), Yoa(E)} . (14)

We see that z,(¢') and y..(t') are expressed as periodic
functions of 7,(f") plus integrals involving ©@,. These
integrals will be periodic in time only if Q, is itself
a periodic function. In general the orbit is not
truly periodic, but since the integrands in Egs.
(12)—(14) are bounded functions of ¢/, the corre-
sponding integrals cannot increase faster than
linearly in time. The possibility of a term linear in
(' — t) corresponds to the well-known drift of
charged particles in inhomogeneous magnetic fields.
Such “secular’” terms are real; however, the non-
physical secular terms of the form &* sin Q,f, n > 1
never appear. This is what we intended to show.
From Egs. (12) and (13) it is clear why terms of
the form ¢ sin Q,f must show up in a solution which
is a power series in Q,, since such a solution would
involve an expansion of sin 7, and cos ,.

2. First-Order Results

It is perhaps of interest to study the first-order
orbit, z;(t"), y.(t'), in some detail. For simplicity we
shall henceforth assume that ©, depends on only one
space variable, say . Let us also introduce the
cylindrical velocity coordinates, » and ¢,

i =10 cos¢, ¥ = vsin @, (15)
and the center of gyration, z., y.,
T =2 + g/Q(U Yo = Y — j:/QOy (16)

in terms of which the zeroth-order orbit may be
rewritten as follows:

Qolzo(t) — x.} = vsin [ — 1) —¢], (17)
Qoifyo(t) — y.} = v cos [Q(t’ — 8) — ¢]. (18)

Turning to the first-order orbit, let us first examine
71, which we write:

() = Q¢ — ) + An(t), (19)
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where by Eq. (14)

y

an@) = [ arraife ). (20)
t

We now Fourier analyze Q,(z), substitute for

zo(t"") from Eq. (17), and carry out the integration

over ¢”. The result is:

ant) = [~ aro@e{w ~ ,(2)

+ 3 2By — b, e
n=0 90

where Q,(k) is the Fourier transform of Q,(zx) and
where we have used the standard symbols, J,, for
Bessel’s functions. The sum in Eq. (21) is periodic
in ¢/, whereas the first term is linear in time. Thus
we have found a first-order frequency shift from
Qo, given by:

® ikze kv

e o
Employing a well-known integral representation for
Jo, the integration over & may be carried out,
yielding:

AQ = 7! f do(z, + vQy" cos 6), (23)
L]

which illustrates that AQ is just the average of
Q2,(z) over the zero-order orbit.

The expression for y,(’) is obtained from Eq.
(13):

Q@ (t) — y.) = v cos {n,(¥) — ¢}

- A m ) ), (2)

where we have used the variables introduced in
Eqgs. (15) and (16). The first term on the right-hand

AGNAR PYTTE

side of Eq. (24) is periodic in time. In order to
evaluate the other term, we again Fourier decompose
2,(z), substitute for z,(¢’’) and (") from Egs.
(17) and (18), and integrate over ¢'’:

—f’ ar’ @ {xo(¢) ()
* ven) kv

— A ikze ]
v f_ 3} dkQ, (ke {z(t - t)J1<—QO>

+ > J,g(%’)(ngo)‘le‘ma - e*‘""“"“")}, (25)
n=0 0
where J,(z) = (d/dz)J.(z). All terms in Eq. (23)
are periodic in time, except the first, which represents
a drift in the y direction with a velocity, v;, given
by:
kv

pe = Q! f del(lc)e”‘“Jl(——>

=y 'n " f dé cos 8Q(x, + v, cos 6).  (26)
1]

A similar calculation of x,(¢") shows it to be periodic
in ¢, or, as expected, that there is no drift in the
z direction when €, is independent of y.

Finally we note that if Q,(z) varies slowly over
distances of the order of the Larmor radius, v/Qo,
Eq. (26) may be approximated by:
ds, v
dz. STO cos 0]

v [7do
Vg = ?2;_[0 - Cos H[Ql(x,) +

_ 1(&)”9
T 2\Q/ dz.’

which is the usual first-order orbit theory result.*

@7)
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Some model Hamiltonians are proposed for quantum-mechanical many-body systems with pair
forces. In the case of an infinite system in thermal equilibrium, they lead to temperature-domain
propagator expansions which are expressible by closed, formally exact equations. The expansions
are identical with infinite subclasses of terms from the propagator expansion for the true many-body
problem. The two principal models introduced correspond, respectively, to ring and ladder summations
from the true propagator expansion, but augmented by infinite classes of self-energy corrections.
The latter are expected to yield damping of single-particle excitations. The eigenvalues of the ring
and ladder model Hamiltonians are real, and they are bounded from below if the pair potential obeys
certain conditions. The models are formulated for fermions, bosons, and distinguishable particles.
In addition to the ring and ladder models, two simpler types are discussed, one of which yields the
Hartree-Fock approximation to the true problem. A novel feature of all the model Hamiltonians
(except the Hartree-Fock) is that they contain an infinite number of parameters whose phases are
fixed by random choices. Explicit closed expressions are obtained for the Helmholtz free energy of
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all the models in the classical limit.

1. INTRODUCTION

DIFFICULTY in calculating the statistical be-

havior of many-body systems is that some
quantities of interest may not have convergent
perturbation expansions. If the system is infinite in
size, this can occur even when the density of particles
is very low and the interparticle forces are very
weak. The situation is already present in the clas-
sical theory. Consider a gas of classical particles
which interact by a repulsive, short-range pair-
potential AV (x). If the pressure, expressed as a
function of density and temperature, is expanded
in powers of the strength parameter A, the expansion
has zero radius of convergence.' This suggests that
a similar situation may exist in the quantum-
mechanical case.

Nonconvergence of interaction-strength expans-
ions is not necessarily a disaster. In the classical
example just cited, the expansion almost certainly
is asymptotic about A = 0, and we may hope that
this is true also in some quantum-mechanical cases.
However, many physical problems of interest do
not exhibit weak interactions. Moreover, certain
properties of a quantum-mechanical many-body

* This work was supported by the Air Force Office of
Scientific Research.

1 One way to obtain this result is the following. Take
A < O (pure attractive potential). Then every diagram in
the irreducible cluster expansion for pressure gives a negative
contribution. The total number of diagrams of order »
increases with n faster than any exponential, and a con-
sequence is that the pressure comes out negatively infinite
no matter how small [A| is. (Physically, this means the system
will collapse.) On the other hand, for A> 0, the pressure
must approach the perfect gas value as [A\| — 0. Therefore

the pressure is a nonanalytic function of A at A = 0. [Cf. T. D.
Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957).]

system may not have even asymptotic expansions
as power-series in A\. An example is the one-particle
momentum distribution ¢(k), normalized to unity.
For an infinite system, a finite change in o(k) from
its form for uncoupled particles means that an
infinite number of particles are displaced from the
momentum levels they would occupy if they were
not coupled. In order to form such a state from the
uncoupled state, the interaction Hamiltonian must
act an infinite number of times; that is, infinite
orders of perturbation theory are involved. We
expect on physical grounds that the change in o(k)
goes to zero as A does. However, we cannot presume
that it must go to zero as some integral power of \.

In recent years, several formalisms for handling
perturbation expansions in the quantum-mechanical
many-body problem have been proposed which are
related to methods previously used in quantum
electrodynamics.”™"® They produce great simplifi-
cations in manipulations and permit one to carry
out various formal summations of infinite classes

2 T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14,
351 (1955).

3 E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958).
( 945 C) Bloch and C. De Dominicis, Nuelear Phys. 7, 459
1958).
8 E. 8. Fradkin, Nuclear Phys, 12, 465 (1959).
5 A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii,
J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 900 (1959) [transla-
tion: Soviet Phys.—JETP 9, 636 (1959)].
( 7 P) C. Martin and J. Schwinger, Phys. Rev. 115, 1342
1959).
( 8 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417
1960).
*D. N. Zubarev, Uspekhi Fiz. Nauk. 71, 71 (1960)
[translation: Soviet Phys.—Uspekhi 3, 320 (1960)].
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of terms from the perturbation expansions. These
formalisms are a natural choice for investigating
quantities, such as o(k), which may not have con-
vergent or asymptotic expansions. However, it can
be difficult to know in advance what summations
should be carried out in given cases. With sufficient
ingenuity, it is possible to sum certain divergent
series so as to obtain almost any answer whatever.
It is difficult to guess in advance whether adding
further infinite classes of terms to a known expansion
will improve the answer or make it worse.

In the present paper we shall describe a pro-
cedure intended to pick out perturbation-term sum-
mations for which certain characteristics are pre-
dictable in advance. We shall formulate model
Hamiltonians such that the complete perturbation
expansions to which they lead are formally identical
with certain infinite subclasses of terms from the
corresponding perturbation expansion for the true
Hamiltonian. The model Hamiltonians are Hermi-
tian, conserve momentum, and have eigenvalues
which are bounded from below if the pair potential
obeys certain restrictions. The predictable charac-
teristics of the model solutions are, first, some
general consistency properties which follow auto-
matically from the fact that the solutions describe
actual Hamiltonians exactly. These include positive-
definiteness of the one-particle energy-momentum
distribution function, for example. The further pre-
dictable characteristics are those which follow from
the boundedness and conservation properties.

In common with the true many-body Hamiltonian,
our models (with one exception) are not diagonaliz-
able by known means. They are soluble only in
the sense that they yield formally closed integral
equations for the propagators that determine the
mean energies, mean occupation numbers, etc., which
are of statistical-mechanical interest. A feature of
the models is that they contain infinite numbers of
parameters whose values are chosen at random. We
shall therefore call them stochastic models. The
random parameters will be desceribed in Secs. 2
and 3. )

We shall present two principal types of stochastice
models, ladder and ring. They correspond, respec-
tively, to summations of familiar infinite classes of
ladder or ring diagrams from the perturbation series
for the true Hamiltonian. At the same time, they
include certain infinite classes of self-energy cor-
rections to these diagrams. The corrections are of
a type expected to contribute to the damping of
elementary excitations. In addition to the ladder
and ring models, we shall introduce two simpler
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types. One yields the Hartree-Fock approximation
to the true problem (and contains no random
parameters). The other also includes the Hartree-
Fock diagrams, but with iterated self-energy cor-
rections. The eigenvalues of this last model are
not bounded from below for any pair potential, and
its validity therefore is quite doubtful.

The models which are described in the present
paper yield closed equations only for infinite systems.
We shall develop each type of model in two forms:
for indistinguishable particles (fermions and bosons)
and for distinguishable particles. The analytical
treatment will begin with the distinguishable particle
models. They admit more immediate physical in-
terpretations. We shall apply to them the Ursell-
Mayer irreducible cluster expansion method and
thereby obtain an explicit closed expression for the
Helmholtz free energy of each model in the classical
limit. For the fermion and boson models, we shall
use a temperature-domain propagator formalism of
the type originated by Matsubara® and developed
further by Fradkin,® Abrikosov et al.,® Luttinger
and Ward,® and others. The distinguishable and
indistinguishable particle models turn out to give
formally identical thermodynamics in the classical
limit. Thus, our classical results for the Helmholtz
free energy provide some insights into the behavior
of the fermion and boson models.

In the paper which follows,"* we develop more
general models which yield closed equations what-
ever the size of the system. We shall apply them to
nonequilibrium as well as equilibrium statistical
mechanics. For an infinite system in equilibrium,
the generalized models yield the same final equations
as the models of the present paper. However, they
provide a neater and more satisfactory derivation
of these equations. We do not start with the general
treatment in the present paper because it requires
a more elaborate formalism and therefore does not
provide as direct an introduction to the use of the
stochastic models.

The derivation of our closed model equations
involves a deep-lying convergence question which
is described in Sec. 5.1. We make no attempt to
answer this question in the present paper. In the
following paper, we offer what we hope is a satisfy-
ing, although nonrigorous, resolution.

2. MODELS FOR DISTINGUISHABLE PARTICLES
2.1. Nature of the Models
Let us consider a system of N similar but dis-
tinguishable particles (of unit mass) which interact
u R, H. Kraichnan, J. Math. Phys. 3, 496 (1962).
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through a pair potential V' (x). The total Hamil-
tonian may be written

H=312p+3> Vi —~x,)

(n;m=172)"')N)x (21)

where >’ means that n = m is omitted in the sum.
Here p, and x, are the momentum and position of
the nth particle. We shall adopt the artifice of
confining the system in a cubical cyclic box of
volume . That is, we restrict V(x) to the form

V() = D Vi exp (tk-x), (2.2)

where k takes all the values allowed by cyclic
boundary conditions on the walls of the box, and
we require that the Schrodinger wave function be a
cyclic funection of the coordinates of each particle.
In the classical case, we assume that a particle which
exits through any wall of the box simultaneously
re-enters, with the same momentum, through the
opposite wall. We shall eventually be interested
in the limit N — o, @ — o, with N/Q finite.

We require that V(x) be real and have reflectional
symmetry. These conditions imply

VE) = V(-x), Vi=7V.i Ve=VE (23

Except where we specify otherwise, we shall assume
that V(x) is a smooth, bounded function such that

[Vl = 0(@™), (all k),
IVk! -<— O(k_z))

In particular, this implies that [ V(x) d’xr and
[ V(X)]® d*z exist for @ — o, where the integration
is over the whole box.

We shall call (2.1) the true Hamiltonian, and
refer to the statistical mechanical problem associated
with it as the true problem.

Now let us consider model Hamiltonians of the
form

H=32p+32 V. — x),

Q— »

k— o,

2.4

where V™™(x) is a pair potential which may be
different for each pair of particles n and m. We
require that V"”(x) be real, and we replace (2.3) by

Vrrx) = Vr(—x). (2.5)
Let us write

V(%) = 3 Vi exp (k%) (2.6)
k

and define the parameters ¢, ... by

V™ = Vidomike 2.7
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Then the reality condition and (2.5) imply
¢n,m;k = ¢:f,m;—ky Promik = (28)

The true problem, of course, corresponds to
¢n.mix = 1 for all n, m, and k. In the models with
which we shall be concerned here, all the ¢, .
will be assigned unit modulus (except in the Hartree-
Fock model where most of them will vanish). How-
ever, for each triad n, m, k the phase of ¢, ..
will be assigned by a random choice, subject to
(2.8), and to additional constraints which differ
for each model. As we shall see, the models so
produced have certain properties in common with
the true Hamiltonian but lead to a statistical
mechanics that can be expressed in closed form in
the limit @ — .

¢m,n:—k'

2.2. Ladder Model

Let us specialize ¢, ., to the form

¢n.m:k = €exp (—1k'dn.M), dn.m = _dm,ru (29)

where the d,, are constant, real vectors. This
clearly satisfies (2.8). Now, for each pair n, m let
us give the three vector-components of d, , values
chosen at random within the interval (0, L), where
L = Q' The choices are to be completely inde-
pendent for pairs which are not identical. In the x
representation, we have

Vn,m(x) = V(X - dn.m)7

which permits a very simple interpretation of this
model: The pair potential has the same shape as in
the true problem, but the particles now collide with
ghosts of each other, displaced by the randomly
chosen vectors d,,,. For reasons which will appear
later, we shall call this the ladder model.

An important feature of the ladder model is
immediately apparent from (2.10). If V{(x) is non-
negative for all x, then V*™"(x) also has this prop-
erty. It follows that in this case the expectation of
H in any quantum-mechanical state is non-negative,
or, in other words, that all the eigenvalues of H
are non-negative.

At this point, we want to make as clear as pos-
sible the precise sense in which our model is sto-
chastic. The values of the d, .. are chosen at random
[subject to (2.9)]. Once chosen, however, they are
fixed, and we work thereafter with the definite
Hamiltonian embodying these values. In particular,
the same choice of the d,, will be employed for
every member of the canonical or grand canonical
ensemble which we use in describing the statistical
mechanics of the system. The principal deductions

(2.10)
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F1a. 1. Some irreducible cluster diagrams.

we shall make about the statistical mechanics of
the model will be valid only for typical assignments
of values for the d, .., a situation which is familiar
in stochastic problems. [Thus d,,,, = 0 (all n, m)
is a possible result of a random assignment of
values, but it is not typical. The probability of
this assignment vanishes with extreme rapidity as
N — «.] Instead of restricting ourselves to typical
assignments, we could equivalently employ a sta-
tistical distribution of assignments and make our
deductions about averages over the distribution.
Such a procedure would have some formal ad-
vantages, but we feel that the analysis will be clearer
if we do not introduce this additional kind of average.

We wish now to investigate the equilibrium
thermodynamics of our model in the classical limit.
The virial expansion of the Helmholtz free energy
per particle for the true problem may be written

A=A, — 8" Y (a+ 1)7'p°B,.
a=1
Here 4, = 87 {In [p(2rh®B)}] — 1} is the Helm-
holtz function for free particles, p is N/Q, B, is
the Mayer irreducible cluster integral for a cluster
of @ + 1 particles, and 8 = 1/kT, where k is Boltz-
mann’s constant and 7 is absolute temperature.
Equation (2.11) is formally exact in the limit Q,
N — . In the true problem it makes no difference,
of course, which of the N particles are assumed to
be in the cluster for which B, is calculated; the
interaction of all pairs is identical. If the derivation
is retraced with a model potential V™'"(x), it is
found that (2.11) is still valid provided that B,
is reinterpreted in the following way: It is the
average value of the cluster integral when the latter
is ealculated for all possible choices of the @ + 1
particles from among the N particles in the system.’?
Let us write

fx) = exp [-8V(®)] — 1,
) = exp [—BV""(x)] — 1. (2.12)
Then the model cluster integral B, [Fig. 1(a)] is

(2.11)

12 See the Appendix.
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B, = N2 3 f [ 1oz, = x,) @x, ¢z, (2.13)

where the integrations are over 2, and we have
replaced N(N — 1) by N? in anticipation of the
limit N — o. In the ladder model we have

@) = fx = da.n).

Therefore, since V(x) is cyclie, we find

B, = f f(x) d’z, 2.14)
which is identical with the result for the true
problem.

Let us now assume that V(x) has a finite range r,
and is negligible for |x| > r,. (Here x is measured
modulo displacement by a cyclic period.) The next
irreducible cluster integral [Fig. 1(b)] is

B = v 3 [[[ e - xr@ - x)

X f'x, — x,) d°x, d°2. d'x,. (2.15)

Contributions to this integral can arise only from
points which simultaneously satisfy

dn,ml S To,

]xl - xn - dl.nl < rO'

- dm,ll S 7o,
(2.16)

,xn - xm - !Xm - Xl

However, since the d,,, have been fixed by random
choices, and have values which range over the
entire cyclic volume, it will be impossible to satisfy
(2.16) for most triads n, m, . In fact, given a typical
assignment of the d’s, it is clear that (2.16) can be
satisfied only for a fraction of all triads which
is of order 73/Q. It follows that B, vanishes as
73/Q in the limit @ — o, N — . Similar considera-
tions show that any given B, (o« > 1) also vanishes
in the limit. The contribution to B, of each ir-
reducible cluster diagram with « + 1 particles and
v links vanishes as (r3/Q)" . Actually, the condition
we placed on V(x) is stronger than needed to obtain
this result. It is sufficient that f(x) be bounded and
that § |f(x)| d’z be finite in the limit.

On the basis of the preceding paragraph, let us
assume that the total contribution to (2.11) from
all B, (e > 1) vanishes in the limit. This is a non-
trivial assumption. It involves a deep-lying con-
vergence question which we shall discuss, in its
quantum-mechanical form, in Sec. 5.1, and at length
in the following paper. The essential point is that
the number of irreducible diagrams of order « is
enormous for a ~ O(N). For the present, we shall
simply adopt the assumption. An equivalent assump-
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tion will be implicit in the discussion of the further
classical models of Sec. 2. Retaining, then, only B,
in the limit, we have

4 — 4, = 87'a(B)p,

where —2a(B) is the right side of (2.14). The cor-
responding equation of state is

p = B7pl1 + a(B)s],

where we define the pressure by the relation p =
p’ (0A/dp)s.

Equations (2.17) and (2.18) exhibit several
properties of interest. First, we note that if V(x)
is non-negative everywhere, then A — A, is non-
negative for all 8 and goes to zero as 8 — . This is
consistent with our previous finding that the model
potential energy is always non-negative for such
V (x)."® The present result provides some reassurance
as to the validity of our formal procedures. A second
property shows up most clearly if we take V(x) to
be a hard-sphere potential of range r,. Then we have
a(B) = 2xr3. Now if we increase p without limit,
we see that, in contrast to the true problem, the
ladder model exhibits no saturation; the free energy
and pressure continue to rise smoothly."

A third fact of interest is that if V(x) is negative
anywhere, we have 8§7a(8) —» — o as 8 — =,
Thus we have A — — » for any p, which indicates
that there is no lower bound to the potential energy
per particle. Furthermore, we have (9p/dp)s < 0,
for any given p, if the temperature is low enough.
This suggests that the system then would be un-
stable to collapse, and, since there is no saturation,
that the collapse would be catastrophic once it
occurred.’® In the case of potentials with an at-
tractive part, the ladder model offers the possibility
of a valid approximation to the true problem only
above a critical temperature for each p. It should be
viewed with suspicion even above this temperature.

It 1s clear from (2.17) and (2.18) that the ladder
model represents an extremely rudimentary approxi-
mation to the classical true problem. The interest
of these results lies in the fact that they represent
classical limits for the fermion and boson ladder
models which we shall introduce in Sec. 3. These

2.17)

(2.18)

B As 8 — o, we have 4o — 0, and at zero temperature
A becomes just the potential energy per particle.

14 The following may make clear how this can happen.
Take Q@ finite (but > r¢®) and place an arbitrarily large
number of particles into the cube in any desired positions x,.
Whatever the number of particles, and whatever their
positions, it is clear that for every pair n, m there will be
many possible choices of d.,m such that |x, — X, — du,ml > ro.

15 This statement must be carefully qualified. See the
Appendix for a discussion of the condition (dp/dp)s < 0.
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models are nontrivial. A similar interest attaches
to the further classical results to be presented in the
remainder of Sec. 2.

2.3. Ring Mcdel

Instead of adopting (2.9), let us now specialize
®n.m:x tO the form

(2.19)
(2.20)

Gn.mix = €XP [?:(.0,,;1{ + om:—k)]:

O = _0n;—k;

where the 6, are real phases. Again we see that
(2.8) is satisfied. Let us give the 8,., values chosen
at random in the interval (0, 2x). The choice is to
be made independently for each pair of indices n, k,
subject only to (2.20). We shall call the result the
ring model, for reasons which will become clear
shortly. It represents a rather more drastic muti-
lation of the true Hamiltonian than does the ladder
model. Because the phases 6, fluctuate randomly
as k changes, the present V*'™(x) are strange po-
tentials which spread out irregularly over the entire
eyclic cube.

The ring-model Hamiltonian also has a bounded-
ness property in common with the true Hamiltonian,
but a different one than we noted for the ladder
model. Let us formally define a self-interaction
potential by extending (2.6), (2.7), and (2.19), with-
out change, to the case n = m. Then we may rewrite
the model interaction Hamiltonian in the form

Hi=3 X V""(x, — %) — 3NV,  (2.21)

where the summation now admits n = m. Using (2.6),
(2.19), and (2.20), we find

Hw=%;VMﬁ—ﬁNW& (2.22)

where

px = 2 exp [ilk-x, + 6,4)].  (2.23)
Now suppose that V. is non-negative for all k.
Then Zk Voot 18 a non-negative operator, and
it follows that the expectation of the potential
energy per particle in any quantum-mechanical state
is bounded from below by —311V(0).

In the true problem all the 6,, are zero, and p,
is a density-operator Fourier component, as intro-
duced by Pines and Bohm'® and others. In the ring
model, we may call g, an effective density component.

The conditions V(x) > 0 (all x) and Vg > 0
(all k) are not mutually exclusive, but they do not

16 D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).
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imply each other. The bounds we have derived
therefore suggest that the ladder and ring models
have inequivalent domains of validity. Consider, for
example, the modified Coulomb potential

Vi = Q7'4me” exp (—a k)L (k| > 1/,
Ve =0 (k| < 1/D),

where ¢ and [ provide, respectively, a short-range
and long-range cutoff. V, is non-negative and V(0)
is finite. Thus the ring model Hamiltonian has a
finite lower bound per particle and may be expected
to yield healthy results. On the other hand, V(x) > 0
is not satisfied for large z, and we cannot make a
similar prediction for the ladder model.

If we let | — o, then V(0) approaches a finite
limit, and we conclude that the long-range character
of the Coulomb potential should not pose difficulties
for the ring model. In the limit ¢ — 0, however,
we have —3V(0) —» — . In the true problem,
the V, for very high %k give a purely repulsive
contribution to V(x) and cannot actually cause H;
to be unbounded from below. In the ring model,
however, the very high k give rise to attractive
as well as repulsive regions in the V™™(x), because
of the fluctuating phases of the Vi ™. Thus we may
anticipate trouble in the limit a — 0. We shall see
shortly that it actually occurs, at least in the clas-
sical case.

The B, may be evaluated for the ring model by
expanding the f"'™(x) as power series in —j, ex-
panding the V™™(x) in Fourier series, and then
performing the space integrations. We thereby find

B = N7 3 [= Vo 3= X v

(2.24)

+<1/3!>(—6)3§ VeV Vile + ---1. (2.25)

By (2.19) and (2.20), we find
o™ =V, TemVis = ViV

Thus the first two terms on the right side of (2.25)
are unaffected by the averaging over n and m.
All the higher terms, however, involve phases which
fluctuate randomly as » and m are varied, except
when all the summed indices k, k', - .- are either
equal and opposite in pairs or zero. The consequence
is that none of the higher terms makes a contri-
bution to B; in the limit N — ©, Q — .

We shall illustrate by considering the term con-
taining (—B)°. The random phase of the summand is

(eﬂ:k + 0m;k) + (0n:k' + 0m;—k')
+ (on:—k—k' + 0m;k+k’)-
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By (2.20), this expression vanishes fork = 0,k’ = 0,
or k 4+ k' = 0. However, it follows readily from the
restrictions on V(x), stated after (2.3), that the
total contribution to B, from these restricted wave-
veetor combinations vanishes in the limit. For the
remaining wave-vector combinations, the phase of
the summand changes at random with change of
n and m. For a given k and k’, the averaging over
n and m therefore reduces the contribution to B,
by a factor ~ N~ = 1/4/(N?) from its value
in the true problem. The consequence is that the
total contribution of the (—g)® term vanishes in
the limit. Similar arguments show that all the higher
terms vanish also. Thus we have

B, = o[-V, + %52 Zk: (Vk)2]7 (2.26)
where we note V, = V_,.. In obtaining (2.26), we
use the fact that the expansion of f*'™(x) in powers
of —pB is absolutely convergent for all 3, if V(x)
obeys the restrictions imposed after (2.3).

The higher B, may be evaluated by similar
analysis. The result is that the only irreducible
Mayer diagrams which give nonvanishing contri-
butions in the limit are the ring diagrams, the first
three of which are shown in Figs. 1(b) and 1(c).
The surviving contributions from the ring diagrams
give

B, =1} Zki (=@ (V' @>2). (227

The surviving contributions arise as the products
of the terms « — g8 in the expansions of all the f
factors occurring in the ring diagram integrands.
To see how they survive, consider Fig. 1(b). The
surviving contribution from this diagram is

%N—S Z, Z (—B)392V;'1"-v71"§n'l[/71l(,"'

n,m,l k

and the phase of the summand is

(0n;k + om;—k) + <0m:k + 01;~k) + (01;k + on:—k)’

which vanishes by (2.20).
Inserting (2.26) and (2.27) in (2.11), and per-
forming the sum over «,'” we find

A~ 4, = %PQVO - %(BP)AQ‘I Ek: [Br2 Vi

— In (1 + BpQVy)].
It is of interest to compare (2.28) with the well-

(2.28)

17 E. W. Montroll and J. E. Mayer, J. Chem. Phys. 9,
626 (1941).
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known result
4 -4, = —%PB_IQfO - %(61’)—19'1

-; [—pQf — In (1 — pQf) — 3°Qf], (2.29)

where J, is defined by
j(x) = ; fe exp (k-x),

which Montroll and Mayer'” obtained by summing
all the ring diagrams for the true problem. We shall
find that (2.28), and not (2.29), represents the
classical limit of the quantum-mechanical ring sum-
mation to be carried out in Sec. 4.'®

From (2.28), we see that A — A, is bounded
from below (V, > 0) by

—‘ZVK=

which agrees with the rigorous bound we have
previously found for the ring-model potential
energy. As in the case of the ladder model, this
provides some reassurance as to the validity of our
formal procedure. It is clear that if ¥V, = 0, then
A — A, will actually approach the absolute lower
bound as § — . [The In term in (2.28) gives a
vanishing contribution in this limit.]

If Vy is given by (2.24), we find that A — A,
converges in the limit [ — o and/or § — . This
supports our anticipation that the long-range part
of the potential should not pose difficulties for the
ring model. It should be noted that the derivation
of (2.28) with potential (2.24) requires that ! be
kept finite until after the limit Q@ — o is taken.
Otherwise, the assumption V, = 0(Q™") is violated
for very low k.

If now we takea = 0, wefind A — A, — — © as
B — . Thus, as we anticipated might be so, the
ring model is not an admissible approximation in
this case. The situation may be substantially im-
proved in the quantum theory, however.

3V(0),

2.4. Random-Coupling and Hartree-Fock Models

We wish now to examine two simpler distin-
guishable-particle models. In common with the
ladder and ring models, they are of interest because
their classical thermodynamics represents limits for
corresponding fermion and boson models.

Let us now specialize ¢,,,.x to the form

18 Our result also resembles (except for the term 1pQV,)
the classical limit of a quantum-mechanical ring summation
given in reference 3 [Eq. (5.14) of that reference]. However,
that summation is based on an activity rather than a density
expansion. It corresponds to a sum of pure ring diagrams
from the primitive (reducible) classieal cluster expansion.
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¢n.m;k = eXp (iﬁ,,,,,,;k), (2-30)

with
Onmixk = —Ouminixy Opmk = — On.m;—k, (2'31)

where the 6, ,. are real phases. Again (2.8) is
satisfied. Let us give the 8, ., values in the interval
(0, 2%) determined by independent, random choices
for all the combinations of indices, subject only to
(2.31). We shall call this the random-coupling model.

There appears to be no lower bound to the po-
tential energy per particle in the random coupling
model if we take the limit N — «. Consequently,
we cannot be sure that the model has any thermo-
dynamic validity. We shall return to this question
in a moment.

The B, for the random-coupling model may be
determined by the same formal procedure as we
used for the ring model. The result is that B, has
the value (2.26) and that all the higher B, vanish
in the limit N — «, @ — . The results for 4
and p are

A — Aq = 309V, — 1089 }k: Vi (232

and

p=8"p+ 3070V, — 18p°Q Zk: Ve.  (2.33)
If (2.17) is expanded in powers of —g3, and then
expressed in terms of Fourier coefficients, it is easy
to verify that (2.32) represents that part of (2.17)
which is also contained in (2.28). That is to say,
the only contributions to A which survive in the
random-coupling model are those which survive in
both the ladder and ring models.

From (2.33) we see that if p and 8 are high enough
we have (3p/dp)s < 0, regardless of the form of
V(x). The instability to collapse, thereby indicated,"®
is associated with the lack of a lower bound to the
model potential energy. However, if p and g are
low enough, (2.33) suggests that the random-
coupling model may have a stable thermodynamies.
We choose to regard that indication with caution.

Our final model is the Hartree-Fock model, which
we construct by taking

o " = Vo, Ve =0 (k 5 0). (2.34)

This is a zeroth model in the sense that there are
no randomly chosen parameters at all. It corre-
sponds simply to having each particle move in the
uniform potential obtained by averaging the true
fields of the other particles over all possible con-
figurations. Only B, is nonvanishing in the limit
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Q — =, and we have

A - AO = %pQVﬂ- (2.35)

3. MODELS FOR FERMIONS AND BOSONS

3.1. Nature of the Models

The models described in Sec. 2 involve interaction
potentials which are different for different pairs of
particles. They are therefore meaningless for in-
distinguishable particles. In order to construct
stochastic models for fermion and boson systems,
let us replace (2.1) by the second-quantized true
Hamiltonian

H=H,+H, H,= ; aqudc,  (3.1)

Hi = % Z Vk—s 5k+p,r+sq;q;QrQS~

Kkprs

3.2

Here ¢ and g, are fermion or boson creation and
destruction operators for momentum k, ¢ is the
free-particle energy 3% and we take A = 1. The
commutation relations are

(g, Gle = 0, [, Gole = bupy  (3.3)

where the plus sign is for fermions and the minus
for bosons.
As the general model interaction Hamiltonian,
we take
Hf = % Z Vk—s¢kprs 5k+p.r+sq11q;QtQS7

kprs

3.4

where the ¢,,,s are c-number parameters which
play a role analogous to that of the ¢, ... We leave
H, unaltered. In correspondence to (2.8), we impose
the conditions

¢kprs = ¢:rpk1 ¢’kprs = ¢pksr- (35)

The first of these relations ensures the Hermiticity
of H,. The second is suggested by the invariance of
(3.2) to the ‘particle exchange' (k, s) = (p, 1).
We shall obtain the fermion and boson versions
of the ladder, ring, random-coupling, and Hartree-
Fock models by making specialized stochastic assign-
ments of values to the ¢ypre. The ¢y, will all have
unit modulus in the models we shall examine here,
except in the Hartree-Fock model, where most of
the ¢y, Wwill vanish. In Secs. 4 and 5 we shall
develop an appropriate propagator formalism for
the fermion and boson models and find closed equa-
tions which determine the propagators for each
model. We shall put off until Sec. 6 a demonstration
of the relations among the fermion, boson, and
distinguishable-particle models.
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3. 2. Ladder Model

To construct the fermion or boson ladder model,
we take

Drors = €XP [Z(—Bpk + 9,3)], (36)
with
3.7

ka = ‘9pk-

We then determine the real phase 6., for each pair

k, p by a random choice in the interval (0, 2r).

The choices are all independent, subject only to (3.7).
Let us define the quantities

x®, %) = Q' X s
X exp [¢(r-x’ + s-x + 6,5)],
X @, 2 =" 2 q:9:

X exp [—irx" + s:x + 8.5)].

3.8)

In the true problem (all 8,, = 0), x(x, x) is simply
the two-particle amplitude y¢(x')¢(x), where ¥(x)
is the destruction field in = space. We may call
x(x’, x) the effective two-particle amplitude in the
ladder model. By straightforward Fourier analysis,
we find

=3 [[ v - o', oxw, 0 de . (3.9

If V(x) > 0 for all x, H, is a positive-definite
operator, and it follows that the eigenvalues of H
are all non-negative. This is the same bound which
we obtained in See. 2 for the distinguishable-
particle ladder model.

It is not obvious that the present model will be
an admissible approximation to the true problem
if V(x) is a hard-sphere potential, although this was
clearly the case for the distinguishable-particle
ladder model. A sufficient condition for admis-
sibility would appear to be that the relation

xx’, x) | ) = 0, (x — x| < ro), (3.10)

where 7, is the hard-sphere diameter, be satisfied
for as rich a manifold of states ® in the model as
in the true problem. We have not investigated this
question.

3.3. Ring Model
To construct the fermion or boson ring model,

we take

Prprs = €XP [i(gks -+ g-pr)]r (311)
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where

(3.12)

6ks = - 5sk~
We fix the real phases 8,, by random choices in the
interval (0, 27), subject only to (3.12).
In analogy to (2.23), let us introduce the effective
density-component operators

pm = 2 Guleom &P (eim).  (3:13)
By (3.12), they satisfy pm = p'm. It follows from
(3.3) and (3.12) that for either fermions or bosons
the ring model H; may be rewritten

H =3} ; Viowoe — 3VON,  (3.14)

where

N = ;Nk, Nk= q;qk
Asin (2.22), we note that the first term on the right
side of (3.14) is a positive-definite operator if V,, > 0
for all k. It follows that the fermion and boson ring
models exhibit the same lower bound on H as did
the distinguishable-particle ring model.

A third model, which has no analog in the dis-
tinguishable case, may be constructed by taking

drprs = €XP [i(gkr + 61)5)] (315}

and requiring the 6, to obey (3.12). We may call
this the exchange model. Hybrid models may also
be constructed, by taking ¢, as a linear com-
bination of the forms for the ladder, ring, and ex-
change models. We shall not discuss these cases
in this paper.

3.4. Random-~Coupling and Hartree-Fock Models

To construct the fermion and boson versions of
the random-coupling model, we take

Omprs = €XP ((0xprs), 3.16)

with
8.17)

and fix the phases 6,,, by independent random
choices for each combination of indices (k, p, 1, §),
subject only to (3.17). As in the distinguishable-
particle random coupling model, there appears to
be no lower bound on the potential energy per
particle when the system is infinite. This suggests
that results obtained from the random-coupling
model be viewed with skepticism. It perhaps should
be pointed out that our random-coupling models
are unrelated to the random-phase approximation

gkprs = — sk, Ouprs = Bpksr, kars = Upkrs;
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employed by Pines and Bohm'® and others. We
make no assumption about the phase correlations
among the dynamic variables.

The fermion or boson Hartree-Fock model is
given by the assignment

Pippk = Duprp = 1, Prprs = 0

k=#r or s). (3.18)

This model contains no randomly chosen param-
eters. We shall see in Sec. 5 that it yields simply the
Hartree-Fock approximation to the true problem,
in the limit @ — .

4. TEMPERATURE-DOMAIN PROPAGATOR
FORMALISM

The equilibrium statistical mechanics of the
fermion and boson models can be investigated most
neatly by means of the temperature-domain propa-
gator formalism and its associated diagram tech-
nique.”’”*"*'® Since our models differ from the true
Hamiltonian only by the replacement

4.1

Vk—s 6k+p.r+s i Vk-s¢kprs 6k+p,r+sy

the existing techniques may be taken over with
only minor and obvious changes. We shall sum-
marize the resulting formalism in the present
section.'®

Let us define the temperature-domain propagator
S(u, u') by

S, w) = —(Tlg@aq’)l) @, real), (4.2)
where

aw) = e ge™, qlw) = g, (4.3)
The ordering operator T is defined by
Tlgul)guw)] = () es) w>w),
Tl a)] = Fao)at) @< w).

In (4.4) and in all subsequent expressions where a
plus-minus or minus-plus sign occurs, the upper
sign refers to fermions and the lower to bosons.
The brackets ( ) denote an average over the grand
canonical ensemble. For any operator B,

(B) = Tr (7B (PN, (45)

where N is defined below (3.14) and u is the chemical
potential.
The propagator has a Fourier expansion of the

19 OQur treatment is based principally upon reference 8,
but our notation does not agree completely with that of any
of the references cited. (The latter differ substantially among
themselves.)



484

\/ ’§|, Ce
: M
= 5
/\ e %4
q r

() (b)
Fia. 2. (a) A vertex. (b) A labeled vertex.

form

Sali, w) = 87 3 8l6) e (66 — u + 9,
(4.6)

where

I

¢. = u+ ir(2a + 1)87" (fermions),
Co = p + 2imaf™

and a takes all integer values. The quantity & is an
infinitesimal real, positive number. We shall call
S(¢.) a propagator also, and we shall call ¢, an
‘energy.’

The complete thermodynamic behavior of the
system can be obtained from S,(f,). The mean
number of particles at a given temperature and
chemical potential is

N(ﬂ; I-‘) = ;Nky

1\-7., = :‘:6_1 Z Sk(g'a) exp (g-a 6))

4.7)
(bosons),

4.8

where the N, = (N,) are the mean occupation
numbers. The mean energy also has a direct ex-
pression. Using (3.1), (3.3), (3.4), and (4.3), we find

=+ ; [08u(u, u')/ 0w ] -u = (Ho) + 2(HJ), (4.9)

and we note that (H,) = :i:Zk &Se(u, u). Then
it follows from (4.6) that the mean energy E(8, x)
is given by™

E@, p =+ g; (& + $2)Sk(ta) exp (£a8). (4.10)

The entropy, pressure, and other thermodynamic
quantities can be found from N(8, u) and E(B, u).
[Alternatively, the thermodynamic potential may
be obtained from Si(f,) by an integration over an
interaction strength parameter.®]

The propagator for free particles is

() = (Fa — )

20 See N. M. Hugenholtz and D. Pines, Phys. Rev. 116,
489 (1959).

(4.11)
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The coupled-particle propagator Sg({.) may be
expressed in terms of Si”(¢,) by a linked-diagram
expansion constructed according to the following
rules:

1. Call the diagram part shown in Fig. 2(a) a vertex.
A vertex consists of two solid-line junctions connected by a
dashed line. ‘Line’ hereafter will mean solid line except
where noted.

2. For each positive integer n, take n vertices and join
incoming with outgoing lines in pairs so as to form, just once,
all possible distinct, linked diagrams with just one incoming
and one outgoing external line. Linked diagrams are those
which do not consist of disconnected parts. External lines
are those which leave or enter the diagram. In reckoning
distinctness, the n original vertices are considered indistin-
guishable and the two solid-line junctions in any vertex
are considered indistinguishable. However, incoming lines
are distinet from outgoing lines. Examples: Figs. 6(a) and
8(a) are distinct, but Figs. 6(a) and 9(a) are not.»

3. Label the external lines with momentum k. Label the
internal lines with momenta k', k", - -+ . In addition, associate
the ‘energy’ ¢, with the external lines, and ‘energies’ ¢,-,

5", -+ with the internal lines.

4. With each line, external or internal, associate a factor
Sp®(¢), where p is the momentum labeling the line and
¢ s the associated ‘energy.’ Special case: Include an additional
factor exp (¢36) if the beginning and termination of the line
are in the same vertex.

5. With each vertex, at which are joined lines with
momentum labels p, q, r, s and respective ‘energies’ {), ¢,
¢4, ¢ as shown in Fig. 2(b), associate a factor

~1
"ﬂ ¢'pqrsz—s 5p+q,r+s 6b+n,d+s'

Note: This rule is ambiguous with respect to the exchange
(p, 8) = (q, r). By (2.3) and (3.5), however, the factor called
for by the rule is invariant in value under the exchange.

6. For fermions only: Associate with each diagram a
factor (—1)¢, where [ is the number of closed solid-line loops
in the diagram.

7. To form the contribution of a given diagram, multiply
together all the factors introduced by rules 4, 5, and 6 and
then sum over all the momenta k', k’, --- and ‘energies’
Coty $a''y + - - associated with the internal lines.

8. To form Sk({.), first sum the contributions given by
rule 7 for all the diagrams admitted by rule 2. Then add
the contribution Sk©(¢,), which is associated with the
zeroth order (n = 0) diagram Fig. 3(a).

We shall call the expansion for S,(¢,) generated
by rules 1-8 the primitive linked-diagram expansion.
A more compact expansion, which we shall call the ¢r-
reducible linked-diagram expansion, may be con-

21 If the vertices and junctions were considered distinguish-
able, one would obtain, for each of our distinct diagrams, a
total of 27n! diagrams, all of which would give identical
contributions to Sk({.). If one counts these diagrams sep-
arately, which we do not do, the contribution per diagram
obtained by our rules 1-7 must be multiplied by 1/2n!
The latter procedure is adopted in reference 8.
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structed by replacing rules 2 and 4 with the following
altered rules:

2. Retain only those diagrams admitted by rule 2 which
do not contain self-energy parts. We shall call these irreducible
diagrams. (A self-energy part is a part of a diagram which
contains at least one but not all the vertices and which is
connected to the rest of the diagram by just one outgoing
and one incoming line.)

4’. In rule 4, replace each factor Sp®(}{;) by a factor
S»(¢s). Exception: With the outgoing external line associate
the factor Sx®(¢.) as before.

The primitive diagram expansion gives S.({.) as
an infinite sum of integrals (we consider the case
Q@ — ) over the known quantities S{”({,). In
contrast, the irreducible expansion is really an
infinite-series integral equation for S.(f,). A con-
venient way to express the irreducible expansion
is as follows: We define M(¢,) by

Selsa) = (6o — & — Mu($)]".

Then the irreducible linked-diagram expansion for
M, (¢,) is the same as that for S.({,) except for the
changes expressed by the following further rule
alterations:

(4.12)

4", In rule 4/, omit entirely the factors for the two
external lines.

8. In rule 8, omit the contribution of the zeroth-order
diagram.

The use of the rules will be illustrated by the
examples treated in Sec. 5. If we take ¢ypre = 1
for all k, p, r, s, then the rules we have given yield
the established propagator expansions for the true
problem.

5. PROPAGATOR EQUATIONS FOR THE MODELS
5.1. Underlying Assumptions

We shall now show that our fermion and boson
models lead to closed integral equations for S.(¢.)
in the limit @ — « with fixed u or p. We wish first
to state clearly the assumptions which underlie the
analysis:

1. As in Sec. 2, we restrict V(x) to be a smooth,
bounded function such that |V,| < O(k™), k — .

2. We assume that all the sums over intermediate
momenta which occur in any given order of the
primitive linked-diagram expansion converge at
infinity. More precisely, we assume that, for given
k and a, the contributions to S,({,) which involve
intermediate momenta higher than some given
momentum k... vanish as k... — <. Moreover, we
assume that they vanish in a manner independent
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of 2 as € — o. We believe that this assumption
actually follows from assumption 1, but we shall
not try to prove this here.

3. As in Sec. 2, we assume that V, = 0@
for all k as @ — . This means that for long-range
potentials a cutoff length [ must be employed as in
(2.24). We take the limit ] —» « only after the limit
2 — o« has been performed.

4. For every k and a we assume that Si”(¢,)
approaches a limit independent of Q as @ — o
with p constant. This excludes from our present
considerations boson systems below the Einstein-
Bose condensation temperature.

5. The final assumption involves a deep-lying
convergence question corresponding to that which
arose in Sec. 2. We shall see, for each of the models,
that large classes of diagrams give a vanishing con-
tribution to Sg(f,) in the limit & — «, up to any
given order of diagram. On this basis, we shall
assume that these classes do not contribute when
summed to all orders. It will not follow from our
analysis that this is actually so. The reason is that
the diagrams of order N(=pQ) and higher are
enormous in number for large ©, and it will not be
clear that cancellations due to the randomness of
the ¢y, will suppress the contribution of these
diagrams as they do contributions of finite order.

The necessity for assumptions 3 and 4 will be
eliminated by the generalized treatment given in
the following paper. There we construct models for
systems of any size and obtain closed propagator
equations without taking the limit Q — . The final
equations are identical with those to be derived
here, and they justify the latter in cases where
assumptions 3 and 4 are not satisfied. In particular,
they establish the closed model equations for con-
densed boson systems. The generalized treatment
provides much neater derivations of all the results
to be obtained in Sec. 5. We do not employ it at
the outset because it requires an unfamiliar and
more elaborate formalism.

Assumption 5 also is best examined by the
methods of the following paper. The approach to
this question adopted there is to consider the
propagators in the real-time domain, rather than
the temperature domain, and to regard them as
the limits of more general quantities (correlation
and Green’s functions) which are defined for non-
equilibrium as well as equilibrium. Linked-diagram
expansions exist which give the evolution of the
correlation and Green’s functions forward in time
from a given initial statistical state. As in the
present case, these expansions can be formally
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summed and expressed by closed equations for
each of our models.

A new feature, however, is that the evolution in
time can also be examined by an alternate method
which seems genuinely independent of perturbation
expansions. One can replace the exact differential
equations of evolution by corresponding difference
equations involving small time increments. In con-
trast to a perturbation expansion (which is akin
to a Taylor series) such a procedure should converge,
as the increment size is decreased to zero, whenever
the differential equations themselves are meaning-
ful. This permits an examination of assumption 5
from a new point of view. Although the analysis
we shall present in the following paper is not rigorous,
we feel that it provides substantial support for the
validity of our closed model equations.

5.2. Hartree-Fock and Random-Coupling Models

The derivation of closed propagator equations is
simplest for the Hartree-Fock model. Consider the
primitive linked-diagram expansion for S,(¢,). There
are two distincet first-order diagrams, and they are
shown in Figs. 3(b) and 3(c). By the rules of Sec. 4,
the contributions of these diagrams involve the
factors ¢y and @y, respectively, but no other ¢
factors. Therefore, by (3.18), their contributions are
identical in the Hartree-Fock model and in the true
problem.

However, consider Fig. 4(a). The contribution of
this second-order diagram to the primitive expansion
for Sg(¢.) is

FB™ Y. bupraboror Vies Vs ; SE2 ()88 ()

X 8 )S ()8 (), (B.1)
P
£, P
H [ H "
! : PSS
| . LN
K s Kk k k

{a) (b)

Fre. 4. The second-order irreducible diagrams for Sk({a).
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where r = k 4+ p — s,d = a + b — ¢, by mo-
mentum and ‘energy’ conservation. By (3.18), the
only surviving terms in the sum are those for which
eithers = k, r = porr = k, s = p. Thus, there
is only one free intermediate momentum, which
we may take as p. Now as @ — o, the number of
allowed momenta p in any given volume of mo-
mentum space is « Q. It then follows from assump-
tions 2, 3, and 4 of Sec. 5.1 that the contribution
(5.1) vanishes as Q7.

If similar considerations are applied to the rest
of the primitive linked diagrams, it is possible to
verify the following result: The only diagrams which
survive in the limit 2 — o are those for which
momentum conservation alone assures that the ¢
product given by the rules of Sec. 4 consists wholly
of factors of the form ¢,.q, OF ¢pope. Such diagrams
give the same contribution as they do in the true
problem. For every other diagram of finite order,
(8.18) so restricts the summations over intermediate
momenta that the result vanishes as some positive
integral power of Q7.

It is easy to see from the rules of Sec. 4 that
the higher surviving primitive diagrams, which we
have just specified, are simply those which can be
obtained from Figs. 3(b) and 3(c) by repeatedly in-
serting these first-order diagrams into themselves
and into each other as self-energy parts. An example
is shown in Fig. 5. Now let us invoke assumption 5
of Sec. 5.1. It then follows that Figs. 3(b) and 3(c)
are the only diagrams which survive in the 4r-
reducible expansion for S,(¢,) in the limit @ — o,
We may see this by noting that the primitive ex-
pansion can be recovered from the irreducible ex-
pansion by taking every factor .S which occurs in
the latter and replacing it by its own primitive ex-
pansion. If diagrams other than Figs. 3(b) and 3(c)
occurred in the irreducible expansion, then it is
clear that the primitive expansion for S.(¢,) thus
recovered would contain diagrams other than those
we have specified.

Using the rules of Sec. 4 to evaluate the contri-
bution to M.({.) of the two surviving irreducible
diagrams, we find

M(t) = 87 E (£Vo = Vieo)Si(is) exp (8, 9),
(5.2)

where we have noted (2.3). The first term on the
right side of (5.2) arises from Fig. 3(b) and the
second from Fig. 3(c). Upon inserting (5.2) into
(4.12), we obtain a closed integral equation for
Se(¢.) for the Hartree-Fock model. Equation (5.2)
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may be rewritten in the form

Mils) = 2 (Vo F Vi)W, (5.3)
where we use (4.8). The parts of this result involving
Ve and V,., are, respectively, the direct and ex-
change parts of the effective potential which is
obtained in the usual Hartree-Fock approximation
to the true problem.

Let us consider next the random-coupling model.

By (3.16) and (3.17), we find
17 ¢kprs¢srpk = 1:

= 1.

¢kppk = oy = 1,

(IS’kpﬂsqS srkp (5 4)

It then follows from the rules of Sec. 4 that Figs.
3(b), 3(c), 4(a), and 4(b) all survive in the primitive
expansion for S,(¢,) and give the same contributions
as in the true problem.

However, consider Fig. 6(a). The contribution
which it makes to the primitive expansion for Sg(¢.)
is of the form
:!:6_3 Z ¢kprs¢srr's’¢s’r’pk 5k+p.r+n

PISI’ S/

X 5r+s, r'+s’ 6r’+s’ »ptk

X Vk—sVs—s' Vs'—k

{energies)

(product of 8’ factors).  (5.5)

There is an identity among the conservation condi-
tions given by the three Kronecker symbols. Conse-
quently there are three independent intermediate
momenta, which we may take as p, s, and s’. For
special values of these momenta, the ¢ product is
unity by (5.4). However, in correspondence to the
result noted above for the Hartree-Fock model, it
is easy to see that these special values give a vanish-
ing contribution to S,(¢,) when @ — «. Except for
these restricted momentum values, the ¢ product
will have a phase which, by (3.16) et seq., fluctuates
at random with change of p, s, and s’.

Now let us divide the momentum space into
small regions, of ‘volume’ A, such that S{%(f)
exhibits negligible change if p varies within a given
region. By assumption 4 of Sec. 5.1, this should be
possible in the limit @ — . Now as @ — «, the
density of allowed modes in momentum space is ~ £.
Hence, in the summation over momenta in (5.5),
the number of terms for p, s, and s’ within given
small regions will be ~ (QA)®. Let us consider the
contribution from those terms in which the phase
of the ¢ product fluctuates at random with change
of p, s, and s’. As we have just noted, these consti-
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F1a. 5. A primitive diagram which survives in the Hartree-
Fock model.

tute all but a negligible fraction of the terms. Be-
cause of the phase-fluctuation, the total contribution
of these terms will be down by a factor ~ (@A)~}
from the value it would have in the true problem.
Since this factor vanishes as @ — «, it follows from
assumptions 2 and 3 of See. 5.1 that the contribution
to Su(§.) from Fig. 6(a) vanishes in the limit. Qur
argument, of course, assumes a typical assignment
of values to the randomly chosen parameters 6,,,,
(cf. the discussion in Sec. 2.2).

Similar analysis may be applied to the higher
diagrams in the primitive expansion for S (¢,). The
result is that the only diagrams which survive are
those for which momentum conservation alone as-
sures that the ¢ product consists entirely of factors
and/or factor-pairs of the forms shown in (5.4).
Any other diagram gives a contribution which
vanishes as some negative power of @ as @ — .
The surviving diagrams can be seen to be those
which can be constructed from Figs. 3(b), 3(¢), 4(a),
and 4(b) by inserting these same four diagrams
repeatedly as self-energy parts, in correspondence
to the situation for the Hartree-Fock model. It
follows from this that the only surviving diagrams
in the irreducible expansion for S,({.) are Figs.

r [ |
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Fie. 6. The third-order and fourth-order ladder diagrams.
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(b)
F16. 7. The third-order and fourth-order ring diagrams.

3(b), 3(c), 4(a), and 4(b). Again, assumption 5 of
Sec. 5.1 is implicit in the argument.

Combining the contributions of the four surviving
irreducible diagrams according to the rules of Sec. 4,
we find

Mk(g—a = Z (VO + Vk—p)Np + ﬁ~2 E Vk—s(Vk—s

psbe

F Vv-s)Sn(fb)Ss(g‘c)Ski»n—a(g'me—c), (56)

where, again, we note (4.8).

If the third of constraints (3.17) were relaxed in
assigning random values to the 6., we would
obtain a version of the random-coupling model in
which the exchange diagram Fig. 4(b) did not
survive. The corresponding expression for M, ({,)
would not include the term in (5.6) which in-
volves V,_,.

5.3. Ring and Ladder Models

The results described above for the Hartree-Fock
and random-coupling models may be summarized
very simply: The only diagrams which survive in
the irreducible expansion for M(¢f,) are those for
which the associated ¢ product has the value one
for all values of the intermediate momenta allowed
by momentum conservation. The contributions of
the surviving diagrams have precisely the same form
in the models as in the true problem. This general
result is also true for the ring and ladder models
under the assumptions of Sec. 5.1. Analysis similar
to that we have described shows that the irreducible
diagrams in which the ¢ product can exhibit a
randomly fluctuating phase give vanishing contri-
butions in the limit @ — «. We shall now identify
the surviving irreducible diagrams in the ring and
ladder models and eonstruct the corresponding closed
expressions for M (¢,).
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It follows from (3.11) and (3.12) that the first
three of relations (5.4) are satisfied in the ring
model. Thus the irreducible diagrams Figs. 3(b), 3(c),
and 4(a) survive. However, the ¢ product associated
with Fig. 4(b) is

¢kprs¢srkp = eXp [’L.(gks + gpr) + i(gsp + -érk)]-

The random phase of this product does not vanish
when p, r, and s are constrained by momentum
conservation alone. Consequently, the diagram does
not survive. The further irreducible diagrams which
do survive in the ring model are the infinite class
of ring diagrams, whose first two members are
shown in Fig. 7. (If the incoming and outgoing
external lines are joined together, these diagrams
from symmetrical rings.) The ¢ products associated
with the successive ring diagrams have the phases

[(gks + gpr) + (grp + 61)’1-’) + (gr'p' + gsk)],
[(éks + épr) + (51’9 + 59':')
+ (gr'p’ + gp"r”) + (gr”p" + gsk)]’

which all vanish, by (3.12).

It may be seen from the rules of Sec. 4 that the
ring diagrams give a set of contributions to M (¢.)
which resemble a geometric series. They may be
summed easily by the usual methods for such series.
If we include also the contributions from Figs. 3(b),
3(e), and 4(a), the final result for M (¢,) is

Mi($) = Vol = 87" 20 Vica(§a-8ult0) exp (5. 9),
) (5.9
where N = >, N,, and V,_,({.-.) is defined by
Vit = Va = 87 2 VaSult0)Spral§ora) Vilta)-
g (5.10)

(6.7

(5.8

The term in (5.9) proportional to N arises from the
Hartree-Fock diagram Fig. 3(b). To verify the
remainder of the result, we may solve (5.10) by
iteration to yield V{_.(f._.) as a power series in
Ve-s and then substitute into (5.9). The first term
Vs in the series gives the contribution of Fig. 3(e),
and the higher terms give those of Fig. 4(a) and the
successive ring diagrams. [The factor exp ({.8) is
superfluous for the second- and higher-order con-
tributions; it does not affect their values.]
Equation (5.10) may be rewritten as

Vé(g—d) = Vq[l + 6-1 pzb Vqu+q(§‘b+d)Sp(§'b)]‘l'
(5.11)
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We note that the potential components for different
values of q are not explicitly mixed in this expres-
sion, a fact which recalls the classical ring results
obtained in Sec. 2.3. We may call V/(¢,) an ‘effective
potential’ for the ring model. In field-theoretic
terminology, it is a kind of vertex operator. From a
particle viewpoint, we may consider kK — s and
$am.e in (5.9) as a momentum and ‘energy’ which are
taken from the incoming particle, transmitted along
a chain of intermediate particles, and finally returned
to the original particle to complete the ring.

It is of interest to compare the ring summation
represented by (5.9) and (5.10) with that given by
Montroll and Ward.®> The latter appears to cor-
respond to a summation over ring diagrams for the
primitive linked-diagram expansion. It omits the
iterated self-energy corrections which our model
includes.

It follows from (3.6) and (3.7) that all of the
relations (5.4) are satisfied for the ladder model.
Henee the irreducible diagrams Figs. 3(b), 3(ec),
4(a), and 4(b) all survive. The further irreducible
diagrams which survive are the infinite classes of
ladder diagrams and exchange ladder diagrams. The
first two members of each class are shown in Figs.
6 and 8, respectively. It follows from (3.6), (3.7),
and the rules of Sec. 4 that the ¢ products associated
with corresponding diagrams in the two classes
have the same value. For the successive diagrams
in either class, these products have the phases

[(_epk+ ers) + (—ors + or’s’) + (—or's' + epk)],
[(_0pk + 0:5) + (—ers + 0r’s')
+ (—or’s’ + er"s”) + (_01’”8” + 0]11{)]7 (5‘12)

H
which vanish identically. The ladder and exchange
ladder diagrams exhaust the higher irreducible

A

Fic. 8. The third-
order and fourth-
order exchange lad-

b der diagrams.

=4
(2]
"L
=
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Fia. 9. (a) A
diagram redundant
with Fig. 6(a). (b)
A diagram redun-
dant with Fig. 8(b).

(b)

diagrams which survive in the ladder model. [It
should be noted that according to the rules of Sec. 4,
diagrams like Fig. 9(a) and Fig. 9(b), which are
topologically identical with Figs. 6(a) and 8(b),
respectively, are not to be counted separately.]

The contributions of the ladder and exchange
ladder diagram sequences can easily be summed in
closed form, in a similar fashion to the ring diagrams.
If we include also the contributions from Figs.
3(b), 3(c), 4(a), and 4(b), the final result for the
ladder model is

Mk(g‘a) = :EB—I zb: [Vlipvk(.{-a+b)

+ V{Knkn(g'a«&b)]‘sp(fb) exP (g'b 6);
where V{ .. (¢.4s) is defined by

v’liprs<§‘a+b) = Vk—s - ﬁ—l Z Vk—s’ V"r'm(g‘wb)

(5.13)

X Ss’(g‘c’)Sr’(g.aH:—c’))

withr=k+4+p—sandr =k + p — s If (5.14)
is expanded by iteration and the result for V{,,({.+s)
is substituted into (5.13), one obtains the explicit
contributions from all the diagrams which survive
in the ladder model. The nonexchange contributions
all arise from the factor Vi, (¢.+,) in (5.13), and the
exchange contributions from the factor Vi, (¢.+s)-
The quantities V[, (f,+,) may be regarded as de-
fining an effective potential for the ladder model.
It is easily seen that they satisfy

Vl:prs(g.a+b) = V;ksr(g‘u+b)'

If the symmetry constraint (3.7) is relaxed in
assigning random values to the phases 6, an ab-
breviated ladder model results in which none of
the exchange diagrams survive. The abbreviated
model violates the second of conditions (3.5), and

(5.14)

(5.15)
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Fia. 10. Ex-
amples of higher
primitive diagrams
contributing in the
ring model (a) and
the ladder model
(b).

n consequence it requires an elaboration of our
diagram formalism: The two junctions which make
up a vertex must be distinguished. We shall not
discuss this model further here.

Equations (4.12), (5.9), and (5.10) constitute a
closed set of integral equations which determine
Se(t.) for the ring model. Similarly, (4.12), (5.13),
and (5.14) constitute a closed set for the ladder
model. These equations incorporate extensive classes
of terms from the primitive diagram expansion for
Sk(¢,) in the true problem. They include all primitive
diagrams which can be obtained from the surviving
irreducible diagrams by repeatedly inserting these
irreducible diagrams into themselves and each other
as self-energy parts. Examples of complicated
primitive diagrams included in the ring and ladder
models are shown in Figs. 10(a) and 10(b), re-
spectively.

Note added in proof. The propagator equations
obtained above for the Hartree-Fock, ladder, and
ring models are equivalent to approximations pro-
posed recently by G. Baym and L. P. Kadanoff
[Phys. Rev. 124, 287 (1961)], who were guided by
a requirement that energy, momentum, and angular
momentum be conserved under weak coupling to
external systems. In the present approach, these
properties follow from the fact that a model Hamil-
tonian is treated with formal exactness. One can
see immediately from the generalized formulation
in the following paper that the invariance properties
of the true Hamiltonian are preserved in the models.
When the model Hamiltonians are bounded from
below, one expects in addition that the equations
yield non-negative one-particle energy and momen-
tum distribution functions.

KRAICHNAN

6. RELATION BETWEEN DISTINGUISHABLE AND
INDISTINGUISHABLE PARTICLE MODELS

.We wish now to establish a correspondence be-
tween the models formulated in Sees. 2 and 3 and
thereby verify that the thermodynamic relations
obtained in Sec. 2 are at least formal classical limits
for the fermion and boson models. The correspon-
dence is already suggested by the identity of the
lower bounds on the ring and ladder model Hamil-
tonians which we found in the two cases. Our
procedure here will be to formulate the distin-
guishable-particle problem in terms of second-
quantized fields, one for each particle. Then we shall
appeal to two assumptions: the thermodynamic
equivalence of canonical and grand canonical en-
sembles for infinite systems, and the equivalence
of distinguishable and indistinguishable particles in
in the classical limit.

The Hamiltonian of a system of NV distinguishable
but similar particles interacting through the pair
potential V(x) may be written

H= Z Ek: kalI(n)‘]k(n) + H,, (6.1)
H; =% E :Z Vis 5k+p.r+sq;(n)Q;(m)Qr(m)Q;(n)
nm kprs
(n:m=1;2;"‘ ,N)- (6-2)

Here we have introduced a separate second-quan-
tized field {labeled ()] for each particle, and we
restrict the system to those states which are eigen-
states with eigenvalue one for all the ~wumber
operators

N(n) = ; Nk(n) = kE q;(n)ka- (6-3)
The commutation relations are
[k Q;(m)]- = um Oip- (6.4)

The restriction of each field to one-particle states
makes the choice of plus or minus commutator
immaterial.

Let us consider the limit ¥ — o« with 8 and
p = N/Q constant. We shall assume in this limit
that the canonical ensemble for our system gives
the same thermodynamics as a grand canonical
ensemble in which all states of the second-quantized
fields are admitted. The latter ensemble is chosen
so that

<N(n)> =1, <N> = Zn: <N(u)> = N; (65)
where
(Nw) =Tr {e~ﬂ(H_”N)N(»)}/T1' {e_ﬁ(ﬁﬂm}- (6.6)
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We should note that (6.5) implies 4 — — « when
N — o« with constant p and 8, as may readily be
verified for free particles. The consequence is that
the one-particle distribution function takes the
Maxwell-Boltzmann form in the limit, as it must
for consistency. We may also note that the variance
{(N(» — 1)*) vanishes in the limit.
Now let us replace (6.2) with a model H,,

toot
H, = % Z Z Vk—s¢kprs 6k+p,r—rst(n)QD(m)(Ir<m)QS(n)y
nm kprs (G 7)

where the ¢,,,, are the same parameters as in Sec. 3.
The thermodynamics of the model system may be
obtained by a propagator formalism very similar
to that of Sec. 4. Let us write

Sk(ux “,) = Z Sk(n)(ur ’LL,)

n

= — ; <T[Qk(n)(u)q;(")(u’)]>’

and then define S(¢.) = D.n S (Ce) in terms
of this S,(u, ') by (4.6). Again, it will not affect
the final results whether the fermion or boson case
is taken. With these definitions, we find that (4.8)
and (4.10) hold also for the present system, with
Ne = 2. Niwm- (Of course, for given p and 8, the
chemical potential p will be very different in the
present case than in Sec. 4, as we have noted above.)
Let us write

Skt = (¢ — &

Then the primitive linked-diagram expansion for
Se(¢.) is given by the rules of Sec. 4 provided the
following changes are made:

(a) Give each line a particle label as well as a
momentum label. Associate with each line a factor
of the form (6.9).

(b) With each vertex, bearing momentum labels
P, q, 1, s and particle labels n, m, m’, n’ as shown in
Fig. 11, associate a factor

(6.8)

(6.9)

—1 o
_'ﬁ ¢pqrsz-s 6p+q,r+s 5b+c.d+e 6nn' Opyom?

(¢) Sum the final result over all values of all the
particle labels, including those on the external lines.
The principal difference between the results of

! Fic. 11. A labeled vertex for
! the second-quantized distinguish-
able particle system.
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Fic. 12. Some diagrams for the system of distinguishable

particles.

this expansion and that of Sec. 4 is that now the
contributions of all diagrams with particle exchange
vanish in the limit N — o, @ — «, as we would
expect. The formal reason this happens is that the
factors of the form §,,. severely restrict the sum-
mations over particle labels in the exchange dia-
grams. In the diagrams without exchange, each
closed loop represents a separate intermediate
particle which interacts with the incoming particle
or with another intermediate particle. Examples are
shown in Fig. 12.

Suppose that we now determine the ¢, by (3.6)
and (3.7), the conditions for the fermion or boson
ladder model. It is clear from Sec. 5.3 that if similar
analysis is carried out for the present case, the
surviving diagrams will be all those which arise from
the irreducible diagrams Figs. 3(b), 4(a), and the
ladder sequence illustrated in Fig. 6. As we have
just noted, there are no exchange contributions for
the present system, and consequently the exchange
ladder sequence of Fig. 8 gives nothing.

Let us compare this result with what we get from
the distinguishable-particle ladder model of Sec. 2.
We replace (6.7) by the interaction Hamiltonian

Hi = % Z Z .Vk—s(ﬁn.m;k—s

nm KDTS
(6.10)

where the ¢, ,..._. are given by (2.9) ef seq. It is
clear that the only change in the expansion for
Si(¢.) is that the factor ¢,q.sV,-s in rule (b) above
must be replaced by the factor ¢, m.p-sVp-s"> We
readily find that precisely the same diagrams survive
in the present case as for the previous ladder model.
We shall illustrate the equivalence by two examples.

R o
*Okcrp, r+5Gk () Ipom) Tr(m) Csiny

2 We may formally extend the definition of the ¢, m.k
to include the case n = m, as we did in Sec. 2.3. This case
represents a vanishing contribution here, in the limit N — «.
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Consider first the diagram of Fig. 12(c) and equip
it with momentum labels as in Fig. 6(a). Its contri-
bution contains the factors

Vk—sVs—s’Vs’-k exp {—’L[(k - S)
+ (s —¢)+ (s —Kld..}, (61D

according to our rules and to (2.9). The phase of
this expression is identically zero, and consequently
the contribution survives when it is summed over
the particle labels n and m in accord with rule (¢).
Next, however, consider the ring diagram Fig. 12(d),
with momentum labels as in ¥Fig. 7(a). Its contri-
bution contains the factors

VqVqVq exp [_"l'q'(dn'z "l" dz_m + dm.n):’;

where ¢ = k — s and we have used the momentum
conservation relations. The phase of this expression
fluctuates at random as we sum over all values of
n, I, and m, so that the contribution does not survive
in the limit N — o, @ — «. (The contribution from
the special value @ = 0 also vanishes in the limit.)

The equivalence of the distinguishable and indis-
tinguishable ring, random-coupling, and Hartree-
Fock models may be verified in a similar fashion.
We shall give one further illustration: Consider
again Fig. 12(d), with momentum labels as in Fig.
7(a), but now fix the ¢, ,. by relation (2.19) for
the ring model. The contribution from this diagram
now contains the factors

VaVaVa €xXp {i[(an;q + 01:—0)
+ (Gl:q + em:—q) + (om:q + 0,,;_,_1)]}, (613)

and we see from (2.20) that the phase vanishes.

We have seen that the thermodynamics of our
second-quantized distinguishable-particle system is
formally the same in the limit N — o, @ — «
whether the models of Sec. 2 or those of Sec. 3 are
used. Our argument was based on the equivalence
of canonical and grand ecanonical ensembles for the
system, and also implicitly made use of assumption
5 of See. 5.1, which underlies all our work. Now let
us make the further assumption that in the classical
limit (sufficiently high temperature and low density)
the thermodynamics of fermion, boson, and distin-
guishable particle systems become identical in the
true problem (all ¢’s = 1), provided the same values
of p and B are taken in each case. We have seen that,
except for exchange diagrams, the models of Sec. 3
select precisely the same diagrams from the true-
problem expansion for Sy(f,) in all three cases:
fermion, boson, and distinguishable-particle. How-
ever, the exchange diagrams do not contribute in

(6.12)
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any event in the classical limit. It then follows from
all this that the models of Sec. 2, applied to a dis-
tinguishable particle system, should give the same
thermodynamics in the classical limit as the models
of Sec. 3, applied to fermions and bosons. It follows
that the classical results of Sec. 2 for A should
represent classical limits of the ring, ladder, random-
coupling, and Hartree-Fock models for fermions or
bosons.

It may also be possible to investigate the relation
between our two kinds of models by using the
formalisms of Montroll and Ward® or Lee and
Yang,*® neither of which require second quantiza-
tion. In the method of Lee and Yang, the thermo-
dynamics of distinguishable (Maxwell-Boltzmann)
particles is expressed in terms of a “binary kernel”
which is determined from the ordinary two-particle
matrix elements

&k, p IH«I 5:r> = Vi-s Gkip.rse-

Then an algorithm is used to obtain results for
fermions or bosons. To attempt an expression of
our models in this formalism, we would replace
(6.14) by the model matrix element

(6.14)

<k7 P !H"»’ s:r>n.m = ¢n.m;k—st—s 6k+p,r+5 (6.15)
for the Sec. 2 models, or by
(kv p IH‘l] s; r>n,m = ¢kprst—l 6k+p.l’+l (6'16)

for the Sec. 3 models. Here n and m denote the pair
of particles for which the matrix element is evaluated.
We have not explored this procedure.

Recognition of the thermodynamic results of Sec. 2
as classical limits for the fermion and boson models
may provide some useful insights into the behavior
of the latter. For example, the lack of saturation
found in the classical ladder model suggests that a
similar lack characterizes the fermion and boson
ladder models. However, the correspondence be-
tween the Sec. 2 and Sec. 3 models also leads to a
rather discouraging general observation. It points
out how modest are the presently feasible quantum-
mechanical diagram summations compared to known
classical ones. Our fermion and boson ladder and
ring summations, carried out in Sec. 5.3, are more
comprehensive than those usually employed; they
include infinite classes of self-energy corrections
which usually are omitted. Nevertheless, we have
seen that the ladder summation corresponds in the
classical limit to just one term in the Mayer irreduci-
ble cluster expansion. Similarly, our ring summation

23 T, D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959);
117, 22 (1960).
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represents only a partial contribution from each
term of the classical irreducible ring diagram ge-
quence. The familiar Montroll-Mayer summation
(2.29) appears to correspond, in the quantum-
mechanical case, to retaining both ladder and ring
summations, together with the self-energy cor-
rections of all orders obtained by repeatedly in-
serting the retained irreducible diagrams as self-
energy parts.

7. DISCUSSION

In the present paper we have obtained formally
exact closed equations which express the statistical
mechanics of a class of Hermitian, momentum-
conserving model Hamiltonians for infinite many-
body systems. The potential value of these equa-
tions lies largely in the fact that certain of-the
models, the ring and ladder models, share important
boundedness properties with the true many-body
Hamiltonian: The eigenvalues of the ladder-model
Hamiltonian are non-negative if the pair potential
V(x) is purely repulsive, and those of the ring-
model Hamiltonian are bounded from below if V(x)
is bounded and has a non-negative Fourier transform.

These properties suggest that the ring and ladder
models, with appropriate V(x), should have a
meaningful statistical mechanics even in the zero-
temperature limit. Moreover, the structure of the
models is such that they embody some important
qualitative dynamical features of the true many-
body system. For example, we may expect that dis-
sipative damping of single-particle excitations sur-
vives in the models. This is particularly clear in the
distinguishable-particle formulation of the models:
each particle interacts individually with every other
particle. A similar situation exists for the fermion
and boson models, but there it is more natural to
think of interaction among individual momentum
modes rather than among individual particles.

The remarks just made suggest that the ladder
or ring models may be appropriate for investigating
whether the sharp Fermi surface of an infinite system
of uncoupled fermions at zero temperature persists
when the particles are coupled. Similarly, the model
solutions may be of aid in deciding whether singular
occupancy of the zero-momentum state, which
characterizes an infinite free-boson system at very
low temperatures, persists when the particles are
coupled. (We anticipate here the extension of our
analysis to low-temperature boson systems which
will be carried out in the following paper.) The
natural way in which the effective density com-
ponents p, appear in the ring model suggests that
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it may be appropriate for investigating phonon-like
excitations and other collective phenomena.

However, any confidence which our rigorously
bounded model Hamiltonians may inspire in a given
problem does not automatically extend to the closed
equations which we have derived for the model
propagators. First we must establish that these
equations are exact descriptions of the models in
actuality, as well as formally. This has not been done
in the present paper. As we discussed in Sec. 5.1,
a fundamental convergence question relating to
extremely high-order diagrams is involved. We shall
state this question more precisely in Sec. 4 of the
following paper,'* using generalized stochastic models
which yield our formally closed equations for finite
as well as infinite systems. In Sec. 7 of that paper,
we shall outline what we hope is the basis for a
satisfying justification of our closed model propa-
gator equations.

The analysis in the following paper is concerned
almost exclusively with the indistinguishable-particle
models, and we shall not attempt there to offer
explicit justification for the assumptions which
underlie the classical results of the present Sec. 2.
However, we have already found a degree of sup-
port for these results: The closed expressions for
the Helmholtz free energy obtained in Sec. 2 re-
produced precisely the rigorous lower bounds on
the ring and ladder model potential energies.

QOur third model, the random-coupling model,
exhibited no lower bound on the potential energy
per particle in the limit of an infinite system. The
results of Sec. 2.4 suggest that this is the case
whatever the form of V(x). Consequently, we must
expect the random-coupling model not to give
sensible statistical-mechanical results at zero tem-
perature in either the classical or the quantum-
mechanical case.**

The indicated failure of the random-coupling
model at zero temperature may point a moral. We
have scen in Sec. 5 that this model corresponds to
taking just the lowest few diagrams in the irredu-
cible diagram expansion of the propagator for the
true many-body Hamiltonian. The failure of the
model suggests that a term-by-term treatment of
the irreducible diagram expansion for the true
problem may not be justified at very low tempera-

 This does not necessarily exelude the random-coupling
model for condensed boson systems. The classical equation
of state (2.33) suggests admissibility at any given p and 8
provided V(x) is weak enough. Thus the model may be
admissible quantum-mechanically even below the \-point,
if V(x) is weak enough. We regard this argument with strong
suspicion.
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tures, and that results obtained from such a treat-
ment should be viewed with caution.

A general question raised by the present paper
is whether there exists an infinite sequence of sto-
chastic models which correspond to more and more
comprehensive (but summable) classes of terms
from the linked diagrams expansion for the true
many-body problem. We have so far not succeeded
in constructing substantially more elaborate models
than those presented here. An obvious next step is
to seek a model that combines both ring and ladder
summations so as to correspond to the classical
Montroll-Mayer ring-diagram summation. On the
basis of a preliminary investigation, we offer the
following opinion: If such a model can be con-
structed within the general formal framework of
Sec. 3.1, it probably can be achieved only by allowing
the parameters ¢, to have stochastically distri-
buted moduli as well as phases. The difficulty is
not in writing propagator equations which yield the
desired summations but in realizing the correspond-
ing model Hamiltonian.
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APPENDIX

We wish to discuss here two topies which arose
in Sec. 2: the derivation of (2.11) for the classical
models, and the significance of the condition
(0p/dp)p < 0 for the models.

Equation (2.11) for the true problem usually is
derived on the basis of the grand canonical ensemble
and rigid-wall boundary conditions. It then is form-
ally exact in the limit @ — . [See, for example,
T. L. Hill, Siatistical Mechanics (McGraw-Hill
Book Company, Inc., New York, 1956), Chap. 5.)
However, with our cyeclic V(x) the factoring of
reducible cluster integrals into irreducible integrals
is exact for any @. Consequently, (2.11) is formally
valid for any ©, with the grand canonical ensemble.
In the limit N — o, @ — o it is usually considered
immaterial whether the grand canonical or canonical
distribution is used, and we shall assume that this
is so here.

In the case of our models, a grand canonical
ensemble can be formed by considering each of the
N particles in the canonical ensemble as a separate
species and taking an activity such that the mean
total number of particles over the grand ensemble
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is N. [In doing this, we may extend (2.5)-(2.8)
to include the case n = m, so as to allow interaction
among particles of the same species.] The derivation
of (2.11) in the limit N — «, @ — o, with B,
interpreted as in the text, then depends upon two
facts. First, a reducible cluster integral involving
any given o -+ 1 particles factors exactly into ir-
reducible cluster integrals. As in the true problem,
this is true for any Q because V™"(x) is cyeclic.
Second, if B, is averaged over all N choices of the
species of any one of the particles in the cluster,
then (in the limit N — e, @ — o) the result is
the same for all choices of the species of the other
particles, except for a set of choices of relative
measure zero. This can be seen for each of the
models by analysis similar to that used in the text
to evaluate the B,. We shall not give here a detailed
derivation of (2.11) for the models. It is straight-
forward once the two facts just stated are established.

As in the true problem, we assume in the text
that the final averages for an infinite system are
independent of whether the grand canonical or
canonical ensemble is used. The canonical ensemble
is taken in Sec. 2 because it makes the discussion
simpler. In the quantum-mechanical treatment of
Sec. 6, the grand ensemble is employed.

The derivation and analysis of (2.11) for the
models takes a much more elegant form if one uses
the generalized models deseribed in Appendix A
of reference 11. Then, with the grand ensemble, the
formulation in terms of averaged irreducible clusters
is exaet for all N and Q.

The statement in the text that (3p/dp)s < O
implies instability must be carefully qualified.
Actually, the condition (dp/dp)s < 0, or even p < 0,
does not necessarily imply instability for any of
our models, if p is defined as p*(d4/9p)s. This is
because of the peculiar way in which the potentials
V*7(x) are constructed. The simplest illustration
is provided by the Hartree-Fock model as described
by (2.34) and (2.35). Suppose that we have V, < 0,
so that the potential energy per particle (which is
just A — A, for this model) decreases without limit
as p increases; that is, as we pack more particles
into a fixed volume Q. By (2.35), we have p < 0
and (dp/dp)s < 0, if p is high enough. However,
since each particle moves in a uniform potential,
the potential energy is independent of configuration,
for given N and €, and the system is not unstable.
Instability arises only if, as we pack the N particles
into a closer configuration, we decrease correspond-
ingly the volume of the cyclic cube. Then, since
Vo = Q7% the potential energy becomes increas-
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ingly negative and the system can collapse ca~
tastrophically.

It is likely that the relation (3p/dp)s < O has a
similar interpretdation for all the models treated in
this paper. This condition need not imply instability
if © is fixed, which it must be as we have defined
the models. However, if we were to allow Q to vary
in accordance with the actual gross volume occupied
by the particles, there would be instability. Having
Q vary would actually be a physically appropriate
procedure, as the Hartree-Fock example suggests.
For this reason, we consider (dp/dp)s < 0 to be
an instability indication in making a physical
interpretation of our models.

It should be noted also that the lack of a lower
bound on the potential energy of a system does not
preclude a stable thermodynamics. If the density-
of-states o(E) (where E is the total energy) decreases
faster than exponentially as ¥ — — =, a stable
thermal equilibrium can exist for all finite 8. If the
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decrease is slower than exponential, equilibrium will
be impossible at any B, while, if the decrease is ex-
ponential, equilibrium can exist only if 8 is less
than a critical value.

We wish finally to note the conclusion of L. Van
Hove [Physica 15, 951 (1949)] that (dp/dp)s < O
cannot be an exact theoretical result for a gas of
pairwise-interacting particles. Although it seems
assuredly valid for actual physical systems, Van
Hove's result does not appear to be applicable here.
Our models violate an assumption basic to his
analysis: The V*'™(x) are defined in such a way
that is is not possible to divide the system into
effectively noninteracting macroscopic sub-volumes.
(Van Hove's result clearly is not valid for the
Hartree-Fock example discussed above.) It should
be stressed, however, that the results obtained in
Sec. 2 are not rigorously justified by the analysis
we have presented. As we have noted, there is a
fundamental convergence question involved.
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In a preceding paper [J. Math. Phys. 3, 475 (1962)], some model Hamiltonians were proposed for
quantum-mechanical many-body systems with pair forces. For infinite systems in thermal equilibrium,
they led to temperature-domain propagator expansions which were formally summable and ex-
pressible by closed equations. These expansions were identical with infinite subclasses of terms
from the propagator expansion for the true many-body problem. The two principal models cor-
responded to ring- and ladder-diagram summations from the true propagator expansion, augmented
by infinite classes of self-energy corrections. The model Hamiltonians were called stochastic because
they contained parameters whose phases were fixed by random choices. In the present paper, more
general models are formulated which yield formally summable propagator expansions for finite
systems. The analysis is extended to correlation and Green’s functions defined for nonequilibrium
ensembles. The nonequilibrium treatment ig developed in the Heisenberg representation in such a
way that unlinked diagrams do not arise. A basic convergence question associated with the formal
closed equations for the model propagators and correlation functions is examined by means of finite-
difference integration of the Heisenberg equations of motion. This procedure appears to converge
independently of whether the perturbation expansions for the propagators and correlation functions
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converge. It yields substantial support for the validity of the formal closed model equations.

1. INTRODUCTION

N the preceding paper’ (cited herein as I), some

so-called stochastic-model Hamiltonians were de-
veloped for fermion or boson many-body systems
with pair forces. The models yielded temperature-
domain particle propagators whose linked-diagram
expansions could be formally summed and expressed
by elosed integral equations. The model propagator
expansions were identical with infinite classes of
terms from the propagator expansion for the true
many-body Hamiltonian. The model Hamiltonians
were called stochastic because they contained in-
finite numbers of parameters whose phases were
fixed by random choices. Certain of the models,
called the ladder and ring models, had important
boundedness properties in common with the true
many-body Hamiltonian. For this reason, it was
felt that they might represent useful approximations
to the behavior of the true system, particularly at
low temperatures.

The models deseribed in I led to closed propagator
equations only in the limit of an infinite system.
In the present paper, we develop more general
models which yield formally summable propagator
expansions for systems of any size. With the new
formulation, no special considerations are required
to treat boson systems at very low temperatures,

* This work was supported by the Air Force Office of

Scientific Research.
1 R. H. Kraichnan, J. Math. Phys. 3, 475 (1962).

a case which was excluded in I. Moreover, the entire
procedure of obtaining the closed propagator equa-
tions can be carried out in a neater and more satis-
factory fashion. In the limit of an infinite system,
the final propagator equations obtained from the
old and new models are identical.

The models employed in I were constructed by
altering, in a stochastic fashion, the true inter-
actions among the momentum modes of a second-
quantized fermion or boson field. Corresponding
models for distinguishable particles were constructed
by altering the interaction among pairs of particles
in a way that was different for each pair. In the
present paper, we start with a collection of M
similar fermion or boson systems, where before we
treated a single many-body system. The M systems
are assumed to occupy the same space but not to
interact. The particles in each system are distin-
guishable from those in all the other systems. As
a preliminary to constructing stochastic models, we
introduce a collective description: We define M
quantized fields which are linear combinations of
the quantized fields of the M many-body systems.
Then we alter in a stochastic fashion the true
dynamical couplings among the collective fields. As
a result of the alteration, the individual systems
in the collection, which are independent in the true
problem, turn out to be dynamically coupled in
the models. The eventual closed equations for
particle-propagators are obtained by considering a
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grand canonical ensemble of collections and taking
the limit M — .

We shall be principally concerned only with
fermions and bosons in the present paper. For
completeness, however, we shall describe in Ap-
pendix A the corresponding models for distinguish-
able particles.

The derivation of the closed propagator equations
for the models, both in I and in the present paper,
involves a fundamental convergence question con-
cerning the contribution of classes of infinite-order
diagrams. No attempt to resolve this question was
made in I. In the second part of the present paper,
we investigate the convergence question by extending
the analysis to systems not in statistical equilibrium
and treating equilibrium as a limiting case. The
nonequilibrium formalism which we use is a direct
adaptation, to second-quantized fields, of a method
previously developed for the theory of turbulence.’
Instead of the temperature-domain particle propa-
gators, we employ correlation and Green's functions
which are defined for time-dependent statistical
ensembles where no temperature exists. In the limit
of thermal equilibrium, these quantities are related
by analytic continuation to the temperature-domain
propagators.

As we shall see, there exist both primitive and
irreducible linked-diagram expansions which give
the evolution of the correlation and Green’s func-
tions forward in time from a given initial instant.
It is convenient to develop the expansions in the
Heisenberg representation. Then, unlinked diagrams
do not arise, and therefore need not be eliminated.
As in the equilibrium case, the stochastic model
Hamiltonians yield irreducible linked-diagram ex-
pansions which are formally summable and ex-
pressible by closed integral equations.

In the time-dependent treatment, however, the
validity of the formally closed equations can be
examined by methods which do not involve perturba-
tion analysis. Our procedure is to replace the exact
Heisenberg equations of motion by corresponding
difference equations involving small time-incre-
ments. Evidence is presented that this procedure
should yield convergent results for the correlation
and Green’s functions, as the increment size is
decreased to zero, independently of whether the

2 R. H. Kraichnan, J. Math. Phys. 2, 124 (1961); Erratum,
3, 205 (1962). The formalism to be developed in the present
paper is less general than in this reference because we shall
not discuss cases where the quantized field ¢(x) has nonzero
expectation {Y(x)). Adaptation of the more general for-
malism may prove desirable for treating condensed boson
systems.
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perturbation expansions for these functions converge.
The finite-difference approach yields what we regard
as substantial support for the validity of the formal
closed model equations. It should be stressed at
the outset, however, that our analysis is neither
complete nor rigorous and therefore is not conclusive.

The nonequilibrium reducible and irreducible
linked-diagram expansions apply to the true Hamil-
tonian as well as to the models considered here.
Apart from nonequilibrium situations as such, they
may prove to be a useful tool in the equilibrium
limit. There, the expansions deal in a consistent
fashion with the propagators in the real time or
real frequency domains, without the necessity of
representing these quantities as analytic continua-
tions of propagators with imaginary time or complex
frequency arguments.

2. GENERALIZED STOCHASTIC MODELS FOR
FERMIONS AND BOSONS

2.1. Collective Representation of a Collection of
Systems

Let us consider a system of fermions or bosons
with Hamiltonian

H = Ho + Hi, H, = kz kaIIQk,

Hi = % Z Vk—s 5k+p,r+5q;q;ql'qs’

kprs

(2.1)
2.2

where gi and ¢, are fermion or boson creation and
destruction operators for a particle of momentum k,
the ¢ are the free-particle energies, V, is a Fourier
component of the pair potential, and the sum-
mation is over all momenta allowed by cyclic bound-
ary conditions on the walls of a box of volume
Q = L’ We take i = 1. This is identical with the
Hamiltonian I:(3.1), 1:(3.2).> We shall continue to
call it the true Hamiltonian. As in I, the pair poten-
tial in x space is given by

V() = D Vi exp (ik-x) (2.3)

and obeys
I/Y(x) = V(—X>; I/k = V_k, -Vk = Iff;k (24)

We require further that V(x) be finite everywhere
and that

Vi <Ok k- .

(2.5)

Now, instead of a single many-body system, let

3 The notation I: (3.1) denotes Eq. (3.1) of 1. Such notation
will be used throughout the present paper. Sections and
figures in I will be denoted in the forms I: Sec. 3 and I: Fig. 2.
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us consider a collection of M similar systems de-
scribed by the individual second-quantized fields

Yia(x) = o ; Qiim €xp (7k-X)

m=1,2,---,M). (2.6)

Let the true total Hamiltonian for the collection of
systems be

3 = > Hi., 2.7)

t
Hy,, = zk: €k Gin] Qinl

t ¢
i
+ 3 Z Vs Birp,resGiin) Qotni Cein Tsin -

kprs

We shall take the commutation rules as

[Gxtnrs Gormils = 0, [Girur, qg[m]]* = Opm Okp- 2.8

Thus the individual systems exist in the same box
but otherwise are entirely independent.* In (2.8),
and throughout the paper, the upper sign of a
double sign refers to fermions, and the lower to
bosons.

As a preliminary to constructing stochastic models,
we shall express 3¢ in terms of collective fields which
are linear combinations of the ¥.;(x). Let us re-
strict M to the form M = 28 4+ 1, where S is a
positive integer. We define the collective fields
Y. (x) by

Yo(x) = M7 37 exp (i2nan/M) ¢, (%),

Ya® = M 3 exp (—i2man/M) ¥, (x),

2.9

where
-8, -+, —=1,0,1,---, 8.

a =

We shall call @ a collective index.” By using the
identities

M™ 3 exp [i2r(a — B)n/M] = 5.4,

(2.10)
M~ 3 exp [2raln — m)/M] = 8,m,
we may invert (2.9) and obtain
Ym(® = M7 3 exp (—i2ran/M)g.(x).  (2.11)

¢+ The present procedure should not be confused with
that used in I: Sec. 6. There, each second-quantized field
represented a single particle instead of a whole many-body
system.

i In order to minimize confusion in expressions with
multiple indices, we shall denote individual-system quantities
by square-bracketed italic indices and collective-field quanti-
ties by unbracketed Greek indices throughout this paper.
Momenta and ‘energies’ will be denoted by unbracketed
Latin indices, as in 1.
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Collective destruction and creation operators ¢
and q;a may be defined by

V@) = 97 20 gue exp (o), (2.12)
with a corresponding relation for q,‘ia. These operators
satisfy

Qe = M™% D exp (i2ran/M) qep,
" (2.13)
Qe = M™% Y7 exp (—2man/M)gya.

It is clear from this that the transformation to the
collective fields represents a complex rotation in
the space of the gy,,. By (2.8), (2.10), and (2.13),
the commutation rules in the collective representa-~
tion are

[Gkar Tose = 0, [Gar Gosl= = Bap Bip- (2.149)
Let us adopt the cyclie convention
a=a-+ M, n=n+M (2.15)

for collective indices and individual-system labels.
This clearly is consistent with (2.9)—(2.11). Then,
by using (2.13) and (2.10), we may rewrite 3C in
the form

I3 = 3, + J‘Ci; I = Z ; kalana, (216)
3‘0;‘ = %]l[_l Z Z .Vk—s 5k+p,r?s
aBud kprs
>< 6a+5,ﬂ+kq;aqgﬂQr#QSR; (2-17)

where 6,.5.,+ is to be interpreted by the cyclic
convention. We see from (2.17) that the collective
fields, in contrast to the individual-system fields,
are dynamically coupled by the interaction V(x).
It is clear from the definitions, and also from an
examination of (2.14) and (2.17), that the momenta
k and the collective indices « have some formal
properties in common. In particular, the factor
Savpuen In (2.17) gives a conservation property
analogous to momentum conservation. The under-
lying similarity may be expressed as follows. Con-
sider the case where Q is very large, so that each
many-body system, described by a field ¥, (%), is
effectively composed of many spatially localized sub-
systems. Then the Fourier components ¢, con-
sidered as functions of k, provide a collective
description of the sub-systems in x space. On the
other hand, suppose we take M large instead of Q
large. Then the ¢,,, considered as functions of «,
provide a collective description in “n space.”®

¢ See Sec. 3 of reference 2 for a discussion of the physical
significance of this similarity in a classical context.
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2.2. Formulation of Models
In order to construct stochastic models, we re-
place (2.17) by the more general form
3, =3M7 3 > Viebasa

afiuN kprs

X 6k+p.r+s 6a+8,u+>\q;aq;ﬁQruQs>\' (218)

The ¢ number coefficients ¢4 play a role analogous
to that of the ¢y, in I1:(3.4). We impose upon
these coefficients the Hermiticity and symmetry
constraints

¢aﬂu)\ = ¢;‘\‘uﬂa7 ¢u13u)\ = ¢ﬁa)\u' (219)

Then we make stochastic assignments of values to
the ¢.5a 50 as to obtain the several stochastic
models. We give below the prescriptions which yield
the present analogs of the ladder, ring, random-
coupling, and Hartree-Fock models defined and
discussed in I. In each model, the form of ¢.g., is
identical with that of ¢y, in 1:Sec.3.

Ladder M odel
Take
(2.20)
(2.21)

Determine the real phases 6,; by independent
random choices in the interval (0, 2x), subject only
to (2.21).

¢aﬁl-l)\ = exp [i('~0ﬂa + Bu)\)]y

00(5 = 03,1 .

Ring Model

Take
(2.22)

(2.23)

Determine the phases 8,, by independent random
choices subject only to (2.23).

Gapn = exp [i(Fon + 85)],

ga)\ = - g)\a-

Random-Coupling Model
Take
bapr = exp (10ap), (2.29)
— Orusas Oapin = Opars, Bapir = Osaimn. (2.25)

Determine the phases 6,4, by independent random
choices subject only to (2.25).

eaxm =

Hartree-Fock Model
Take

Pagar = 0
(== u or A

¢aﬁﬂa= ¢rxﬁaﬂ = 1’
(2.26)

There are no random parameters.
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The models obtained by the prescriptions just
given are stochastic in the same sense as discussed
in I:Sec.2.2. The values of the ¢, are determined
by random choices. Once obtained, however, the
values are fixed, and we work thereafter with the
definite Hamiltonian embodying these values. To
obtain an insight as to the physical interpretation
of the present models, it is of value to transform
(2.18) back to the individual-system representation.
We find

J‘Ci = % Z Z Vk_sA(nmm’n’]

nmn’'m’ Kprs

X Beep,rssQeim Gormi Grimn Gainrrs (227)
where
A[nmm’n’] = M*3 ; 3a+ﬁ,u+)\¢uﬂu)\
X exp [12x(—na — mB + m’u + n'N)/M]. (2.28)

When all the ¢,5, = 1, it follows from (2.10) that

A[nmm’n’] = 6nn’ Bmm’ Bnm'

Then 3¢ reduces to (2.7), giving us back the true
problem in which the individual systems are dy-
namically independent. In the models, however,
A twmmenry 18 not diagonal, and the systems in the
collection are coupled. They exchange particles as
well as energy and momentum. We see from (2.27)
that the elementary interaction is a collision in
which a pair of particles from systems n’ and m’
are destroyed and a pair in systems n and m created.

2.3. Bounds on the Ladder and Ring Model
Hamiltonians

Bounds on the eigenvalues of 3¢ for the ladder
and ring models may be derived in close analogy
to I:Sec.3. In the case of the ladder model, let us
define the effective two-body amplitudes

x(x’, X)

=M Z; Busn, (X)) exp (46,),  (2.29)
I

where (2.15) is to be used in interpreting §,.s ..

Then, noting (2.12), we may write (2.18) for the

ladder model in the form

X f f Vi — ¥)x&, Oxx', %) dx &', (2.30)
It is clear from (2.30) that 3¢, is a non-negative
operator if V(x) = |V(x)| everywhere. It then
follows that the eigenvalues of 3¢ are all non-negative
in this case.
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In the case of the ring model, we define the ef-
fective density components p,, by

pE(X) = zk: Pre €XP (%k+x),

p®) = M7F Y Yl Yasd®) exp (10a.0rd).  (2.32)

(2.31)

Then, using (2.14) and (2.23), we find

SCi = % E ; Vkpl:epke - %V(O)m, (2'33)

where 97, the operator for the total number of
particles in the collection, is defined by

N = ZNa = ZN["])
No= 2 Greties (2.34)
Ny = ; q;(nIQk[nl'

If Vi = |Vl for all k, then the first term on the
the right side of (2.33) is a non-negative operator,
and the energy per particle in any eigenstate of 97
is bounded from below by —3V(0).

3. PROPAGATOR EXPANSIONS FOR THE MODELS

In analogy to I:Sec. 4, let us define the tempera-
ture-domain propagator Syi,. (%, u') by

Sitnm (U, ¥') = ~ (T Guetm (W) Gt (W),
where, for any operator B,
Bv) = exp wic)B exp (—uil),
B'(w) = exp u30)B' exp (—udc).  (3.2)

The ordering operator T is the same as in I, and the
brackets denote an average over a grand canonical
ensemble of collections of systems: For any B,

(B) = Tr {exp [—B(3¢ — pI)]B}
/Tr {exp [—B8(C — w)]}.  (3.3)

Let us also define the propagator in the collective
representation by

Sias(th, w) = —(T qualt)) qus(®))). (3.4

‘Energy’-domain propagators Sg(umi({a) and Sias(§s)
may be defined in terms of Sgpmi(u, ) and
Seas(tt, u’) by means of relations of the form 1:(4.8).

For free particles (3¢; = 0), it follows from (2.8),
(2.14), and (2.16) that

Sk[nm](g-a) = 6nmSlF:0)(§-u)}
Skaﬁ(g-a) = 6aﬂSl£0)(§‘a)y

where S{”(¢,) is given by I:(4.11). For the true
Hamiltonian (all ¢.sa = 1), we have

3.1

(3.5)

ROBERT H. KRAICHNAN

Sk[rmd(i‘a) = anmsk(g.a)}

where S,(¢,) is the true propagator, as defined in T,
for any one of the systems in the collection. This
follows immediately from the independence of the
individual systems. In this case, we find

Skaﬁ(f'a) = 5a/38k(§'a);

where we have used (2.13) and (2.10).

In correspondence to 1:(4.8) and 1:(4.10), the
mean number of particles and the mean energy in
the collection may be expressed for the models in
the forms

NG, w) = £ Zk Skaa(fs) exp (£, 6)

(3.6)

3.7

= :fIB—l zk: Sireni(§a) €xp ($a ) (3.8)

and

88, ) = £367" Zk (& + §a)Skaalts) exp ({. 8)
= ﬂ:%ﬁ—l Zk: (Ek -+ ;‘a)Sk[nn](g-u) €Xp (fa 8). (3'9)

Equation (3.9) may be derived in the same way
as I:(4.10). The mean number of particles per system
and the mean energy per system are then given by

N@,w = M"9B,w, E@B w =28, u.
(3.10)

For the true problem (all ¢y, = 1 in I and all
dapa = 1 in the present case), N(8, x) and E(B, u)
are exactly the same functions of 8 and u here asin I.

Let us now consider the primitive linked-diagram
expansion for the model S,.s({.). First of all, it is
easy to verify that

Skaﬂ(g‘a) = 6&681(01&(?:1)' (311)

This follows immediately from (3.5) and the presence
of the conservation factor 8,.s,,.x in (2.18). Because
of the similarity of the ways the momenta k and
the collective indices « enter 3¢, the primitive linked-
diagram expansion for Si..({,) is given by rules
which are obvious generalizations of rules 1-8 of
I:Sec.4. We shall state here only the changes which
are required in the rules of 1:

Rule 3. Label the external lines with collective
index « as well as momentum k. Label the internal
lines with collective indices o', o/, --- as well as
with momenta k’, K/, --- .

Rule 5. With each vertex labeled as in Fig. 1
of the present paper, associate a factor

—15-1
-M ﬁ d’ﬂ’yu)\ 5ﬂ+7,u+)\Vp-s 6p+q,r+s 3b+c.d+g'
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Rule 7. Sum over all the intermediate collective
indices o/, @/, - - - as well as over all the intermediate
momenta and ‘energies.’

According to the present rules, the contribution
of any diagram to Sy..({.) has the following form.
It consists of a product of V and S factors, summed
over momenta and energies, which is multiplied by
a product of ¢’s, summed over collective indices.
The latter summed product contains the entire
dependence of the contribution upon the ¢’s and
upon a. The summed product of V and 8 factors
is identical with the contribution which the diagram
makes to Sy(¢,) in the true problem, where S.(¢.)
is defined as in I. In order to express this result
compactly, let us write Sy(¢,) for the true problem
in the form

85D = SO0 + X Dok, 312)

Here T,.,(k, a) is the contribution from a particular
distinet linked diagram with n vertices. The index p
takes the values 1, 2, --- , R(n), where R(n) is the
number of distinet linked diagrams with n vertices;
it labels the R(n) diagrams according to any con-
venient scheme. We may now write the primitive
linked-diagram expansion for the model propagator
Skaa(fa) a8

Ska a({a) = ‘S]io)(g-a)

+ f: Z Cn:p(a)rn;p(k: a))

n=1 b4

(3.13)

where C,.,(a) denotes the summed ¢ product
associated with the pth distinet diagram with =
vertices. The T,.,(k, a) in (3.13) are precisely the
same quantities as in (3.12).

We may illustrate the results stated in the last
paragraph by considering the contributions to
Ske«(f.) made by two simple primitive diagrams.
Let us assign the value p = 1 to the diagram of
Fig. 2(a). Then the rules for constructing diagram
contributions give

Tk, @ = £ Z VoS (£S5 (50

X exp (& &),  (3.14)

Fia. 1. A labeled vertex.
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P.A

k,{oa k, o
(@) (b)

Fia. 2. (a) The diagram associated with C;.,(a); (b) the
diagram associated with C;.s(a).

Crile) = M };mﬂa. (3.15)

Let us assign the value p = 2 to the diagram of
Fig. 2(b). Then the rules give

P2;2(k; a) = 6_2 Z Vk—sVs-p liO)(g‘a)Sl(Jo)(g‘b)

psbe

X S (E) S - s(Far- SiV(5),  (3.16)
C2:2(a) =M z:)‘ 6a+ﬂ-u+>\¢aﬂu)\¢)\ua6' (317)

Equations (3.15) and (8.17) illustrate a general
property of the C,..(a). The number of M~ factors
is always equal to the number of free indices in the
summation. Henee in the true problem (all @40 =1),
we have C,.,(a) = 1 for all n and p, as we must for
consistency.

Let us now consider the limit M — «, which
represents an infinite collection of many-body
systems. We keep p fixed as we take the limit. For
the true problem, N(8, u) and E(B, r) are then
independent of M, as we have noted previously.
It will appear from what follows that N(8, x) and
E(B, u) for the models are independent of M in
the limit. The present limit M — « plays the same
role as the limit @ — « (infinite volume) did in I.
We found the following general result in I: For
any given model, a given diagram survived in the
limit @ — « if and only if the associated ¢ product
had the value one for all values of the intermediate
momenta permitted by momentum conservation.
The corresponding result in the present case is
that a given diagram survives in the limit M —
if and only if the associated ¢ product {i.e., the
summand of C,..(a)] has the value one for all
values of the intermediate collective indices per-
mitted by collective-index conservation. For each
surviving diagram we therefore have C,,(a) = 1,
as in the true problem. The demonstration of the
present result is neater than that in I because the
entire collective-index dependence of each diagram
contribution is contained in the ¢ product, whereas
in the former treatment the ¢ factors, S factors,
and V factors all depended on the intermediate
momenta.



502

The correspondence between the survival of
diagrams in the old treatment and the present
should become clear upon comparing the following
two examples with the corresponding examples in
I:Sec.5.3. For the ladder model, we have

Csin(e) = M ﬂZ}\ exp [1(— 650 + Oarsrn)

+ i(—oaﬂe_)\,)‘ + oﬂa)] = 1, (318)

where we have used (2.20) and (2.21). Thus this
diagram survives and gives the same contribution
as it does in the true problem. For the ring model,
however, we have

Conle) = M2 ﬂ; exp [1(Fax + Bp,as5-2)

+ i(g)\ﬂ + gaﬂ?—).d)]’ (319)

by (2.22). Except for special values of the indices
8 and A, the phase of the summand does not vanish
as a result of (2.23). Consequently, for a typical
assignment of the phases f,; by random choices,
we have C,,.(a) — 0 as M — =, and the diagram
does not survive. The detailed reasoning follows
that in I.

Similar analysis may be applied to any diagram
of any finite order. It may thereby be verified that
the surviving diagrams for each of our present
models, in the limit M — o, are precisely the same
as those for the model of corresponding name in
I:Sec.5, in the limit @ — <. This is a consequence
of the fact that the rules for diagram-contributions
in the two cases yield ¢ products with the same
structure.

We shall now make a fundamental assumption
which corresponds to assumption 5 of I:Sec. 5.1.
We assume that diagram classes which do not
survive in any finite order make no contribution to
Seaa(fs), in the limit M/ — o, when they are summed
to all orders. The implications of this assumption
will be discussed in See. 4, and in Sec. 7 we shall
outline a partial justification.

Since the diagrams we have identified as surviving
all have C,.,(a) = 1, an immediate consequence of
our assumption is that Sy,.({.) is independent of
« in the limit. Thus we may define Si({.) for the
models by

Sk(g‘a) = Skaa(;a) (M had 00) (320)
Then, by (2.13), (3.11), and (2.10), we have
Sk[nm](g‘a) = 6nmSk(§—a) (Zu- hd 00) (321)

In the true problem, these relations hold for any .
Let us now consider the irreducible linked-diagram
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expansions for S,(¢.), as defined by (3.20), and for
M (¢,), as defined in terms of this S,(¢,) by 1:(4.12).
These expansions are obtained by amending the
rules for the primitive diagram expansion with
rules 2', 4’, 4", and 8’ of 1:Sec.4. Since each S,, . (¢.)
is independent of « in the limit M — «, it follows
that the entire collective-index dependence of any
diagram-contribution in the irreducible expansions
is contained in the associated ¢ product and there-
fore is given by the same quantity C,.,(«) associated
with that diagram in the primitive expansion. From
thig it follows that the survival rules for diagrams
in the irreducible expansions are precisely those for
the primitive expansion: A diagram survives if and
only if the summand of C,,,(«) has the value one
for all values of the intermediate collective indices
permitted by collective-index conservation. This
same conclusion may also be reached by reasoning
of the kind employed in I:Sees. 5.2 and 5.3 con-
cerning recovery of the primitive expansion from
the irreducible expansion.

The results stated in the preceding paragraphs
may be combined to give the following conclusion:
In the limit M — o, only those classes of terms
survive, in the irreducible expansions for S.(¢,) or
M (¢t.), which were identified as surviving for the
corresponding models in I:Sec. 5. In each model,
the surviving terms are identical in form with the
corresponding terms in the irreducible expansion
for the true problem. Thus, for each of our present
models, we are led to precisely the same final closed
equations for S.(¢,) as we obtained in I:Sec. 5.
The essential difference is that now these equations
are obtained for finite £. Assumptions 3 and 4 of
I:Sec. 5.1 have not been made here. An important
consequence is that our present results apply to
boson systems at low temperatures. A further
advantage of the present procedure is that the
double limiting process employed in I for long-
range potentials is now unnecessary.

4. CONVERGENCE PROPERTIES OF THE MODEL
PROPAGATOR EXPANSIONS

For each stochastic model, let us divide all the
primitive linked diagrams into two classes, wanted
and unwanted. Wanted diagrams are all those which
we identified in Sec. 3 as surviving in the limit
M — o. The ¢ products associated with them have
the value one for all values of the intermediate
collective indices permitted by collective index
conservation. Consequently, we have C,.(a) = 1
for these diagrams. The unwanted diagrams are all
the others. The ¢ products associated with them
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have stochastic phases for all but special values
of the intermediate collective indices. Consequently,
we have C,.,(¢) - 0 (M — ) for any given
unwanted diagram. We shall examine very soon
the strength with which the unwanted C,.,(«)
vanish in the limit.

The fundamental assumption made in Sec. 3 con-
cerning the contribution from all unwanted diagrams
may be expressed in the form

(M — =), (4.1

Z Z, Cn:p(a)Pn;p(k7 a)—0
n=1 »
where ./ denotes a summation over unwanted
diagrams only. The essential point in (4.1) is that
we must take the limit n — « before the limit
M — . If we did not, we would not be employing
the full, formally exact perturbation series for the
model, and, consequently, we would be unable to
assert that the results embodied the boundedness
properties of the model Hamiltonian. We wish to
make it clear in the present section that the validity
of (4.1) is far from obvious. We shall, in fact, obtain
the negative result
Zl 2 0@, &, 0)| = »  (any M). (4.2)
This result does not mean that (4.1) cannot be true.
However, it shows that (4.1) can hold only if there
are cancellations among the contributions from
different diagrams. We shall not attempt to investi-
gate the latter question directly. Instead, we shall
present in Sec. 7 some evidence for the validity
of (4.1) which is not based on perturbation theory.
In order to establish (4.2), we must estimate
three things: the strength with which the unwanted
C,.,(e) vanish for large M, the number R’(n) of
distinct unwanted diagrams for large n, and the
magnitude of the true-problem diagram contri-
butions T,.,(k, a) for large n. Let us consider the
C..,(e) first. In every C,.(a), the number of in-
dependent, summed indices given by index-con-
servation and the number of M ™" factors are both
equal to n. The ¢ product which comprises the
summand of any C,..(e) has unit modulus for all
of our models but the Hartree-Fock. For that model
the ¢ produet is either zero or one. It follows that,
for all the models, the C,..(«) all satisfy

IC,,;,,(OL)[ <1 (43)

There are two types of contributions to the
unwanted C,,, (). First, in each of the models, there
are certain restricted values of the intermediate
collective indices for which the ¢ product is identi-
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cally one (cf. the discussion in I:Sec. 5.2). We may
estimate this contribution as follows. In every
model we have ¢o..e = 1. Hence the term in the
sum with all collective indices = o has the value
M™, which then constitutes a lower bound to the
magnitude of the contribution. An upper bound
may be given in the form KM ™, corresponding to
the restriction of just one of the intermediate indices
to K special values.

The second type of contribution comes from the
terms in the sum which have stochastic phases.
It arises in all the models but the Hartree-Fock.
There are M" terms, each of unit modulus, in the
sum which (when multiplied by M™) comprises
C., (). If the phase of each term were fixed by an
independent random choice, then, for a typical set
of choices, the result would be

Cn(@) = MO[NV(M™M] = O(M ™).

In general, however, the M" phases are not com-
pletely independent. The independent choices are
of the O(M?) linearly independent 6,4 or 8,5 (ladder
or ring model) or the O(M®) linearly independent
6.5, (random-coupling model). In consequence, the
contribution to C,.(a) from the stochastic-phase
terms may vanish either more or less strongly than
M™%, Furthermore, if the unwanted primitive
diagram contains a wanted diagram as a self-energy
part, variation of the intermediate indices corre-
sponding to this self-energy part will not give any
change in the phase of the ¢ product. This will
result in C,,,(a) vanishing less strongly.

On the basis of the preceding paragraphs, we shall
assume the following asymptotic behavior for the
unwanted C,.,(a):

Crinle) — 0, (4.4
’Cn:z»(o‘)l > M, (4.5)

Two restrictions on the validity of these relations
should be noted. We assume a typical assignment
of the independent random phase-parameters in
asserting (4.4). (Cf. the discussion in I:Sec. 2.2.)
In obtaining the lower bound (4.5), we have ignored
the contribution to C,,,(«) from the terms with
stochastic phases. However, there may be some
special combinations of values for n, p, and « such
such that the nonstochastic contribution to C,.,(a)
is very nearly canceled by the stochastic-phase
contribution, with the result that (4.5) is violated.
For a typical assignment of phase parameters, these
cases constitute a set of relative measure zero in
the limit M/ — «. We shall ignore them in dis-
cussing (4.2).

M— «,
M — «.
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In order to bound R’(n), the number of unwanted,
distinet linked diagrams with # vertices, we consider
a special class of linked diagrams, which we shall
call linear diagrams. Let us form an incomplete
diagram with n vertices, as illustrated in Fig. 3 for
the case n = 4. To form the linear diagrams, we now
connect the free outgoing lines with the free incoming
lines in all possible ways. There are n! ways of doing
this, and each gives a distinct linear diagram. Now
we note that the linear diagrams are a very re-
stricted class of all the distinet linked diagrams.
Hence, for large n, we have R(n) > nl. Moreover,
we note that the unwanted linked diagrams consti-
tute most of the linked diagrams for large =», no
matter which of our models we take. The wanted
diagrams in each case are very special classes. Conse-
quently, we may safely assume the bound

R'(n) > n! (4.6)

We have finally to estimate the T,,,(k, a) for large
n. On the basis of (2.5), 1:(4.11), and I1:(4.7), we
assume that for any given n and p the summations
over intermediate momenta and intermediate ‘ener-
gies’ converge at infinity (cf. assumption 2 of
I:Sec. 5.1). It follows that T, ., (k, a) can be bounded
in the fashion

bk, 0)[" < |Tunlk, @) < |Bk, )" (n — ), (4.7)

where b(k, a) and B(k, @) are parameters inde-
pendent of n and p. In general, we will have
bk, a)] > 0. We shall not attempt to prove (4.7)
here.

Equation (4.2) follows immediately from (4.5),
(4.6), and (4.7). We have, furthermore,

Y S Tk )| = w.

n=1 p

(n— «).

(4.8)

That is to say, the primitive linked-diagram ex-
pansion for the true problem is not absolutely con-
vergent when taken diagram by diagram. This
result does not preclude the weaker property that

Z I3 Ik, @)

converge. The latter would correspond to absolute
convergence of S.({,) as a power-series in A if the
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interaction potential V(x) were replaced by AV (x).

We have already noted that (4.2) does not mean
(4.1) cannot be true. However, it certainly indicates
that the assumption expressed by (4.1) must be re-
garded with suspicion in the absence of supporting
evidence. We shall attempt to develop such evidence
in the remainder of this paper by turning to the
more general problem of linked-diagram expansions
for nonequilibrium statistical ensembles which
evolve in time.

5. NONEQUILIBRIUM CORRELATION AND GREEN’S
FUNCTIONS

5.1. Summary of the Method

The formalism we shall outline in Secs. 5 and 6
is an extension, to second-quantized fields, of a
nonequilibrium method previously applied to a
classical field problem, the evolution of the cor-
relation tensor in turbulence dynamics.” The changes
required in the present case are due to the different
degree of nonlinearity of the equations of motion
and to the ¢g-number nature of the fields. Neither
characteristic necessitates a drastic modification.
We shall develop the formalism here ab initio, but
not with full proofs or in complete detail. Our
interest here is not in nonequilibrium as such but
in elucidation of the convergence question which
we stated, for equilibrium, in Seec. 4.

The nonequilibrium treatment will be carried out
in the Heisenberg representation. Our procedure
may be summarized as follows. We define Heisen-
berg creation and destruction operators which coin-
cide with the Schrodinger operators at an initial
time ¢,, and we specify an initial statistical ensemble
by a weighting operator which is Gaussian in the
Schrodinger operators. Then we define correlation
functions of the Heisenberg operators, and also
Green's functions which give the average response
of these operators to infinitesimal external perturba-
tions. The correlation and Green's functions are
expressed in terms of the Schriodinger operators by
iterative solution of the Heisenberg equations of
motion. The results are evaluated by a statistical
form of Wick’s theorem which is valid for any
Gaussian weighting operator. This yields linked-
diagram expansions for the correlation and Green's
functions. An advantage of working in the Heisen-
berg representation is that unlinked diagrams do
not arise and therefore do not have to be eliminated.
Both primitive and irreducible linked-diagram ex-
pansions are obtained. The latter yield formally
closed equations which give the evolution in time
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of the correlation and Green’s functions for each
of our stochastic models.

5.2. Quantized Nonlinear Oscillator

In order to minimize notational complications, we
shall introduce the nonequilibrium treatment in
terms of a simple example which yields diagram
expansions identical in structure with those for the
many-body problem. Consider the true Hamiltonian

I = JCO + JCH € Z qtnlqw!) (51)

tot
R, =3V Z Qa1 Q19 n1Gnl

3(30:

where V and e are real parameters and the com-
mutation relations are

‘:q{nl’ QImI]* = 0> [q{n]) q:m]]= = 6nm' (52)

The index n = 1, 2, --- , M specifies individual
systerns in a collection, as before. This Hamiltonian
represents a collection of trivially soluble quantized
nonlinear oscillators. In the fermion case, 3¢, actually
vanishes identically, but this will not affect the
usefulness of (5.1) for our purposes. In terms of the
diagram expansions, the vanishing of 3¢, is expressed
by the exact cancellation of the contribution of any
nonexchange diagram by that of an exchange
diagram; the formal structure of the expansion is
unaffected.

The general model Hamiltonian corresponding to
(5.1) is

56:3(30"'505, I =

€ Z q;qay

' (5.3)
¥ = %M—lv ;\d’aﬁuh 6u+ﬂvu+quzq5{qum
By

where the collective operators ¢, are defined by

qa = M~ Y exp (i2mom/M)q.., (5.4)
as in Sec. 2.1, and obey
(¢, gole =0,  [Qa) gs)e = 0. (5.5)

For each of our model types (ladder, ring, random-
coupling, or Hartree-Fock) the ¢,.s.a are precisely
the same parameters as in Sec. 2.2. It may be noted
that 3¢; in (5.3) bears a close formal resemblance
to (2.18).

We define the Heisenberg operators ¢, by

q.(8) = exp [{(§ — 4)3C]q. exp [—i(¢ — &)3c], (5.6)
q.(t) = exp [i(t — to)3C]qa exp [—i(t — to)3C].

The Heisenberg equation of motion for any operator
Bis
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dB/dt = —i[B, x]_. (5.7
For either the fermion or boson case this yields
(d/dt + ieq.() = —iM VL, (9,

\ (5.8)
La(t) = ﬁ“zk d’aﬂu)\ 6a+ﬂ.u+)\qﬂ(t)qp(t)q)\(t);

where we have used (5.5) and (2.19).
In addition to the q, themselves, we introduce

the retarded response or Green's operators G, (¢, t'),
defined by

5‘1«@) = j:‘ dt Z Gav(ti t') 6f7(t'))

Gor(t, ) =0 (1< ?). (5.9

Here 6f, is an arbifrary infinitesimal forcing operator
added to —:M'VL, for times > ¢, and &q, is
the increment in ¢, produced by the addition. We
restrict 8f,(f) to operators which anticommute
(commute) with all the q, and q. in the fermion
(boson) case.

The éf, may be regarded as arising from an in-
finitesimal modification of 3. In this way one ob-
tains the relation’

Goy(t, ) = [qu(8), y(")]. > ¢).  (5.10)

From (5.6), (5.10), and the stated commutation
property of f,, it follows that 8f, and &f, commute
with G,; for either the fermion or boson case, what-
ever the indices or time arguments. Using this
property, we obtain

(0/0t + i)G.,(t, ¥') = —iM'VM,,(¢, ')
¢t>1), (5.11)
Moot ) = 30 basn Saspwn(Ghr(t, )00
F 606, (¢, ) + GOHGE, 1],
with
G, (', t) = 6,,. (5.12)
We shall also need (5.8) and (5.11) in the integral

forms

¢
0.0 = ¢ — MV f ArG(t, PYL(¥) (5.13)
and
G (t, 1) = 6,,GOW, ¢) —iM'V
X [ a6 M@, ). (6.1

7 Cf. R. E. Peierls, Proc. Roy. Soc. (London) A214, 143
(1952).
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Here q”(¢) and 6,,G'”(t, t') are the Heisenberg
destruction and Green’s operators for the ‘unper-
turbed’ case V = 0. They are given by

a7 (1) = exp [—~ie(l — 1)]g. (5.15)
and
G(O)(t} t) = exp [—_’Le(t - t’)] (t > t’)7 (516)
=0 (t < ).

5.3. Correlation and Green’s Functions for the
Oscillator Models

Let us now consider ensemble averages of the form
B) = Tr {WB}/Tr {W}, (5.17)

where B is any operator and the weighting operator
W is a function of the Schrédinger operators ¢, =
q.(%). A choice of W represents a choice of initial
statistical ensemble for the collection of oscillators.
For our present purposes, we restrict W to the
Gaussian form

W = (5.18)

exp (—a 2 ¢ada),
where a 1s a real constant which, for bosons only,
must further obey a¢ > 0. Since W then commutes
with 3¢, such an initial ensemble is actually an
equilibrium ensemble. However, we shall not use
this fact in developing the time-dependent diagram
analysis. The analogous Gaussian weighting opera-
tors for the many-body problem, which we shall
introduce in Sec. 5.4, do not commute with the
Hamiltonian; they represent genuine nonequilibrium
ensembles.

We define the correlation functions Q.(¢, ¢’) and
Green’s functions G, (¢, t') by

Qu(t, ) = (€a()4.(2) (5.19)
and
G.(t, V) = (G,.(2, V). (5.20)

We shall also use the auxiliary correlation functions
Q:(t, t') defined by

Qi(t, 1) = (@.(D)qu(?)). (5.21)
By (5.10), we have
G, V) = QL(t, 1) £ Q.(4, 1) 2= 1). (522

It is easily seen that

Q.(¢, v) = Qi(, 0,

and

Qut, 1) = QX 1, (5.23)

GX(t, 1) = (GL.(2, 1)), (5.29)
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where the asterisk denotes complex conjugate. We
see that Q7 is wholly determined by @, and G..
It should be noted that the time-ordering operator
T has not been used in any of the definitions above.
We have not found time ordering to be very useful
in the nonequilibrium formalism.

For V = 0, the correlation and Green's functions
are independent of « for any M. They are given by
Q(t, ') and G(t, t'), where

QU ) = ("= 1) exp [—ie(t — ¢)], (5.25)

Q V%, ') = [1 F (e = 1)7"] exp [—ie(t — )],
(5.26)

and G'”(¢, t") is defined by (5.16).°
For V # 0, G.(t, t') and Q.(t, t) satisfy the
equations of motion and initial conditions

(0/0t + 190G (¢, V) = J. (¢, 1), (5.27)
G, V) = (5.28)
(@/0t + i9Qa(2, V) = K.(2, 1), (5.29)
Qolto, 1) = (€ £ 17T, (5.30)
where
Jot, ) = ~iM'V GZ; Oaspur P agr
X {([Gsa(t, 1)) F qa(1)Galt, 1)aa(?)
+ 45()a.(8) Gralt, 1)]) (5.31)
and
K.t t) = —iM'V ﬂE; Baspous Papir
X (@uOnbn®).  (5.32)

These equations follow directly from (5.8) and (5.11).
Because of (5.23), the equation for 0Q.(t, ¢)/ot
is redundant with (5.29). The irreducible diagram
expansions for J.(¢, ¢') and K,(f, t') turn out to
have a simpler form than those for G.(¢, ¢') and
Q.(1, t') themselves, and it is for this reason that
we introduce the differential equations (5.27) and
(5.29).

5.4. Correlation and Green’s Functions for the
Many-Body Models

Let us now return to the many-body problem.

8 For the true problem [Hamiltonian (5.1)], the exact
functions are also independent of « for V' £ 0. For the fermion
case, JC; vanishes identically and we have Q,(Z, i) = Q®)(3, '),
ete. For the boson case, we easily find the exact results

Q. ) = QU t') [(1 — e=2)/(1 — e-e—itt=tIV)],

Q.7 (e, ¥ ) = QO ') [(1 — e™*)/(1 — graTitt=enP)z,

It is of interest to note from these expressions that if @.(Z, t')
is expanded as a power series in V, the radius of convergence
is given by V| = a/|t — .
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The Heisenberg equation of motion corresponding
to the Hamiltonian (2.16), (2.18) is
(d/dl + Z.Ek)qkoz = _iﬂl_] Z Z .Vk—s 6k+p,r+s

Bun PTS

X Baspourr Dapnlosdendor, (5.33)

where we have used (2.4) and (2.19). In analogy
to the nonlinear oscillator case, we define the Green's
operators Gypag(t, t') by

() = [ AT Cuously 1) 8Halt),  (534)
to P
where &f,, is an infinitesimal forcing operator in-
troduced on the right side of (5.33).

We again consider ensemble averages of the form
(5.17), where now the weighting operator has the
form

exp [— 2 w)Nu], (5.35)

ke

aw =

with
Nio = q;QQka'Q
We restrict the real function w(k) by the condition
wk) = jwk)| « & (k- ®). (536

For bosons only, we further require w(k) > 0 for
all k. The correlation and Green’s functions for the
many-body models may now be defined by

Qealt, 1) = (Qa(!) (1)),
Qi(t, 1) = (Gea(Dqua(t)),
Grolt, ¥) = (Guxaal?, ).

For V(x) = 0, the correlation and Green's func-
tions are independent of & for any M, as was the
case for the nonlinear oscillator. They are given by

Q(t, 1) = Ny exp [—ia(t — #)], (5.39)
Qi ¥) = (1 F N exp [—talt — )], (5.40)

(5.37)
(5.38)

% The methods to be presented in Secs. 6 and 7 are also
applicable to (non-Gaussian) normal ensembles which
describe statistically inhomogeneous systems. Such ensembles
are specified by welghting operators of the form

W = exp [— Ekpaw(ky Plakapel;

where w(k, p) is a suitable function. In place of Qx(?, ¢') and
Gy (i, t'), one must deal with the more general quantities
Qkpa(ty tl) = <qpaf(t’)qka(t)):
kaa(t: t’) = (kaaa(t: t’»-
Alternatively, the analysis may be carried out directly in
x space by using the fields y,(x) and ¢, ¥(x). Such a treatment
is illustrated for two classical field problems in Secs. 10 and
11 of reference 2. It is also possible to work with non-normal
weighting operators which describe, for example, non-zero
initial two-body correlations. This type of generalization is
briefly discussed in Sec. 9 of reference 2.
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GO, 1) = exp[~ialt = 0] (2 10), (5
-0 (<),
where
N = (¢*® £ 1), (5.42)
For V(x) # 0, we have
0/31 + 1a)Gralt, 1) = Jually ), (5 43y
Go(t', 1) = 1,
and
(6/01 + i6)Qualt, 1) = Kuall, 1), (5 40y

an(tﬂy to) = Nlim;

where J, (¢, ') and K,,(t, t') are given by obvious
modifications of (5.31) and (5.32). The analogs of
(5.22)~(5.24) hold also for the many-body case.

The partition of particles and of energy among
the momentum modes as a function of time may be
expressed directly in terms of @,.(¢, ¢). We have,
immediately,

() = § Z Qual?, ).

In analogy to I:(4.10), we may easily establish from
(5.33) the relation

=13 {ekaau, )+ z[@%]}
(5.46)

(5.45)

5.5. Approach to Equilibrium

Let us consider the case {, — — ». Then at finite
t we anticipate that the ensemble specified by (5.35)
will have evolved into a state of statistical station-
arity. This need not be so for the random-coupling
model, which may be unstable to catastrophic col-
lapse because of the unboundedness of 3¢;. However,
it seems assured for the ladder and ring models,
if V(x) satisfies the conditions which make 3¢,
bounded from below. If an approach to equilibrium
is granted, we anticipate for any finite ¢t and ¢’ that
Qua(t, t') and Gy, (¢, t') will take the forms

Qka(t7 t’) = Qka(t - t,)i
Gka(t7 tl> = Gka(t - t’) (547)

It should be noted that we are not invoking an
adiabatic switch-on of V(x). We are simply fixing
the initial statistical ensemble by a choice of W
and then letting the ensemble evolve according to
the exaet equations of motion.

The equilibrium ensemble which is achieved will
in general not be a grand canonical ensemble. The
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reason is that (5.35) does not in general represent
an initial distribution of total energy (kinetic plus
potential) and total particle-number corresponding
to a grand canonical ensemble. Since 3 and 9T are
constants of motion, the distribution of these quanti-
ties can not change with time. Nevertheless, we
conjecture that for our models in the limit 4/ — o
the equilibrium functions Qy.({ — t') and G, (¢ — t')
will be identical in value with corresponding averages
defined over the grand canonical ensemble with the
same (3¢) and (9U). In the limit M — o, both the
grand canonical ensemble and the ensemble specified
by (5.35) represent total-energy and total-particle-
number distributions which are peaked with infinite
sharpness about their means. We have noted pre-
viously [cf. (2.27) and (2.28)] that the M systems
in the collection are coupled for our models; they
exchange both energy and particles. This means
that, with respect to the achievement of statistical
equilibrium, the models represent infinitely large
super systems in the limit M — o, even if the
mean number of particles per system is small. It
is on the basis of these facts that we conjecture the
identity of Q.,(t — t') and Gy, (t — t'} for the two
kinds of ensemble. The conjecture supposes certain
ergodic properties, as does the assumption that
ensembles specified by (5.35) will reach equilibrium
at all.

If we turn from the models to the true problem
(all gopa = 1), then the M systems in the collection
are not coupled, and, if the mean number of
particles per system is small, we do not have a
large super system in any dynamical sense. In this
case, the grand canonical ensemble and the ensemble
specified by (5.35) cannot be expected to yield the
same averages when {, — — «. It does not follow
that our Gaussian ensembles are physically inap-
propriate. The grand ecanonical ensemble is used
for equilibrium calculations more because it is
mathematically convenient than because it is uni-
quely appropriate physically. For our present pur-
poses, Gaussian ensembles are the ones which are
most convenient mathematically. The real justifica-
tion for either choice of ensemble is the hope that
for a dynamically large system (M *{31) — « for
the true problem; M — o and M~'(9t) finite for
the models) the values of physically interesting
equilibrium averages are insensitive to a substantial
range of choices of ensemble. We shall not attempt
to go further into this matter here. The questions
which arise are not unique to our investigation.

The conjecture made above concerning @, (¢ — &)
and Gy, (t — ') for the models implies that these
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quantities may be identified with equilibrium cor-
relation and Green’s functions of types discussed
previously by a number of authors.’® The tempera-
ture-domain propagators Sg,.(u, ©) may be ex-
pressed in terms of the equilibrium correlation and
Green’s functions by analytic continuation of the
latter. The continuation is given formally by the
relations

Ska a(uy u,)

—Qu.(—u + W) (> ),
= £Qu(—tu + ) =),

(5.48)

which follow from (3.4) and (5.37) if ( ) is taken
throughout as an average over the grand canonical
ensemble.

There is a useful general relation between the
equilibrium functions Q.(t — ¢) and Gy, (¢t — ¢'). If
we define G, (t — t') by

Giolt = V) = Gt =) (2 7),

(5.49)
=G - (@<?),
then the transforms
Go() = (2m) f GE.(1) exp (iwh) dt,
- (5.50)
o) = @07 [ Quult) exp (it 1
are related by
Qralw) = €*“™ £ 1)7'Gi(w). (5.51)

Equation (5.51) has just the form of the free-particle
Fermi-Dirac or Einstein-Bose distribution law pro-
vided that we interpret G2, (w) as a density of states
for momentum k and @,.(w) as a mean occupancy.
For the grand canonical ensemble, (5.51) may be
obtained directly from the definitions of G£,(w) and
Q.. (w) by using the cyclic properties of the trace.'’'*
However, (5.51) may also be deduced as a necessary
condition for equilibrium under coupling to & ther-
mometer, without specifying the precise nature of
the equilibrium ensemble. This is clearly preferable
for the present application. We hope to present a
derivation of this type at another time. The nature
of the argument has been stated previously.'

10 A review discussion is given by D. N. Zubarev, Uspekhi
Fiz. Nauk 71, 71 (1960). [Translation: Soviet Phys.—Uspekhi,
3, 320 (1960).] Our Gx(t — ¢’) differs by a factor 7 from that
commonly defined.

1L R, Kubo, J. Phys. Soc. Japan, 12, 570 (1957).

( 15“‘91; C. Martin and J. Schwinger, Phys. Rev. 115, 1342
1959).
13 R. H. Kraichnan, Phys. Rev. 112, 1054 (1958).
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6. DIAGRAM EXPANSIONS FOR THE NONEQUILIB-
RIUM CORRELATION AND GREEN'’S FUNCTIONS

6.1. Primitive Diagram Expansions

The generation of primitive and irreducible linked-
diagram expansions for Ji.(f, ) and K,,(t, ¢') is
straightforward in principle, but somewhat intricate
in practice. We shall introduce the procedure by
means of the nonlinear oscillator example discussed
in Sec. 5.2. Suppose that we carry out a formal
iteration solution of the integral equations (5.13)
and (5.14). We thereby obtain q,(f) and G.,(t, t')
expressed as power-series in V. The coefficients in
these series consist of terms of the following kind:
Each term is a multiple integral over a product of
Kronecker symbols, of factors of the form Mg,
and of unperturbed operators of the form q,
q., G, or G, The term is summed over the
intermediate indices. If the power-series are sub-
stituted into (5.31) and (5.32), we obtain expressions
for J.(¢, t') and K,(t, t') as power-series in V. The
terms which make up the coefficients in these series
involve integrals over ensemble-averages of products
of factors ¢, ¢%©, @, and G".

In order to evaluate the ensemble-averages, we
first note that G (¢, t'), given by (5.16), is a ¢-
number function and may be taken outside the
brackets { ). The remaining averages over q'* and
q'“ factors may be evaluated by using a statistical
form of Wick’s theorem, which follows from the
Gaussian form of the weighting operator (5.18)."
We pair the q'” and q'® factors in all possible
ways, maintaining always the original left-right order
of the two factors in a pair. We replace each pair by
its individual ensemble average of the form

@O 0) = .07 1), (6.1)
@ OR"@) = 8.1, 1), (62)

or
@O ®) = @R @) =0. (63

Then we take the produet of all the individual
averages for each pairing and sum over all the
possible pairings. For fermions only, we multiply
each product, before summing, by (—1)”, where P
is the number of permutations required to obtain
the particular pairing.

Let us suppose that we have carried out the
procedure just described and have then performed
the summation over all the intermediate indices
which arise. Each contribution proportional to V=,

14 Cf. C. Bloch and C. De Dominicis, Nuclear Phys. 7,
459 (1958).
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in the expansion for either J.(t, ¢') or K,(i, t'),
then consists of a multiple integral over a product
of @, Q*, G, and G'®" functions, multiplied
by a summed product of Kronecker symbols and n
factors M ~'¢. The Kronecker symbols express the
‘collective-index conservation’ which also charac-
terized the equilibrium analysis of Sec. 3. A conse-
quence is that the sums over products of Kronecker
symbols and factors M ~'¢ turn out to be precisely
the quantities C,,(a) of the equilibrium theory.
These quantities contain the entire dependence of
the contributions upon the ¢’s and upon a.

As the preceding paragraph suggests, the formal
expansions for J,.(¢, t') and K.(, t') in powers of
V have systematic diagram representations which
resemble the primitive linked-diagram expansion of
the equilibrium theory. It is immediately apparent
that only linked diagrams arise. Any intermediate
index which occurs arises from an iterative branching
of the Heisenberg equations of motion and thus is
necessarily linked by a Kronecker symbol to indices
which occurred previously in the iteration process.'®

In order to write the complete contribution to
J.(t t) or K.(t, ¢') which is proportional to V",
we first write down all the distinet nth-order primi-
tive linked diagrams, just as in the equilibrium
treatment. Now, however, it turns out that each
diagram [and hence each C,.(«)] above the first
order is associated with more than one contribution.
The method of forming the diagram contributions
is most clearly indicated by giving some examples.
Consider the first-order contribution to K,(t, t)
associated with the diagram of Fig. 4. The one
vertex in the diagram is associated with the ¢
factor that appears explicitly in (5.32). The con-
tribution is obtained from the product of the zeroth-
order terms in the iteration expansions of all the
operators in (5.32). This is because a factor V
already appears explicitly in (5.32). There are two

| () e (2T8T80)

Fic. 4. Repre- ©)
sentation of the QY
primitive contribu-
tion to K,(t, t)
proportional to It

1(a). o h &

1
QU

15 It is essential here that the Heisenberg equations of

motion be taken in the form (5.8). If, instead, the equation
d%/dt = 1(59% - qa:’c)

is used directly in the iteration procedure, both unlinked
and linked diagrams arise, just as in the Schrodinger repre~
sentation. Thus the elimination of unlinked diagrams in our
procedure can be traced to the use of the commutation
relations (5.5) in obtaining (5.8).
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H
! F1c. 5. The diagram associated with
3 : Cl;g(a).
]

possible non-vanishing pairings of the creation and
destruction operators according to Wick’s theorem:

(@) (Bw) and  (au)(BN)-

Only the first pairing corresponds to the present
diagram. By (6.1), it yields the contribution

—iC (@ VRV, HR(t, 1), (6.4)

where C;,,(a) is given by (3.15). The second pairing
corresponds to the exchange diagram Fig. 5, and
involves the quantity

Cl;z(a) = ]L[ﬁl ﬂz ¢a5aﬁ-

We have diagrammed the contribution (6.4) by
labeling the vertex in Fig. 4 with time ¢, labeling the
outer end of the incoming external line with time ¢,
and writing the two @ factors along the lines with
which they are associated. No factor is associated
with the outgoing external line, and this is true of
every contribution to the expansions of K.(¢, )
and J.(¢, t). The reason is that we are dealing with
the differential equations (5.29) and (5.27) instead
of with Q,(t, ¢') and G.(t, t') directly. In the box
on the right side of Fig. 4, we have given an alterna-
tive symbolic representation of the contribution of
this diagram to (5.29).

In Fig. 6, we have diagrammed the contribution
to J.(t, t') associated with Cf;;(«). This contribution
arises from the third term on the right side of (5.31),
and it is obtained by replacing all the operators in
that term by their zeroth-order values. By (6.1),
the contribution therefore is

~iCy (@ VQ (¢, A V(2 ). (6.6)
A symbolic representation of the contribution of
this diagram to (5.27) is given in the box on the
right side of Fig. 6. (The underlined « represents
G...) The second term on the right side of (5.31)
gives rise to the first-order exchange contribution
to J.(t t), associated with Fig. 5 and Cy;(a).
By (6.3), the first term on the right side of (5.31)
gives no first-order contribution.

Y3

(6.5)

Fra. 6. Repre-
sentation of the
primitive contribu-
tion to JL(t, t)
proportional to
Ciii(a).

Qe [« &)

ROBERT H. KRAICHNAN

There are three contributions to J (¢, t') associated
with the second-order diagram shown in Fig. 7(a).
They are diagrammed in Figs. 7(b), 7(c), and 7(d).
In the boxes beside the diagrams we have represented
symbolically the particular iteration-substitutions
(iterative branchings) and operator pairings associ-
ated with the contributions. Below this, we have
shown (in square brackets) the left-right ordering
of the final set of creation and destruction operators
which are produced, in each case, by the iteration

]
;tu
fe 4 o P S
(@)
Q) & — (BTud)
(B e)
QYO [ A uuls)
it Et”
___0_( . L < A L -3 1
e o
{b)
Lixtg o
:t S [aTAtgA]
A : A EL &
QU GUlEE) i
{c)
(o) "
(¢, o (&)
L (uA)
:t QUt,t") :t“ [MT/\T/A)‘]
! |
A, 4 Al .

n - S
G(O)(f ':t’)
(d)

F1a. 7. (a) The diagram associated with C»,i(a); (b), (c),

(d) representations of the primitive contributions to J,(¢, t')
proportional to C»,{e).

Q(O)(t,t")

substitutions. This must be kept account of to
determine whether Q@ or Q* factors are associ-
ated with given lines and to determine the sign of
the contribution in the fermion case. The total
contribution of Fig. 7 to J.(¢, ¢) is

CoalV* [ 1=, 5@, 1961, 1)
.

£ QU NGV, 1QV(, 1) (60
x G(O)*(t, t,,)Q(O)U’ t”)Q(O)(f, t”)]G(m(t”, l’) dt”,
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where

CZ;I(a) =M ‘; O+, ut2PapirPrusa - (68)
The three terms which comprise (6.7) are associated,
from left to right, with Figs. 7(b), 7(c), and 7(d),
respectively.

The contributions to K, (¢, t') and J,(¢, t') associ-
ated with all the primitive diagrams may be deter-
mined in the fashion illustrated above. For each
diagram, one traces through all the iterative branch-
ings and nonvanishing operator pairings which cor-
respond to the diagram topology. Then one writes
down the contributions by using (6.1) and (6.2).
The primitive-diagram contributions have the fol-
lowing general characteristics. Each nth-order con-
tribution to J,(¢, ') contains a factor C,.,(a) which
multiplies an n-fold integral over n factors G‘”
or G (in some combination) and » factors Q'” or
Q. The contributions to K.(t, t') are similar
except that there are n — 1 factors G or G°
and n + 1 factors Q' or Q"”. In every contri-
bution to J.(t, t'), but in only some of the contribu-
tions to K,(¢, t'), the factor associated with the
incoming external line is a G factor. We have
already remarked that no factor is ever associated
with the outgoing external line in either the J,(¢, t')
or K,(t, t') expansions.

The primitive linked-diagram expansions for the
functions Jy, (¢, t) and Kg,(¢, t'), which appear in
(5.43) and (5.44), may be obtained in close analogy
to the analysis for the nonlinear oscillator. The only
difference is that there is a momentum associated
with each line in the diagrams, and the results must
be summed over the intermediate momenta, as in
the equilibrium analysis. For example, the contri-
butions to Ji,(¢, t') which correspond to (6.6) and
to the first term in (6.7) are

—iCra(@) 22 Vo@" @, G, ) (6.9)

and

_Cz;l(a) pzs V —sIfs—k ‘/;’ Q;O)(t”; t)QlL(g)—s(t, t”)

X G, G, vy dit,  (6.10)

respectively.

Let us now consider the limit M — «. As we
discussed in Sec. 4, all the primitive linked diagrams
may be divided into two classes, ‘wanted’ and
‘unwanted,’ for each of the stochastic models. The
C...(a) for wanted diagrams all have the value one.
For any unwanted diagram of finite order n, we have

511

C..,(a) > 0as M — «. Let us extend to the non-
equilibrium case the fundamental assumption made
in See. 3 about unwanted diagrams. We assume that
the total contribution to J (¢, t'), K.(¢, ), Ji.(t, £,
and Ky, (¢, ') from all unwanted diagrams vanishes
in the limit M — «. We shall reserve all discussion
of the validity of this assumption for Sec. 7. An
immediate implication of the assumption is that
J (& 1), K.t 1), G, t'), Q. t), and the cor-
responding functions for the many-body problem
all become independent of « in the limit. We may
therefore omit the index « in these functions. Then,
in analogy to (3.21), we find

Q) ®) = 6.,.Q(, ),
@ (D)) = 8..Q°(2, 1),

with corresponding relations for the many-body
problem.

(6.11)

6.2. Irreducible Diagram Expansions

Irreducible linked-diagram expansions for J,(t, ¢')
and K,(¢, ¢) may be constructed by the following
rules: Retain only the irreducible diagrams; that is,
those without self-energy parts. (See rule 2’ of
I: Sec. 4 for the definition of an irreducible diagram
and of a self-energy part.) Then alter the primitive
contributions associated with these diagrams by
replacing each factor G, G°, Q, or Q"
therein with a factor G,, G%, Q,, or @, having the
same time-arguments. Here ¢ is the collective index
that labels the line associated with the factor. [The
external line (¢ = «) does not form an exception to
this rule.] Corresponding rules hold for the irreducible
expansions for Jy, (¢, t') and Ky, (¢, t).

The formal validity of these irreducible-diagram
expansions may be demonstrated in two ways,
neither of which will be carried out here. The first
way is to construct directly, by iteration and the
use of Wick’s theorem, the primitive-diagram ex-
pansions for G,(¢, t'), Q.(t, t'), ete.’® One then substi-
tutes these expansions into the irreducible expansions
for J.(t, t') and K,(¢, ") and compares the results
with the primitive expansions for J,(¢, t') and
K. t).

The second method does not require the explicit
primitive expansions for G,.({, t') and Q.(¢, ¢). It
involves calculating the changes in J.(¢, t’) and
K.(t, ¢) produced by small variations in the ¢.g.,
and it gives directly the contribution proportional

18 In contrast to those for J.(f, ') and K,(¢ ), the
primitive expansions for G,({, ') and @Q,(¢, t') have factors
associated with both external lines.



512

to each irreducible C..,(«). The method is illustrated,
for another application, in reference 2."’

The irreducible expansions are formally exact for
any M. In the limit M — o, our assumption that
unwanted diagrams make no contribution to the
primitive expansion implies that these diagrams
make no contribution to the irreducible expansions
also. The argument is precisely analogous to that
given in Seec. 3 for the equilibrium case. Thus, we
obtain the formal irreducible expansions for J.(¢, ¢')
and K, (i, ¢') in the limit M — o by retaining only
the wanted irreducible diagrams. For each of the
stochastic models, these expansions can be summed
to give closed equations for G(I, t') and Q(, ),
in analogy to the equilibrium case. The results
appear substantially more complicated than in the
equilibrium case, however. The complete equations
for all the models are given in Appendix B, for
both the nonlinear oscillator example and the many-
body problem.

We have remarked earlier that the irreducible
expansions for J,({, ¢) and K,({, t') are simpler
than those for G,.(¢, ¢) and Q.(¢, ¢') themselves.
The expansion for G,.({, ¢) actually may be con-
structed very easily from that for J,.(¢, t') by in-
tegrating (5.27). Thus we find

Ga(t, ) = G(o)(l, Zf’)
4 f GO, YT, Py ar. (6.12)

The factor G (¢, t"') in the integrand may be con-
sidered to be associated with the outgoing external
line in each of the irreducible diagrams. [We recall
that no factor was associated with this line in any
of the diagram-contributions to J.(¢, t).] However,
we have not succeeded in finding an equally compact
irreducible expansion for @.(¢, t'). Equation (5.29)
gives a substantially more complicated result upon
integration than does (5.27).

The difficulty in constructing a compact irre-
ducible expansion for @,(¢, t') is apparent from the
structure of the primitive expansion for this quan-
tity. In the primitive expansion for G,(¢, t'), the
factors associated with the incoming and outgoing
external lines are always G factors. This property
underlies (6.12) [which is analogous to 1:(4.12)].
In the primitive expansion for Q.(¢, t'), some con-
tributions have a G factor associated with the

17 Ag it is described in reference 2, the variational method
is applicable only in the limit M — . However, it can be
extended to finite M by the formal device of introducing
a ‘collection of collections,” consisting of M’ collections each
with M systems, and considering the limit M’ — o,

ROBERT H. KRAICHNANXN

outgoing external line and a G'”" factor associated
with the incoming external line. The remaining con-
tributions have a Q' factor associated with either
the incoming or outgoing external line and a G**
or G factor associated with the other external
line. This precludes an expression for Q.(¢, ) of
the simple form (6.12).

It is clear from what has been presented in this
Section that our nonequilibrium primitive and ir-
reducible expansions do not have the simplicity and
compactness of the diagram analysis for the equilib-
rium case, which we discussed in Sec. 3. This may
be an unavoidable penalty for abandoning equili-
brium, but it may also be that our formulation is
unnecessarily awkward.”®

7. VALIDITY OF THE CLOSED MODEL EQUATIONS
7.1. Description of Method

We wish in Sec. 7 to investigate the basic assump-
tion that the total contribution of the unwanted
diagrams vanishes in the limit M — . This assump-
tion was stated for the equilibrium case in Sec. 3
and for nonequilibrium in Sec. 6. It was the es-
sential ingredient in establishing closed equations
for the model propagators, correlation functions,
and Green’s functions. The procedure we shall use
here is to integrate the Heisenberg equations of
motion by replacing them with a set of difference
equations involving the discrete times &, ¢, + Af,
lo + 2At, --- . At each stage of integration, this
finite-difference method yields approximations to the
nonequilibrium correlation and Green’s functions
which contain as coefficients the same quantities
C..,(c) that arose in the iteration procedure of
Sec. 6. Only C,.,(a) of finite order appear after a
finite number of integration steps.

The finite-difference method of integration actually
constitutes a definition of the Heisenberg equations
of motion. Consequently, we may hope that it
converges in the limit At — 0 to yield the exact
correlation and Green's functions, whether or not
the iteration solutions of Sec. 6 converge. If, more-
over, the convergence as At — 0 is independent of
M for large M, we may conclude immediately that

18 A nonequilibrium linked-diagram formalism for infinite
fermion systems has been described by K. Nishikawa [J. Phys.
Soc. Japan 15, 78 (1960)], who uses the interaction representa-
tion instead of the Heisenberg representation. The basic
quantities are taken as Qu(f, t’) and Qx*(i, '), rather than
Qx(¢, V') and Gx(1, ). Equivalent complications in the con-
struction of primitive and irreducible expansions arise in
that formulation, if the analysis is carried out correctly for
a Gaussian initial ensemble and finite ¢ — {,. [The asymptotic
irreducible expansion expressed by Fig. 9 of the cited paper
is not valid for finite £ — {,.]
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the unwanted diagrams make zero total contribution
to the exact correlation and Green’s functions in
the limit M — «. This is because the unwanted
C..,(a) which appear in any given finite-difference
approximation are of finite order and vanish in the
limit M —» «.

In what follows, we do not attempt to prove
rigorously the requisite convergence properties of
the finite-difference approximations. We make the
convergence plausible by showing that the time
derivatives of the matrix elements of the qg,(¢)
have bounds which are independent of M in an
appropriate mean-square sense. This is done for
all ¢ without any appeal to perturbation expansions.
However, it is essential to our analysis that the
Hamiltonian be modified by removing all momentum
modes above an arbitrarily high but finite cutoff
kwax- The significance of the momentum cutoff is
discussed for the several stochastic models. In the
case of the ring and ladder models, it is concluded
that the exact functions G.(f, t) and Q..(¢, t)
for given k should be negligibly dependent on k..
if Kepae 1s high enough and if V(x) satisfies the con-
ditions, stated in Sec. 2, which yield lower bounds
to the eigenvalues of the model Hamiltonians.

After establishing, to the extent described, that
the unwanted diagrams do not contribute to the
nonequilibrium correlation and Green’s functions,
we point out that this does not complete the justi-
fication of our formal closed equations for the
stochastic models. If the wanted diagrams are suf-
ficiently numerous in high orders that they form
nonconverging series, then a uniqueness question
arises in the summation of these diagrams. We
treat this question by regarding the closed integro-
differential equations themselves as limits of finite-
difference equations, rather than as summations of
infinite clagses of perturbation terms. Finally, we
examine the conditions under which the nonequilib-
rium closed model equations imply those for equi-
librium.

7.2. Bounds on Matrix Elements and Their
Time Derivatives

Let us consider the positive-definite quantities
CF(0) = @09.00) = Qu(t,H) @ =0),

, . (7.1)
: dqxﬁdqxn>
( ) = ————— —— = TR
F.(b) = < o dr r=1,2,--1),
where the q.(f) are the Heisenberg operators for
the nonlinear oscillator example. We have noted
previously that the weighting operator (5.18) com-
mutes with the Hamiltonian. It follows that
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CF() = TF(t) (@ =0,1,2, - (7.2)
for all ¢t. By (5.30), we then have

OF () = N, (7.3)

where N = (e* & 1)7'. Using (7.2), (5.6), (5.8),
and Wick's theorem, we find

PF () = N{e + VN[Cia(@) F Cix@])’
'{“ V21\72(1 ¥+ N)[C2;1(a) + 02:2(0‘)}' (7'4)

The C,.,(«) which appear in (7.4) have been defined
by (3.15), (3.17), (6.5), and (6.8). It follows from
(2.19) that they are all real.

Expressions similar to (7.4) may be found for
the “'F,(¢) of any finite order 7. Each “’'F,(f) may
be evaluated for all ¢ by repeated differentiation and
self-substitution of (5.8) at t = ¢, followed by the
use of Wick'’s theorem. The result is a polynomial
of finite degree in N and the C,,(a). Ounly the
C...(a) of order n < 2r appear. It follows from (4.3)
that each “’F,(f) has a finite bound which depends
on N but is independent of ¢, «, and M, and is also
independent of the choice of model. In particular,
this is true in the limit M — .

In order to make clear the significance of this
result, let us write the traces which define the
F .(t) in the explicit form

OF.() =27 Z exp [—adu(s)] [{s'] q.(2) Is)

OF () = Z7 Z exp [—a9i(s)]

2
»

X s d'qu(t)/dt Is)]? (7.5)
=7 Z exp [—ad(s)]
X d " ()] s)/dt [ r > 1),
where
Z = Y exp [—aN(s)] (7.6)

and (s’ |q.(f)| s) is the matrix element of q,(f)
between the states s and s’. The sums are over the
complete set of joint eigenstates s, s’ of the Schro-
dinger number operators qua, and

N = (12 Gadal 8)

is the total number of quanta in the state s.

The boundedness of “F,(t) implies first of all
that the sums in (7.5) converge to finite limits.
In particular, it implies that the sum over the
complete sets of states s which have successively
increasing values of 9U(s) converges as (s) — =.
The density of states in the space of the occupation

7.7
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numbers is such that the factor Z™* exp [—a3(s)]
in (7.5) gives the principal total weight in the sum
to states s with 91(s) = O(MAN). In the limit M — o,
the sum is in effect sharply confined to states s
with 91(s)/M = N. Let us consider the complete
set of states with a given value of 9U(s)/M. The
boundedness of “F.(¢) then implies that the rth
time-derivatives of the complete set of matrix
elements (s’ |q.(t)] s) have a mean-square bound
which is independent of M in the limit M — o
and which is finite if 9U(s)/M is finite. It should be
noted that the matrix elements (s’ |q.(f)| s) are
nonvanishing only if 9% (s") = 91(s) — 1. This follows
from (5.6) and the fact that 91 commutes with JC.

We must now extend the analysis to the many-
body problem, for which 3¢ is given by (2.16) and
(2.18). We seek mean-square bounds on the time-
derivatives of the matrix elements (s’ |qe,(f)] ),
where s and s’ are now joint eigenstates of all the
number operators Ny, = Qiogea- OUur previous
technique can be applied in the present case only
if a momentum cutoff is introduced, as mentioned
in Sec. 7.1. We remove from 3¢ all terms which
contain any ¢ or ¢¥ factor whose momentum index
exceeds in magnitude some arbitrarily high but finite
value k... It is clear that the cutoff preserves the
Hermiticity of 3¢. We shall reserve for Sec. 7.5 all
discussion of the dynamieal significance of the cut-
off for the several stochastic models.

Bounds for the many-body matrix elements with
the momentum cutoff imposed can be obtained in
close analogy to the procedure for the nonlinear
oscillator. We introduce the special Gaussian weight
operator

W = exp[—o 2 Nio] = exp [—o91], (7.8)
ka

where ¢ is a real constant. (For bosons only, ¢
must also be positive.) Unlike the more general
form (5.35), this operator commutes with JC and
therefore corresponds to an equilibrium ensemble.
It may be regarded as the infinite-temperature limit
(8 — 0, —Bu — o) of the weighting operator
exp [—B(3¢ — w91)] which yields the grand canonical
ensemble for the problem with momentum cutoff.

Let { )’ denote a trace weighted by W’. Then

the quantities
OFealt) = (GaD@e(DY ¢ = 0),

A et d Qa(®)\’
(r)Fku(t> = <—%l15£7(—2 —_?1%7(_2> (T = 1; 2’ .t )

(7.9)

satisfy

(T)Fka(t) = (T)Fka(to)- (7.10)
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The “'Fy.(!) may be evaluated in the same way
as the F,(f). We find

VFa(t) = b, (7.11)
CFyo(t) = bfe + b DZ [VaCrin(@) F ViyCrio(@)]}?

+ 00 F b)) 2 Vsl VieiCain(@) F VpeoCha(@)],
(7.12)

where b = (¢’ == 1)7'. The summations in (7.12)
are over all p and s such that |p|, |s|, and |k + p — s|
are all less than k... [It should be noted that, since
© is finite, the problem with momentum cutoff
admits only a finite number of momentum modes.
Hence, finite b implies a finite mean number of
particles per system (91)’/M.] For r > 1, we find,
as before, that " Fy,(t) is a finite-degree polynomial
in b and in the C,.,(a) of order n < 2r.

It now follows from (4.3) that ‘"F,.({) has a
bound which depends on b and on k but not on
a, t, or M. Let us consider the complete set of states
s such that 9U(s)/M has a given value. Here 9(s) =
D ke Nya(s) is the eigenvalue of the total number
of particles. The boundedness of ‘" F,,(¢) then im-
plies that the rth derivatives of the complete set
of matrix elements (s’ |g,.(¢)} s) have a mean-square
bound which is independent of M in the limit M — «
and which is finite if 91(s)/M is finite. The argument
is the same as for the nonlinear oscillator.

7.3. Integration of the Heisenberg Equations

Let us now consider the evaluation of the non-
linear-oscillator funections G, (¢, ¢) and Q.(¢, t') by
a finite-difference solution of the Heisenberg equa-
tions of motion. We seek the solution over some
given time-domain (¢, f...). Let the domain be
divided into equal intervals A¢ and let (5.8) and
(5.11) be replaced by the sets of difference equations

qa(tr+l) = qa(ir)

— 1 Atleq (L) + M7'VL,(t)], (7.13)
qa(lo) = Qa,
and
Gay(trs1, 1) = Gyt 1)
— 1 AM[eG., (2, L) + M VM., (4, )],  (7.14)

Ga‘y(tmx tm) = 5&77

where t, = t, +r At (r = 0, 1, 2, --.). We may
solve these equations in terms of the Schrédinger
operators by recursion, substitute the results into
(5.19) and (5.20), use Wick’s theorem, and thereby
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evaluate the quantities Q.(¢,, t.) and G, (i, t.).
Equivalently, we may substitute into (5.31) and
(5.32) and evaluate the quantities J,(t,, t,.) and
K.,(t., t,.). The results are related by the equations

Gty b)) — G2, )

= All—1eG (L., t) + T, 1)],
Qullrsr, tn) — Qult, 1)

= Af[—ieQ, (¢, 1) + Ka(t,, £.)],

which are the finite-difference forms of (5.27) and
(5.29).

The final expressions obtained by this procedure
resemble the results of the iteration expansion carried
out in Sec. 6. Each contribution to @.(,, {.), or to
the other functions, consists of some product of
factors Q (ty, ) and Q' (4, t,) multiplied by
some power n of V and by a factor C,.,(a). As in
the case of the iteration expansion, all the contri-
butions containing a given C,.,(«) may be associated
with the pth distinet primitive linked diagram of n
vertices. There are two differences, however. The
first is that the finite difference results involve only
the initial value Q' (¢, ¢,), in contrast to the time
functions Q@ (¢, ¢') and G(¢, ') which appear
in the iteration results. This is because we are taking
finite-difference approximations to (5.8) and (5.11)
rather than to the integral equations (5.13) and
(5.14). The second difference is that the classes of
diagrams included by the successive stages of the
two procedures are very different. The iteration
expansion is a power-series expansion in V; at the
rth stage, it yields for Q.(f, ) an approximation
which contains only the C,.,(a) of order n < r.
In contrast, the quantity Q.(,, t.) obtained by
the finite-difference scheme contains some C,.,(a)
as high asn = 3(3" 4+ 3™ — 2). The finite-difference
scheme can be considered a particular kind of con-
solidation, reordering, and weighting of the iteration
{perturbation) expansion.

Let us now consider the convergence properties
of the finite-difference approximations in the limit
At — 0. The exact function @, (¢, ¢') may be written
as the explicit sum

Qult, ) = Z7" 3 exp [—a9(y)]
X (s [qa(@)] &'} lault)] 8).

A similar expression for G,(¢, t') may be obtained
by using (5.10). The Heisenberg equations (5.8)
constitute a coupled set of first-order differential
equations for the matrix elements which appear
in (7.16). The error in the matrix elements given

(7.15)

(7.16)
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by the finite-difference integration scheme therefore
depends on the magnitude of the second derivatives
d*(s’ |q.(t)| s)/d* over the domain (fy, fu..). These
derivatives, however, are not bounded for all s
and §’. Certain matrix elements between states in
which the total number of quanta is very large
oscillate with extreme rapidity. No matter how
small At may be taken, there will be matrix elements
that are poorly approximated. Convergence of the
finite-difference approximations for @,(t, ¢') therefore
requires that the weighting function Z *exp [—ad(s)]
in (7.16) suppress the contribution of matrix ele-
ments with infinitely rapid time variation.

We found in Sec. 7.2 that for each finite r the

quantities
07 Q. (1 t’):|
(r) _ Y Xally
ol _[ o ot o

satisfy finite bounds which are independent of i, «,
and M. We note also that the contribution of every
matrix element to ' F,(¢) is real and non-negative.
It follows from this that matrix elements with
infinite time derivatives do not make a finite contri-
bution to Q.(, t). By applying Schwarz’s inequality
to (7.16), we see that the contribution of any matrix
element to Q,(f, ¢') is bounded by its contributions
to Q.(¢, t) and @, (t', t'). These considerations sug-
gest that in the limit At — 0 the finite-difference
approximations to Q.(f, t') and G,(¢, t') may con-
verge to give the exact functions over any given
domain (fy, tmax)-

It should be emphasized that we have not given
a proof of convergence. The fact that matrix ele-
ments with extremely high oscillation frequencies
make a negligible contribution to the exact Q.(¢, t')
does not assure that they also make negligible
contributions to the finite-difference approximations
to Q. (¢t t'). The successive approximations to such
matrix elements will in general be unstable, and can
greatly exceed the exact values after a sufficient
number of integration steps. We shall not attempt
to resolve this question in the present paper. How-
ever, we conjecture that such instability does not
destroy the convergence of the finite-difference ap-
proximations to Q,(¢, t'). The reasoning behind the
conjecture is intimately connected with the col-
lective nature of the variables q,.(f). It is clearest
for the true problem, and we shall outline the argu-
ment briefly for this case.

The Hamiltonian for the true problem is (5.1).
The matrix elements for this case may be evaluated
immediately in the representation where the indi-
vidual-system number operators ¢},,¢.,) are diagonal,
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and the (s’ |q.(f)| s) may then be evaluated by
transformation to the representation with the ¢lq,
diagonal. If one carries this out and takes M very
large, the results strongly suggest'® that, for any
given N, those (s’ |q.(t)| s) which have significant
components with frequencies >> (¢ 4 VN) are ones
for which 91(s)/(MN) > 1. However, these matrix
elements are very strongly suppressed by the weight-
ing factor Z7' exp [—a9(s)] in (7.16) when M is
very large. This makes it plausible that the finite-
difference approximations to Q.(t, ¢’) converge as
At — 0 if we take M infinite.”* Now we note that
the C,.,(a) are independent of M for the true
problem and consequently the finite-difference ap-
proximations to Q.({, ¢) are independent of M.
This then implies, if the previous argument is cor-
rect, that the approximations to Q.(f, t') converge
for any A{. For small M, however, we conjecture
that instabilities arise in such a way that the sum
over states s and s in (7.16) becomes, in effect, a
sum over a divergent but formally correct series
as we take At — 0.

The argument just outlined can be extended to
the stochastic models by introducing a ‘collection
of collections’ consisting of M’ collections each
with M systems, taking collective variables in the
collection of collections, and considering the case
of infinite 2{’. The extension can also be made with-
out this device. The central part of the argument—
that for large M only states with 91(s)/(MN) > 1
give rise to matrix elements having significant com-
ponents with frequencies > (e -+ VN)—appears
on qualitative grounds to depend only on the col-
lective nature of the q.(t) and to be as valid for
the models as for the true problem. A point of
consistency which should be noted here is that the
explicit expressions for the successive (s’ |q.(t.)| s),
obtained by recursive solution of (7.13), involve
only matrix elements between intermediate states
8" which satisfy 91(s’”") < 9t(s) — 1.

It now remains to extend our considerations to
the many-body problem. In order to clarify the

1% We have not proved thig rigorously.

20 Tt is important here that the Heisenberg equations

of motion used in the finite-difference procedure be taken in
the form (5.8) and not in the form
dqa/dt = l(mqa - qa:}c)~

The latter form yields unlinked- as well as linked-diagram
contributions to Q.(¢, '), as we have already noted. It is
unsuitable for g finite-difference integration procedure
because the eigenvalues of 3¢ grow with M so that, for large
M, dq,/dt is expressed as the difference of two operators
each with large matrix elements. In this situation, it could not
be expected that the convergence of a finite-difference
procedure would be independent of M as M — . An equi-
valent difficulty arises if one attempts finite-difference
integration in the Schrédinger representation.
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discussion, let the weighting operator (5.35) be
taken in the particular form

W = exp [—8(3y — modV)]. (7.17)

If V(x) were zero, this would correspond to a grand
canonical ensemble at temperature 8, and chemical
potential u,. With V() nonzero, (7.17) does not
correspond to an equilibrium ensemble.

We may now write @y, (¢, t') as the explicit sum

Qualt, V) = 271 3

ss’

X exp {_180(; &Ny (8) — 1o9U(s)]}

X (8 |aua(E)] X" laea(®)] 8). (7.18)

Here s and s’ are members of the complete set of
joint eigenstates of the number operators N,, =
ql.,q”, the N,,(s) are the eigenvalues of these
operators, and 9i(s) = 2 _,, N,,(s) is the eigenvalue
of the total number operator 9. The factor Z is
now given by

Z = ,Z exp {_,BO[Z prp7<s) - #om(s)]}-

pY

(7.19)

If the term —B, D ,, €N,,(s) were absent from
(7.18), our discussion of the convergence of the
finite-difference approximations for the nonlinear
oscillator would be immediately applicable to the
many-body problem with momentum cutoff. This
follows because we found similar mean-square bounds
on matrix-element derivatives in the two cases. But
it is difficult to see how the presence of the term in
question can interfere with convergence. The effect
is to weight the sum against states in which there
is strong initial excitation of high momenta and,
therefore, in which the initial kinetic energy is high.
Since the problem is conservative, this implies a
discrimination for all ¢ against certain states of
high total energy. If we consider large M, then the
weighting operator (7.17) effectively confines the
sum to states s for which 91(s)/(MN) ~ 1, where
N is determined by B8, and g, In this respect, it
resembles the infinite-temperature weighting opera-
tor (7.8) which we used to obtain bounds on matrix
elements. But further, it chooses from among the
complete set of such states a subset which is weighted
in a particular fashion against high total energy
eigenvalues. The additional selection may reasonably
be expected to increase rather than decrease the
suppression of matrix elements with extremely high
frequencies of oscillation. We conclude therefore that
if the finite-difference scheme converges for the non-
linear oscillator, then it is very plausible that the
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finite-difference approximations to the many-body
functions Q..(t, t') and G,.(t, t') also converge, at
least for the problem with momentum cutoff.

7.4. Justification of the Formal Model Equations

Let us assume, on the basis of Sec. 7.3, that the
finite-difference approximations to Gy.(f, ') and
Qi (@, t') converge for all M as At — 0, and that the
convergence is independent of M for large M. It
follows directly that the total contribution of the
unwanted diagrams vanishes for each of the sto-
chastic models in the limit M — «. The unwanted
C..,(a) which appear in each approximation are of
finite order and vanish in the limit M — <. Thus
they do not appear in the final functions to which
the sequence of finite-difference approximations
converges.

The justification of our formal closed model
equations for nonequilibrium does not immediately
follow from the vanishing of the contribution of the
unwanted diagrams. These equations were obtained
in Sec. 6 by carrying out formal sums of the primi-
tive- diagram iteration expansions for Q.. (¢, t') and
Gy.(t, t') with only the wanted diagrams included.
However, it is possible that the expansions are
divergent even when they are restricted to wanted
diagrams. In this case, it is not assured that the
formal closed model equations represent a unique
summation of the expansions. This question can be
resolved by considering the formal model equations
themselves as the limits of finite-difference equations
rather than as infinite sums of perturbation terms.
The justification of the equations proceeds in several
steps, which we shall outline in terms of the non-
linear oscillator example.

It is convenient for the present purpose to carry
out a finite-difference solution of the integral
equations (5.13) and (5.14) instead of (5.8) and
(5.11). Upon substituting the results into (5.19),
(56.20), (5.31), and (5.32), one obtains expressions
for G.(t,, t.), Q.. tn), J(t, t.), and K, (i, t,)
which may be evaluated by Wick’s theorem in
terms of the quantities Q' (¢, tm), Q7 (e tm'),
GO, tn), and G, t.). These expressions
are more compact (and also more accurate for
finite At) than those obtained by the more ele-
mentary integration scheme of Sec. 7.3. The results
of the present procedure are analogous to the
primitive expansions of Sec. 6.1. They contain
contributions associated with all the primitive
linked diagrams. Only diagrams of finite order
contribute to G.(¢,, t.), ete. for given r and m.

The expressions for J,.(t,, t.) and K.(¢., {.) can
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be reformulated in terms of contributions associated
with irreducible diagrams only. As in Sec. 6.2, one
obtains the irreducible forms by retaining only the
contributions associated with all the irreducible
diagrams, and in them replacing each factor
GO, ta), GO, t.), Q9. t.), or
Q" " (t,, tn) with a factor G,(t,, tn.), G¥(t,., t.:),
Q.(,., t.), or Qi (¢, t..), where o is the collective
index which labels the relevant line. The irreducible-
diagram expressions for J,(Z., ¢, and K.(t., t,)
may be verified, as in Sec. 6.2, by substituting for
each factor G,(t,, t.-), ete., its finite-difference ex-
pression in terms of primitive diagrams. In the
present case, the expression for each G.(f,, f.:)
is a finite sum over primitive-diagram contributions
instead of an infinite series. Alternatively, the ir-
reducible expressions may be obtained by the
variational method mentioned in Sec. 6.2.

At this point we may take the limit M — o,
so that only contributions associated with the
wanted irreducible diagrams survive. In the case
of the Hartree-Fock and random-coupling models,
it may then be verified that if the expressions for
J.(t, t,) and K.(,, t,.) are substituted into (7.15)
the results are just the finite-difference forms of the
closed integro-differential equations for these models
given in Appendix B. In the limit At — 0, they be-
come identical with these equations. For the ladder
and ring models, the further step remains of summing
the (finite) series of irreducible diagrams which
contribute to each quantity K,(t., ¢,,) and J,(t,, {.).
This can be done by introducing vertex functions
defined by difference equations. The final sets of
equations thus obtained are again the finite-dif-
ference forms of the closed integro-differential equa-
tions for the models which are given in Appendix B.

The formal closed model equations may thus be
obtained without any use of the perturbation ex-
pansions of Sec. 6. Their justification then depends
solely upon the validity of our assumption that the
finite-difference integration scheme converges in
the limit At — 0.

7.5. Approach to Equilibrium

Let us now consider the extent to which validity
of the formal closed model equations for nonequi-
librium implies validity of the equilibrium model
equations of Sec. 3. On the basis of the preceding
discussion, we shall suppose throughout the present
section that the nomequilibrium closed equations
are valid over any given domain (¢, tm...) for all
the stochastic models with momentum cutoff.

Consider first the ladder and ring models when
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the conditions stated in Sec. 2 for boundedness of
the potential energy per particle are satisfied. It
is easy to verify that the imposition of a momentum
cutoff does not destroy the boundedness properties.
The interaction Hamiltonian for the ladder model
may still be written in the form (2.30), which is
positive definite if V(x) is non-negative everywhere.”!
When all the V, are non-negative, the lower bound
—1V(0):, implied by (2.33) for all the total potential
energy of the ring model, is replaced by the less
negative bound —j3 Zakp Vi sNia, where the sum
over momenta is restricted by |k|] < knax, [P] < Fmax-

Suppose that we take the nonequilibrium ensemble
in the form (7.17). For given 8, and u,, momenta
k| ~ k... will have negligible initial excitation if
k. 1s sufficiently high. Since the potential energy
per particle is bounded from below and the system
i1s conservative, it then is plausible that such mo-
menta will be negligibly excited at any later time.
We anticipate that the behavior of Gy.(f, ') and
Q.. (t, ) will be independent of k... for all time
in the limit %, — «.

The discussion of Sec. 5.5 now suggests that in
the limit {, — — o the nonequilibrium functions
Gy, t") and Qg (¢, t') should depend only on ¢ — ¢
and should be related by (5.48) to the temperature-
domain equilibrium propagators for some 8 and u.
(In general, we will have 8 % 8, and u # u,.) Since
the unwanted C,.,(a) do not contribute to the
nonequilibrium functions, it follows that they should
not contribute to the equilibrium propagators in
the limit M — . The closed equations for the
model propagators are then justified provided, in
addition, that he formal summations of wanted
diagrams described in See. 3 are justified. The latter
supposition is made plausible by the discussion of
Sec. 7.4, which validates the corresponding summa-
tion of wanted diagrams for the nonequilibrium
functions.

The arguments just presented are not conclusive,
and they are based in part on ergodic assumptions
which are very difficult to investigate. However,
it may be feasible to check the correspondence
between the equilibrium and nonequilibrium closed-
model equations in a direct analytical fashion. If
both sets of equations are valid, and if our ergodic
assumptions (Sec. 5.5) are valid, then the equations
for S, (t.) should be obtainable by analytic con-

2t The cutoff does not mean the removal of all Vk from
3C; for k > kmax. Higher Vi are admitted where they connect
g and ¢' factors admitted by the cutoff. In the z-space re-
presentation, the cutoff leaves V(x) unaltered but restricts
the fields ¢,(x) and y¢,1(x) to Fourier sums which do not
contain the excluded momentum modes.

ROBERT H. KRAICHNAN

tinuation from the nonequilibrium equations for
to — — «. We have not attempted this.

The following point should be noted. Some equi-
librium values of 8 and u may be unreachable by any
choice of 8, and g, in (7.17). In particular, if V(x)
is purely repulsive the initial potential energy will
be so high that very low temperatures will be un-
reachable. The reason is that (7.17) represents zero
initial two-body correlations. We may handle this
situation by taking a true problem in which the
system of interest is coupled by weak forces to a
reservoir of otherwise free particles and constructing
a stochastic model of the combined system. If enough
particles are in the reservoir, and the coupling is
weak enough, then any desired equilibrium temper-
ature may be reached by evolution of an ensemble
of the form (7.17). In this way we may justify the
formal closed equilibrium equations for the propaga-
tors of the combined system. Finally, we may let
the coupling to the reservoir go to zero and thereby
recover the closed propagator equations for the
system of interest in isolation.

Now let us consider the random-coupling model,
in which there is no lower bound to the potential
energy per particle in the limit M — . Our re-
marks will also apply to the ladder and ring models
when V(x) does not satisfy the conditions which
give bounds on the eigenvalues of 3¢;. In the absence
of a momentum cutoff, it is not assured that these
models will evolve to equilibrium at all. It is pos-
sible that the mean potential energy may grow
negatively infinite and the mean kinetic energy
positively infinite. With the momentum cutoff,
there is a ceiling on the kinetic energy, and in this
case we anticipate that an equilibrium will be
achieved. The supposition is supported by the
existence of the rigorous equilibrium ensembles
given by (7.8). However, such an equilibrium may
differ very markedly in its properties from a grand
canonical ensemble. In particular, it may be unstable
under coupling to external systems. Obviously, its
properties need not become independent of k..
as knax — . These considerations lead us to regard
the formal closed equations for the temperature-
domain propagators with strong suspicion in the
case of models with no lower bound on the potential
energy per particle. The classical results presented
in I perhaps cast some light on the situation.

APPENDIX A. GENERALIZED MODELS FOR
DISTINGUISHABLE PARTICLES

Let the true Hamiltonian for a system of N
distinguishable particles interacting through the pair
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potential V(x) be

as in I:Sec. 2.1. As before, Z:, means that ¢ = j
is to be omitted in the summation. We consider a
collection of M such systems (M odd) with total
true Hamiltonian

=3 Z Zpim - 5¢,,
g =4 2 2 VX

where X;,; and p,.; are the position and momentum
of the ith particle of the nth system. Then we take
the general model 3C; in the form

Z, V(xi - Xi);

i

(A1)

(A2)

= Xitm),

¥, =3 %: Z:’ Viitam (Xita) = Xjim1), (A3)
with
Vit (X)) = M7 V(x)
X > exp [—12r(n — m)a/Mp: ;.q
fe=0,21,..., £ 3M — D]. (A4)

To recover the true problem, we take ¢, ;,o = 1
for all 4, j, and «, thereby obtaining

V,‘j [nml (X) = 5,”,, V(X) . (A5)

In the stochastic models, the ¢; ;.. have unit
modulus but stochastically determined phases. In
this case, the individual systems in the collection
are dynamically intercoupled. We see from (A4)
that Viiiwm Xits; — Xjim1) depends not only on the
displacement X;,; — X;.; of the pair of particles
in space, but also on their ‘displacement’ n — m in
the collection. Moreover, V ;. (X) is different, in
general, for each pair ¢, j.

The distinguishable particle versions of the
generalized ladder, ring, random-coupling, and
Hartree-Fock models are given by the following
prescriptions:

Ladder Model
Take
¢1’,]’;a = eXp ['{‘1:27“1 A,’_J'/Z‘/_[], A’i.i = (A6)

For each pair of indices 7, j fix the integer A; ; by
an independent random choice in the interval
(0 < A < M), subject only to the antisymmetry
constraint in (A6). By (A4) and (2.10), we find

Vii(nml(x) = an—Ai,i,mV(X): (A7)

where 8,_4,.,. 18 to be interpreted according to the
cyclic convention (2.15).

_A]-,,'.
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Ring Model
Take
@i,ia = €XP [“iZT(Ai:a + Ai:-—a)/M])
Ai;a = —Ai;-—a' (AS)

For each pair of indices ¢, « fix the integer A;.,
by an independent random choice in the interval
(0 < A < M), subject only to the antisymmetry
constraint in (A8).
Random-Coupling Model
Take
@0 = EXP [_7/27" Ai.i:u/M]}

_Ai'i:—a'

(A9)

Aiiia = =4 0, Aiiie =

For each triad of indices 7, j, «, fix the integer A, ;.
by an independent random choice in the interval
(0 < A < M), subject only to the antisymmetry
constraints in (A9).

Hartree-Fock Model
Take
¢i . 750 = ] bl

There are no random parameters. By (A4) and
(2.10), we have

Viitam: = AI—IV(XHM

i e =0 (a 7 0)- (AIO)

(A11)

— Xi(m1)e

A comparison of the present models with those
of I:Sec. 2 shows that ‘displacement in collection’
n — m, and the associated ‘Fourier' modes «, now
play the roles in constructing the randomized po-
tentials that formerly were played by spatial dis-
placement x; — x; and the Fourier modes k. In the
present models, the shape of the interaction between
any pair of particles is always that of V(x); There is
no mutilation of the potential as in I:Sec. 2. However,
the strength of this interaction can vary with n — m,
1, and j. In the simplest case, the Hartree-Fock
model, we see from (A3) and (A11) that each particle
simply moves in the average field of the entire col-
lection of particles.

If one takes a grand canonical ensemble of col-
lections, the present models lead, in the limit
M — o, to closed expressions for the classical
Helmholtz free energy whatever may be the value
of N, the mean number of particles per system. A
classical nonequilibrium formalism, analogous to
that of Secs. 5 and 6, may be developed for these
models. It involves n-body time-displaced distri-
bution functions (n = 1, 2, --.) and also Green’s



520

functions which give the response of these distri-
butions to small perturbations.

APPENDIX B. NONEQUILIBRIUM MODEL
EQUATIONS

We list here the final expressions for Ji,(t, ¢)
and K, (&, t") for the four stochastic models in the
limit M — . The collective indices «, --- are
omitted since there is no dependence on these in-
dices in the limit. The equations below, taken to-
gether with (5.43) and (5.44), form complete sets
which determine the evolution of Gy(t, t), @Q.(, t'),
and Qi(t, t') = G (t, t') F Q(t, t'). (As in the text,
the upper and lower signs of a double sign refer to
fermions and bosons, respectively.) The equations
for the boson random-coupling model (with {,= — »)
have been given previously.”® The equations for
the several nonlinear oscillator models may be ob-
tained from those below simply by omitting all the
momentum indices and sums over momenta. All
integrals in the equations below may be taken
from ¢, to + «; the G functions then automatically
restrict the actual ranges of integration according
to the defining relation G(¢, t') = 0 (¢t < ).

Hartree-Fock Model
Jult, V) = —i 2 (Vo F Vi N,(OG(&, ) (Bl)
Kdt, ) = —i 20 (Vo F Vi) N,(0Qu(t, ¢)  (B2)
Here
N = Qu(t, ) (B3)

is the mean number of particles per syvstem with
momentum p at time ¢.

Random Coupling Model
Jult, t) = —i 2 (Vo F Ve NGt V)
P

+ Z Vk—s(Vk—s + Vp—s)

X f [:FGT)(t} tl)Qr(t7 tl)Qs(t) t!)

:i: Qp(tl7 t)Gr(t; ll)Qs(t; tl)
- Qp(tl) t)Qt(t; tl)Gs(t; tl)]Gk(tl; t’) dtl
Ko(t, ¥) = —i 2. (Vo F Vi) N (0Qu(2, ¥)

+ Z Vk—s(Vk—s + I/Yp—s)

(B4)

x [ 168, )@, 5., 1)@, 1)
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+ Qk(tly tl)GT)(t; tl)Qr(t; tl)QS(ty tl)
=+ Qk(tly t,)Qp(tly t)Gr(t; tl)Qs(t; tl)
- Qk(tly t,)Qn(tls l)Qt(ty tl)Ga(t) tl)] dtl

In these equationsr = k + p — s.

(B5)

Ring Model
Jelt, V) = —iVNG(¢, ')

w0 X [ Vi, 0., 16, ) dt
- I vese v, et wews, 1

X Go(t, t)G(t, t') dt, dt, df,
K (¢, t) = —iV,NQ(¢, 1)

(B6)

w0 Y [ Vi, 00, 0@, ¢ dr

+ 3 [l vest v, v

X [Gl:k(t,) tl)Q;(t'h t3)Qr(t3; tZ)
X Qu(t, 1) — Qulty, 1)Qs(ts, 8)Qls, )
X G(t, 4)] dt, di, dis. BN

Here N = X, N,(t) is the (constant) mean number
of particles per system, and r = k + p — s. The
vertex function V{_, is determined by

Vi, )
= Vq{é(t - t') + ¢ Z] f [Glﬁ(t: t”)Qp’+q(tr t”>

= Qo (", DGy o8, ¥V, ¥) dt"}~ (B8)

It satisfies

Vit ¥) = Vi, ). (B9)

If the initial momentum distribution has reflectional
symmetry, Vi(¢, ') is real. The vertex function may
be interpreted in terms of a higher-order Green's
function, of a kind which is nonvanishing only for
nonlinear systems. We have

M™ 37 bavsundion

Bud
X (8 Qual®)/[fos(ts) 8fea(ts) Sfur(ts)])
— =i [[ aut, Vi, a6, 8

X Gt t;) dt’ di]. (B10)
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Here 8f,,(t) is the infinitesimal perturbation operator
introduced in Sec. 5, Y 4, means that the values
p = o and A = « are omitted from the sum, and,
again, r = k + p — s. Equation (B10) is valid only
for the ring model and for M — .

Ladder Model
Rty = =i X [ Vialt, )00, 06alts, £) dt,
P

> fff Vides(t, 1) Vier(ty, 1)GH(E, 1)

X Qr(t;g, tz)Qs(ta, t2)Gk(t1, t,) dtl dtz dt;; (Bll)

K(t, V) = —i Z f Vl’xppk(ty tl)Qp(tn HQ(ty, t') dt,

+ Z f f f Vioes(t, 1) Vigeslts, 1)

X [Gt(t/; tl)Q;(tI; t) +F Qk(tly t’)G";(t, tl)]

X Qt(t:i) tZ)Qs(t:i} t2) dtl dtZ dt3' (Blz)
Herer = k + p — s, and

Vipes(t, ') = Vigus(t, #) F Vipaet, ). (B13)
The vertex function V{,., is determined by
Vies(t, ) = Vs 8t = 1) — 4 2 Vo

X f [:FGr’(t; t”)QS'(t) t,,) I/;'s’sr(t”j t,)

+ Q. VNG (E, V(B )] dE (B14)
It satisfies

Vipes?, 1) = Vigsd(2, 1), (B15)

a fact which has been used in writing (B12). In
analogy to the case of the ring model, V£ ., may be
interpreted in terms of a higher-order Green’s func-
tion. We have

]l-/[_l Z, 5a+ﬂ,u+)\¢zﬂu)\

Brh

X (8 Qua(l) /[ 8a5(t) 8 ru(ts) 8fon(t:)])
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= —’L ‘/:/ Gk(t, t,) V{(prs(t,} tQ)G’i(t', tl)Gr(téy tZ)

X Gs(téy t3) dt, dtZ,;

where » 4, has the same meaning as in (B10).
Equation (B16) is valid only for the ladder model
and for M — .

If the vertex functions V' in (B6), (B7), (B11),
and (B12) are expanded into infinite series by itera-
tion solution of (B8) and (B14), there result ex-
plicitly all the contributions associated with the
irreducible diagrams that survive in the ring and
ladder models.

The nonequilibrium equations presented above
for the several stochastic models should reduce to
an equilibrium description in the limit {, — — o,
subject to the reservations expressed in Secs. 5.5
and 7.5. In this case, the equations may be simplified
considerably by transformation to the frequency
domain and the use of (5.51). The results possibly
may prove a useful adjunct to the model equations
for the temperature-domain propagators presented
in I:Sec. 5. In some applications, the equilibrium
quantity of direct interest is Qy(w), defined by (5.50).
In principle, §,(w) may be determined from the
temperature-domain propagator Si({,) by analytic
continuation, but in practice this may prove very
difficult. It is therefore of interest to have equations
which directly determine Q,(w).

In this connection, it should be noted that the
formalism used for the temperature-domain propa-
gators in I, and in Sec. 3 of the present paper, does
not appear to be directly applicable to propagators
in the real-time or frequency domain. The reason
is that the individual states which make up the
unperturbed (free-particle) grand canonical ensemble
are not, in general, eigenstates of the adiabatic S
matrix; the particles can scatter each other ir-
reversibly while the interaction is switched on. Con-
sequently, it is not clear that the perturbation series
for the real-time propagators can be expressed in
terms of time-ordered products in the simple way
that is possible for the temperature-domain propa-
gators.

(B16)
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The canonical operator exp [ —8(JC — uN)] associated with the Bardeen-Cooper-Schrieffer (BCS)
model Hamiltonian of superconductivity is represented as a functional integral by the use of Feyn-
man’s ordering parameter. General properties of the partition function in this representation are
discussed. Taking the inverse volume of the system as an expansion parameter, it is possible to
calculate the thermodynamic potential including terms independent of the volume. This ylelds a
new proof that the BCS variational value is asymptotically exact. The behavior of the canonical
operator for large volume is described and related to the state of free quasiparticles. A study of the
terms of the thermodynamic potential which are of smaller order in the volume in the low-temperature
limit, shows that the ground state energy is nondegenerate and belongs to a number eigenstate.

I. INTRODUCTION

INCE Bardeen, Cooper, and Schrieffer' (BCS)

presented their theory of superconductivity,
there has been a rapidly growing interest in the struc-
ture of the BCS model Hamiltonian. One of the chal-
lenging questions arises from the fact that a lower
bound of the partition function Z=Tr exp {—B8H scs)
is calculated by means of a variational procedure
with a particle number nonconserving trial Hamil-
tonian H, (the free quasi-particles) leading to a
thermodynamic behavior which, in general, agrees
extraordinarily well with experiment. Several
investigations of the exactness of the variational
solution have been made. Considerations of this
kind in the whole temperature range must include,
of course, T = 0, i.e., the ground-state energy. In
the Appendix of the BCS paper, one can find the
remark that, for large particle number, the approxi-
mative ground state is also the exact one. Later
Bogoliubov, Zubarev, and Tserkovnikov® claimed
that the same is true for the partition function and
thus the thermodynamic potential in the full
temperature range. Their proof, based on a thermo-
dynamic perturbation calculation, has been criticized

* This work was supported by Navy Contract Nonr
1834 (12) and by a travel grant of the German Bundesminis-
terium fiir Atomkernenergie und Wasserwirtschaft.

 Present address: Institut fiir Theoretische Physik der
Universitit Kéln, Koln, Germany.

tJ. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys.
Rev. 108, 1175 (1957); recent review by J. Bardeen and
J. R. Schrieffer, in Progress in Low-Temperature Physics,
edited by C. J. Gorter, (North-Holland Publishing Company,
Amsterdam, 1961), Vol. I1I, p. 170.

2 N. N. Bogoliubov, D. N. Zubarev, and I. A. Tserkovni-
kov, Soviet Phys.—Doklady 2, 535 (1958); See also Fortsch,
Physik. 6, 605 (1958); A New Method in the Theory of Super-
conductivity (Consultants’ Bureau Enterprises, Inc., New
York, 1959).

by several authors, including Bogoliubov.® For
temperatures below the transition point, according
to this treatment, the partition function of free
particles would also be an “exact’” solution. A
number of authors have treated the limiting case
of strong coupling for both zero temperature*™’
and finite temperature.®

Recently, Bogoliubov, Zubarev, and Tserkov-
nikov® (BZT) attacked the problem again by
studying the system of differential equations for
the thermodynamic Green’s functions, associated
with the Hamiltonian Hgcs. They included an
auxiliary term which does not commute with the
particle number in the Hamiltonian. Considering
the problem in the zero limit of this term, BZT
were able to prove that the Green’s functions
corresponding to free quasi-particles satisfy the
full chain of equations in the limit of large volume,
and that the trivial free particles solution must be
rejected below the transition temperature.

The BZT treatment is an asymptotic expansion
performed on an infinite system of differential
equations. Usually, in statistical mechanics one
transforms the partition function into an integral
and applies well-known expansion methods. Study-
ing an integral of the type

3 D. J. Thouless, Ann. Physics 10, 553 (1960); G. Wentzel,
Helv. Phys. Acta 33, 859 (1960); N. N. Bogoliubov, Suppl.
Physica 26, 1 (1960); B. Miihischlegel, Sitber. math. naturw.
Kl. Bayer. Akadwiss. Miinchen, 1960, 123 (1961).

¢+Y. Wada and N. Fukuda, Progr. Theoret. Phys. (Kyoto)
22, 775 (1959).

5D, J. Thouless, Phys. Rev. 117, 1256 (1960).

5 H. Koppe (unpublished).

7 K. Baumann, G. Eder, R. Sexl, and W. Thirring, Ann.
Phys. 16, 14 (1961).

8 N. N. Bogoliubov, D. N. Zubarev, and I. A. Tserkovni-
kov, Soviet Phys.—JETP 12, 88 (1961), hereafter referred
to as B. Z. T.
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I(Q) = f dzF(z)e” "¢ (1.1a)
asymptotically, is called Laplace’s method.” For
large parameter Q, the leading term of the integral is

I(Q) = F(zo)[2r/QG" (x)'e” ", (L.1b)

provided the G possesses an absolute and isolated
minimum z,.

The purpose of this paper is to bring the BCS
partition function into a form suitable for applying
an expansion procedure which is similar to the
simple Laplace method in one dimension and where
the volume of the system plays the role of the large
parameter. The method we will use to transform
the partition function is not new but will follow
the same lines first treated in the work of Stratono-
wich'® on distribution functions in a Bose system,
and later considered from a more general point of
view by Hubbard." Similar ideas were used also
by Edwards' in calculating the thermal behavior
of the classical screened electron gas.

We confine our attention to the BCS Hamiltonian
with separable attractive interaction Wy, = —uu,.

Hycy = Bpes — uN = ; a(Mer + nyy)

1 .
- ?2 Z Ukvk'bk bk', (1.2)
k#=k’

& = € is the single-particle energy relative to the
chemical potential; 7.1 = ¢t Cery Bet” = Cot €y ”
are the number and pair creation operators for the
fermions in the momentum-spin states. The v,
entering in Hpcg are independent of the volume Q.
It is very convenient to express Hgycg in terms of
the operators

sl(k) = b; + bk:

s3(k) = 1 — ey — nyy,

s,(k) = i(bx — by
I(k) = bkb; + b;bk-

1.3

For the same k these Hermitian operators behave
like Pauli matrices, I(k) being the unit. They
commute for different momenta.’* The Hamiltonian
is

% See A. Erdelyi, Asymptotic Expansions (Dover Publi-
cations, New York).

( 15081){ L. Stratonovich, Soviet Phys.—Doklady 2, 416
1958).

1 J, Hubbard, Phys. Rev. Letters 3, 77 (1959).

12 8, F. Edwards, Phil. Mag. 4, 1171 (1959).

13 The difference between the s;(k) and the common Pauli
matrices is solely that they act in a four-dimensional space
according to the four possibilities of occupying k1 and —kj.
Here gan*s =1 — I + I cosha + n-ssinh o and Tr een+s =
2(1 + cosh @), n being a unit vector.

FUNCTION 523

Hucs = H+ X e+ (1/29) X vil(K)
k k (1.4)

H

l

~Tan® - [ Toto |

- b Snew |

k

We consider only H. However, it is quite clear that,
apart from Ze, the ground states of Hgcg and H
for equal particle number can differ only by the
volume independent term (2Q)™'Zv,."*

II. OPERATOR INTEGRAL

To illustrate the method we look at the operator
exp [—B8(A — 1B%/Q)]. First of all, assume the
Hermitian quantities 4 and B commute. Applying
the formula

EYVE] A bope —1hz?+\bz
e = |=— f dxe™*
2 ®

to the quadratic operator (for instance in the
spectral representation of the exponential operator)
we get

graTImD (%)* [ awrimeran @)

@.1)

Introducing the integration variable x one achieves
a linearization of the exponent; the integration is a
Gaussian average.

If A and B do not commute, (2.2) is no longer
correct. Nevertheless, it is possible to apply (2.1).
One has to introduce Feyman’s ordering parameter™®
and to replace

ﬁ(A - 21—932) by }_‘, AT,.[A(T..) - 21-532(7,.)]-

Here we use a sufficiently fine, but fixed, interval
division 0 < 7, < 71, < < 1, = B8 with
> " Ar; = B. The operators A(r), B(r) can be treated
like ¢ numbers; the final elimination of the ordering
parameter, the “disentangling” process, must
proceed according to the rule A(r)B(r;) =
B(r)A(r;) = ABfor r; > 1;,, = BA for r; < 7;
respectively. The analog to (2.2) is therefore

n * o n
g fa-iB D _ II (%) f_m H dz;

i

X exp <—%Q Z Ar,wf)

X exp {— i At JA(r) — x.-B(r.-)]}- 2.3)

14 The same holds for the thermodynamic potential.
15 R. P. Feynman, Phys. Rev. 84, 108 (1951).
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Strictly speaking, the equality sign in (2.3) holds
only in the limit n — . The right-hand side is
nothing but a functional integral with Gaussian
measure, the product in front being the normaliza-
tion factor.”®

The model Hamiltonian of superconductivity
(1.4) has almost the structure discussed above. We
have only to introduce an additional set of variables
y: corresponding to the second square getting

e = » (ATQ)f de dy;

X exp [—%Q Z Ari(2F + yf)—]

X exp [_ ﬂZ Ar.H(r;; xiy;)] ) (2.4a)
H(ri;2y:) = ; hi(7i; 2:y2)
=—Z{ = [z.8(k, 7)) + yso(k, 7.)]
+ anlk, 7)) (2.40)

Eliminating the ordering parameter in the integral
of (2.3) means writing the sequence of operators
exp [—Ar(A — x.B)] in the order of decreasing .
For a general point z,, xs, - -+ @, in n-dimensional
space, the resulting operator is neither Hermitian
nor positive as the left side of (2.3) obviously is.
This is easily understood because the integral is
invariant with respect to the following changes of
the variables:

1. ; = Z,.,;, this inverts the order and guaran-
tees the Hermiticity.

2. z; — —ux,, this causes the positive definiteness
of the integral.

There is in addition another feature of the BCS
operator. Whereas exp [—AH] commutes with the
number operator N = Zk [1 — s3(k)], the integrand
in (2.4) does not. However,

N exp l:— Z ArH(r;; x,, y-)]

= exp l:— Z ArH(r;; —x, —yi):IN. (2.5)
Therefore the invariance under z; — —z;, y; — ~¥,

16 The following could be formulated, of course, in the
language of functional analysis, where z; — z(7) takes the
place of the integration point. We will retain, however, the
formulation with finite n, because it is more convenient for
the asymptotic expansion performed later.
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mentioned above, also yields the particle number
conservation of the integral.

Considering a many-particle system with more
general interaction, the introduction of a multi-
dimensional integral associated with ordering
parameters leads to a linearization of the problem.
Because there are infinitely many integration points,
the original many-particle problem is replaced by
infinitely-many one-particle problems. Whether or
not this is an advantage depends, of course, on the
special features of the system. In the case of the
BCS Hamiltonian the operator (2.4) has two
properties which allow a great simplification. First,
the exponential in the integrand can be factorized
with respect to the momenta k since the s, for
different k commute

exp [— Z Ar H(r; zy)]
= IkI exp [— E Arch(7:; 2:94)]

Tr exp (— Z Ar.H))
= J] Trexp (- Z A7ihes).
k

Here the traces on the right-hand side are evaluated
in the 4-dimensional Hilbert space associated with
a single k. Second, because the s act like Pauli
matrices, each factor exp [— 2 " Arihy(r:; 7:y:)] can
be considered as a sequence of infinitesimal imagi-
nary rotations (infinitesimal Lorentz transforma-
tions).

(2.6)

II. GENERAL PROPERTIES OF THE PARTITION
FUNCTION

Using (2.4) the partition function Z=Tr exp[—pBH]
can be written as

2= (%) [ T

QG (2,

*TnaU1**Un)

X cos Y@, - T4 v Yule 3.1

¢ is the argument of the complex number
Tr exp [— Z ArH(rs; 2:y0)]

and
= % Z ATi(x? -+ yf)

3.2)

Tr exp [— i Ar.H(r,; x,«y,-)]l-

The partition function has been brought into the
form mentioned in the introduction by the use of
(3.1) To make further statements, one must learn
more about the structure of G. For this purpose we

—i—)ln
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will first construct a lower bound of G for each
point (x;, y,) in the 2n-dimensional space. Here the
special features of the BCS operator will come into
play. It follows from (2.6) that

|Tr exp [— Z Ar.H(r:; x99l

= I;[ [Tr exp [~ Z Arhu(ri; 2y )] (3.3)

Furthermore, we take advantage of the analogy to

Lorentz rotations by using the following theorem:
Given a product of » imaginary rotations

P= fI exp (a.e;+6) = = + p- g, 3.4

where a; > 0 and e; are real unit vectors. Then:
|vr] = 3 |TerP| < cosh (o, + @ + -+ + a,). (3.5)

The equality sign applies only if all e; are equal
(in which case, of course, = is real).

This theorem can easily be proven, e.g., by
induction and the use of the fact that P can be
split into a product of a single real and a single
imaginary rotation.

Applying (3.5), one finds with (2.4b)

Tr exp I:— 2": Arihu(rs; xiyi):H

n 2 3
< 2{1 + cosh [ > AT,»(I'}; (@ + v + eli) ]} (3.6)
Therefore,

G, -

where

Ty vt Yu) GO(xl @ - Y (3.72)

G°=%ZAri(x§+yf)—1§Zan
H k

n 2 H
X {1 + cosh [Z AT-‘(%‘ @ +y) + eﬁ) J} (3.70)
Points with the same coordinate value
T =Ty = +++ =T, = T,
Yy = Y2 = - = Ya =Y

(we call them zy points) correspond to equal unit
vectors in (3.4). At these zy points the argument
of the trace vanishes and the equality sign applies
in (3.7a):

Glaw) = G'(ay) = 36 + ) — 5 T n2

2 %
X {1 + cosh Bl:% @+ + eﬁ] } (3.8)
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On the other hand, G°(z; - ., ¥, - %) is &
completely symmetrical function of the variables
2

1 = 12 4+ y% Thus G° takes its extrema only at
points with r? = 7°. The condition for the minimum is

aG° 1
512“&‘ﬁ
X 200 ET,— (1 - 21‘(6&)]} =0. (3.9
k k
Here,
By = [@/2)0" + & (3.10)

and f(z) is the Fermi function. Equation (3.9) is
nothing but the well-known gap equation. The
nontrivial solution r, # 0 gives the gap parameter

Ae = e/ V'2)rs. (3.11)

The absolute minimum G;, = G%.,,,:-,,» is the

BCS thermodynamic potential per unit volume,
divided by kT'":

Gg:in = 5Facs~ (3-12)

The behavior of G° enables us to say that the
function of interest, G(x,, « -+ Z,, ¥, - - - ¥.) also has
the absolute minimum G%,, and that it reaches this
value at all 2y points with 2* + y* = r2. No direction
is specified in the one-dimensional manifold
T; = 7o COS @, Y; = 7y sin ¢ of minimal points. The
reason for this is, of course, that the variables
x;, y: are related to the operators s,(k) and s,(k)
and the interaction Hamiltonian in (1.4) is sym-
metrical in these operators.

The fact that it is possible to determine both
value and position of the absolute minimum of the
complicated function G in an exact manner essen-
tially contains the proof that Fycs must give the
leading contribution in a volume expansion of the
thermodynamic potential. What remains and what
will be done in the next section is a simple Taylor
expansion at the minimal points.

IV. ASYMPTOTIC EXPANSION

The derivatives of G at zy points are

oG { 1
= Ar\T — = ka<sl(k)>}
6 i y
-z \/2 Q & (@.1)
oG 1
G - sefy - A= T
3Q Ar;
ox, ox, AT"{s” T 20

X Z_: ul(s1 (k)8 (kr))) — (31(k)>2]} (4.22)

17 Of course, one has to add the term Y& of (1.4).
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°G Ar;
oy: 0y; AT"{‘S” 20
X Zk Uﬁ[(&(k”'i)sz(kﬂ')) - <32(k)>2]} (4-2b)
#G  1Ar Ar R
ox, 9y, 2 20 ; Y

X [(s(kr.)ss(kr;)) — (s:(B)Xs.(k)) + c.c.]

The averages are taken with respect to

(4.2¢)

exp [—Bhi(zy)],
where
h(ay) = — @/ V2)[zs:() + ys.(K)] — asa(k),
Further,
s;(kr) = exp [rhu(zy)]s, (k) exp [— rhe(zy)]. (4.3)

In (4.2) the operator with the larger = always stands
to the left. To get the formulas (4.1) and (4.2) from
(3.2) one has to use (2.6), the smallness of the Ar,
the disentangling rule and the cyclicity of the trace.
The expectation value of s, becomes

(s:(k) = 2/(BEw)]

W X
V2 b 1 — (4.4
where E, is given by Eq. (3.10). Replacing = by y
given {ss).

The “correlations,” appearing in the second
derivatives (4.2), can be easily calculated by means
of the simple properties of the s operators. It is
convenient to use polar coordinates. Then the
derivatives at the minimal points r; = 7, ¢;, = ¢
are given by

aQG/ari (97‘,» = A'T,‘ Rif

= AT,‘{&,

AT 7);2K
290 4 2 cosh® (38Ey)

AZ 2
X [1?’% + & cosh (8 — 2 |7 — T,“)E,,]} ,  (4.5)
k <k
5G/3p: do, = Al = Amg{a _ 4o

cosh (8 — 2

2

X ; m?@fk—) T — T,-I)Ek}, (4.6)
while the mixed second derivatives vanish. The
Taylor expansion of G can be performed at an
arbitrary minimal point r; = r,, ¢; = ¢. Remember-
ing that in (3.1) the argument ¢ of the trace vanishes
at minimal points, we get the following asymptotic
expression for the partition function:

Z = AB exp (-ﬁQFBCS); (4‘7)

BERNHARD MUHLSCHLEGEL

where,

A___H(Arﬂ)f Hdr

X exp [—3Q Z A7 Rii(ri — r)(r; — )] (4.8)
n 2 3 2r—¢p
_ s Anﬂ)
b= (50 [ e
X exp ["'%7'39 Z A7, D, 0.0;]. 4.9

To proceed, one has to determine the eigenvalues of
the matrices R and &, defined by Egs. (4.5) and
(4.6). Both matrices have the structure
5,’,‘ - AT,‘ I{(]T, - T,'D (4-10)
with
K(r) =

K@ - 7 > 0. (4.11)

Since one is ultimately interested in the limit n — «,
the eigenvalues A of (4.10) can be obtained from the
integral equation
8
(1 — Ng(n) = f dr K(|r — (). (4.12)

Because of (4.11), it follows for the eigenvalues that

Ap=1-— f dr K(7) cos WﬁpT ;
P=0,1,2 - (4.13)

The eigenfunctions of (4.12) are trigonometric
functions:

cos (2zP7/B) .
sin (2zP7/B)
P=1,2.--.

go() = 874 o) ={

(4.14)

We call \® the eigenvalues of R, A\’ those of ¢.
The r integration in (4.13) gives for the (non-
degenerate) lowest eigenvalue:

1 vy

1____ =

{R)
Ao ,

2

X {ZﬁEkfk(l - fk) %‘5 + (1 - 2fk) %{E} ’ (4-15)

1

R Er % T (4.16)
where f, = f(8E,). The twofold degenerate higher
eigenvalues are (P =1,2,3, --+):

1

AR ”“ (1

=1 - —

55 5, (4.17)

2h) Ef - (;P/ﬂ)
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(¢)=1__L 9;(1—2f) Eli .

P 20 £ E, ¥ B + (xP/B)’

Let us first consider the eigenvalues of the matrix
R. By means of & = E} — A; it follows for the
lowest one

(R) __ 3 ($) L vk Ak
MY =T 55 2T

k

X {1 — 2f — 28Efi(1 — fo)}. 4.19)
Taking the nontrivial solution A, of the gap equa-
tion, A{? vanishes. The sum on the right-hand side
is positive since the factor 1—2f(x) —2xf(z) (1 —f(x))
remains always positive. Therefore, the matrix R
is positive definite and the radial part in the asymp-
totic expansion (4.7) becomes

A= (AéR))—% PIO:II ()\;R))—l.

On the other hand we see easily that (for tempera-
tures below the transition point) the trivial solution
of the gap equation (r = 0) does not correspond to
a minimum of G since in that case \{® < 0:

— 56 5 {1 = 2/(8 e}

k lfkl

(4.18)

(4.20)

)\é}xivial =1
The right-hand side is zero at the transition point
8 = B. and decreases with increasing 3.

As already mentioned, the lowest eigenvalue of
the matrix ¢ is zero and thus the matrix is positive
semidefinite, expressing the fact that no direction in
the 1-2 plane is preferred in the problem. In spite
of this, it is possible to do the asymptotic expansion
of the angular part (4.9). Consider the substitution
Pe = Z; U..p: which diagonalizes the exponent in
(4.9), ¢, belonging to the eigenvalue zero and there-
fore not appearing in the exponent. All integrations
associated with positive eigenvalues can be per-
formed in the same way as before. In the remaining
@, integration it is important that the region
of integration is changed by the transformation from
21 to 2 Un2n = 2¢ D, (Ari/B)} = 2x(8/Ar),
assuming all elements Ar; having the same magni-
tude. Therefore B takes the form

B = 2arigQ)? JT 05"

P=1
Combining (4.7), (4.20), and (4.21) we obtain the
following asymptotic expression for the thermo-
dynamic potential below the transition temperature
K 2
1. <Z7rrOﬁQ>
26 )\SR)

(4.21)

1
—~InZ = QF -
ﬁ BCS

+ 1 o In ). (4.22)
F=1
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It is easy to get the corresponding expansion for
T > T.. In this temperature region the gap equation
(3.9) has only the solution » = 0. Hence, the func-
tion G possesses an isolated minimum at the origin
z; = y; = 0, the minimal value G, being the
thermodynamic potential ¥, of free Fermions
divided by k7. Both matrices (4.2a) and (4.2b) are
identical, all eigenvalues are positive and given by
(4.15)~(4.18), if one puts A = 0 in these formulas:

[y

)\P =
LI P S O SN S
- ’fk‘ [1 Zj(ﬁ ! kl)] eﬁ + (_”_P/B)z

2Q £
The asymptotic expression above the transition
temperature becomes

1
B

In an expansion of the thermodynamic potential
only the leading term which is proportional to the
volume is of physical interest. Therefore, the method
we used proves that the BCS expression is exact
below and above the transition temperature con-
firming Bogoliubov’s result.

The next-order terms in the volume are important
insofar as one needs them to decide whether the
leading part is stable or not. The phase transition
can be determined in approaching 7. either from
below or above. In the first case the lowest eigen-
value R (4.15) goes to zero, whereas in the second
case X,(4.23) changes its sign from positive to
negative. It is interesting to note that in the normal
phase, the volume independent term In A, in (4.24)
blows up for T — T,.* This does not occur in the
superconducting phase (4.22), where \{*® tends to
Z€T0 88 Iy

As we have seen it is not necessary for an asymp-
totic expansion of the BCS partition function to
introduce a particle nonconserving auxiliary term
as did BZT in their Green’s function treatment.®
For the sake of completeness, however, we will
include such a mathematical term into the Hamil-
tonian and sketch the results. They can be obtained
with almost no new calculations. Consider the
Hamiltonian

(4.23)

—/13 INZ=QF+imr+2 S Inrr.  (4.24)
P=1

H-»vY, —\—”75 [cos gosi(K) + sin gos,(K)]  (4.25)

k
where H is given by (1.4) and » is a small positive
parameter. The whole problem now depends on a
18 This may, perhaps, be related to critical fluctuations

as treated by K. Gottfried and L. P. Kadanoff, Bull. Am.
Phys. Soc. 6, 65 (1961).



528

certain direction ¢, in the 1-2 plane. All conclusions
in Sec. III will remain valid. We merely replace
x; by z; + v cos ¢, and y; by y: + » sin ¢, under
the square root in (3.7b). A consequence of this
is that G as a function of the r;, ¢; now reaches its
absolute minimum at a single point in the 2n-
dimensional space determined by ¢; = ¢, and
r; = 1, Where r, is a solution of the equation

r—gs D1 - 2B =0 @20)

and
E. = (B2 + &) @/ V2)ro + ). (4.27)

The eigenvalues which we now call AJ¥, X are
given by (4.15)-(4.18) if one replaces A by A and
E by E in these formulas. The important difference,
compared with the previous symmetrical problem,
is that the lowest eigenvalue of ¢ takes the form

= /(v + 1) (4.28)

using Eq. (4.26). Therefore, both matrices R and ¢
are positive definite and the asymptotic expansion
becomes

Zk=

_1 — RI§ <¢>>
b’an QF +2 In (RPN

8

+ = Z In RRE),  (4.29)
F being the minimal value of ¢ multiplied with %7
Note that the thermodynamic potential does not
depend on ¢,. If » tends to zero as Q™' F will go
over in Fyes.

V.THE LIMIT T — 0

The question arises whether an expansion of the
partition function allows some conclusions about
the behavior of the canonical operator itself. In
particular, one may ask whether we can obtain the
projector on the ground state wave function by
taking the limit 3 — o for the canonical operator.
If one includes the very small auxiliary term (4.25)
in the Hamiltonian, the leading term (for @ — «)
in the expansion of the funectional integral (2.4) for
the operator exp [—B8H pcs] will be

exp [8 ; {Aulcos @os; (k) + sin pos,(k)]
+ ass®}].  (5.1)

Diagonalization of the exponent leads to the Hamil-
tonian of free quasi-particles. For 8 — o the
normalized operator (5.1) projects out the wave
function

BERNHARD MUHLSCHLEGEL

|§00>Bcs = IkI (uk + eonka:) i()) (5-2)
where |0) is the vacuum and u, = (1 — y)} =
(1/\/2)(1 + ek//Ek)i'

Similar statements for the original density
operator without the BZT auxiliary term cannot
be made, simply because, taking @ — o, there is
a whole manifold of terms corresponding to dif-
ferent values of ¢, which will give a contribution.
This is due to the fact that the eigenstates of
exp [—BHgos) are almost degenerate. We shall see
that the level spacing is of order 27'."* On the other
hand the asymptotic expansion performed in Sec.
IV is exact only to order Q°. Naively taking the
limit 8 — o must give a nonsensical result if &7
becomes small as @~'. Thus we see that without the
Bogoliubov trick, the limits @ — o, § — « are
not, interchangeable. The true eigenstates belong
to a definite number as has been emphasized already
by BCS. Following Anderson® they may be ob-
tained from (5.2) by

Ny = C fhd “h
) = Cy . e l§0>Bcs-

The part In Q' appearing in the expansion (4.22)
of the thermodynamic potential is closely related
to the almost degeneracy of Hgcs. As we have seen,
this term emerged from the fact that the lowest
eigenvalue of the matrix ¢ was zero, indicating the
symmetry of the problem in the 1-2 plane. To get
a better physical understanding of the different
terms in the expansion (4.22) for 8 — o, we will
give a more detailed discussion of the structure of
the low-lying levels.

The particle number average and the fluctuation
around it, calculated with the BCS state |¢)scs
(5.2) are given by

> 2vi =
k
; i = ; Ar/Es.

]

N, ; (I — e/Ey) (5.3)

AN? (5.4

i

Expanding |¢)scs in states of definite particle
number:

. [27), (5.5)

|<P>Bcs = Z e"a
n=0

13 It should be emphasized that the almost degeneracy
applies, of course, only to the operator Hgcs = ¥Hpgs — &
and not to the Hamiltonian itself, the energy difference
between the ground states of an N + 2- and an N-particle
problem being 2u.

o P. W. Anderson, Phys. Rev. 112, 1900 (1958).
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we get by (5.2)

e lon) = & (ITwo( S 2 02) 10

k Uk

(5.6)

The coefficients of the normalized 2n particle states
follow

2 1

d 2
W =5 ;g; IkI (ug + 2vi). (5.7
A Darvin-Fowler caleulation yields
a2 = [r(3 AN)?] 3} (/G am? (5.8)

The very plausible result simply means that in the
expansion of the BCS state, only states with the
number N, — AN < N < N, + AN will contribute
significantly. One should expect that the expectation
values of 3Cpcs — uN taken with the number
eigenstates No, No = 2, Ny £ 4, +-+ Ny == AN will
give a good approximation of the low lying eigen-
values of this operator.”’ Using the same technique
as before they are found to be

<N IHBCSI N) = QWO + 6I’VN
Wy = —3a + a(N — No)*/AN?,

(5.9

where QW, is the BCS ground-state energy and

_ 1l v A
N ANZZEk

k

(5.10)

is an energy independent of Q. The position of the
levels, compared with the energy gap for different
coupling strengths in the simplified BCS interaction,
is plotted in Fig. 1.

For sufficiently large 8 the partition function is
given by

Z — e—BﬂWo e—ﬂbW,v
2
— e—ﬁ(ﬂlVa+5WA'o) Z e—ﬂd(N—Nn)’/AN" (5.11)
N

Of course, the sum tends to one as kT — 0. However,
if kT remains above the level spacing which is
proportional to @', the sum can be transformed
into an integral and the thermodynamic potential
becomes
1 r AN 2>
28 In ( - (5.12)

4Ba
The fluctuation square AN® is proportional to €.
Hence, the same In Q! term as in the expansion
(4.22) appears in formula (5.12). It is clear that this

—é InZ = QW, + Wy, —

21 At least as long (No + AN|Hpcs|No + ANY —
(N o|Hgcs|N o) does not exceed appreciably the energy gap.
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9=2
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Fie. 1. Ground-state energy of the operator gcg — uN
for different particle number compared with the BCS value
QW,. On the right, the magnitude of the energy gap is
plotted for different coupling strengths.

term is not an indication of a ‘“zero-point entropy.”
It is connected with the almost degeneracy of the
lowest eigenvalues of 3Cscs — uN and describes
the behavior of the thermodynamic potential
correctly only if kT remains above the level spacing
of this operator.'

Let us compare Eqs. (4.22) and (5.12) in more
detail for the special case of strong coupling. In
this case a constant interaction

3
W = {VO
0

near the Fermi surface is so large that one can
neglect the kinetic energies ¢, relative to p and put
E, = A. The gap parameter is then A = ghw where
g = VDo is the coupling constant and D, the
density of states per unit volume at the Fermi
surface. Equation (5.12) becomes

o] < foo (5.13)

lec| > b

—/13 InZ= oW, —4Aa— 2—16 In (21;‘;,0)- (5.14)

The volume independent lowering of the BCS
ground state energy is the same as in the strong
coupling treatment of Baumann et al.”

On the other hand our original expansion (4.22)
will also take a very simple form. All eigenvalues
AP become equal to one. Using (3.11) and (4.18)
we get

1

~3InZ = QFscs - L <M>

283 Vo
T A_ﬁ”
3 In le [1 + (WP (5.15)
Remembering the product representation
sinh x ad AY
= le [1 + (ﬁ) :I , (5.16)



530

one obtains for A8 > 1

—é InZ = QFpes(T = 0)

1 T
—A-gghn (46V0>'

(5.17)

Apart from a factor 2, the In terms in both Egs.
(5.14) and (5.17) coincide. The ground-state
energy in both equations is exactly the same if one
notices two things. First, the BCS value QW, =
(¢ |Hzpcs| |¢) contains, in contrast to QF scs(T" = 0),
an @ independent part which results from the
summation restriction k # k’ in Eq. (1.2) and which
is quite generally given by

, 1 Ap
W, = QFpes(T = 0) + 75 ‘ki, Vik, k) E%‘- (5.18)

k

In the strong-coupling case the second term on the
right-hand side is $A and therefore cancels —3A
in (5.14). Second, a similar cancellation will also
take place in Eq. (5.17) if one takes into account the
term (2Q)7" Dy v2 of Eq. (1.4) which equals A for
strong coupling and which we have suppressed
during the calculations.

Finally, an estimate of the series in Eq. (4.22)
for T = 0 without restriction of the coupling strength
shall be given. We use a relation for the eigenvalues
which simply expresses Mercer’s theorem for the

BERNHARD MUHLSCHLEGEL

integral equation (4.12) or the trace invariance of
K in (4.10):

AP+ Y1 - A =2 34
P=1 2Q £

X {2fk(1 — fo) %:E: + (e + 0 — ) EE_kz} ,  (5.19)

L+ 320 =) = g0 Skl + (- )

P=1 k
Taking into account the fact that In A < N — 1,
the limit 8 — « will lead to a volume independent
lowering of the ground-state energy QFpcs(T = 0)
which is at least as large as

2
2 €

1
W = — vkEZ'

2g 2 (5.20)

This energy tends to zero with increasing coupling
strength in agreement with the treatment above.
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Given a function w completely antisymmetric in » vari-
ables, there may exist a set of n functions of one variable
such that the given function is a Slater determinant in the
latter. The first problem considered is that of obtaining a
criterion for this to be the case for a given function. This
problem is solved by considering the function w as a mapping
of the space of functions in » — 1 variables onto the space
of functions of ome variable. A necessary and sufficient
condition for the initial function to be a Slater determinant
is then shown to be that the image space be n dimensional.
This criterion is converted into practical algorithms which
can be employed for the determination. The application of
one of these yields the theorem that an arbitrary linear
combination of the n -+ 1 Slater determinants in n variables
formed from n + 1 one-variable functions can always be
written as a single Slater determinant. It is further proved
that if the image space of the mapping is m(>n) dimensional,

the original function can be expressed as a linear combination
of m!/(m — n)ln! Slater determinants in n variables formed
from m one-variable functions. Playing an important role in
the analysis is the product of the mapping described above
by its adjoint (the product is simply related to Dirac’s
density matrix for a quantum mechanical system of identical
particles) as well as the eigenvectors and eigenvalues of this
Hermitian positive semidefinite mapping. The latter form a
basis for a systematic approximation procedure for repre-
senting a given function by a single Slater determinant or
by sums of Slater determinants formed from a particular
number of one-variable functions, which yields results
obtained previously by Léwdin. Problems of simultaneous
approximation of sets of antisymmetric functions and possible
physical applications to many-fermion systems are briefly
discussed.

1. INTRODUCTION

HE results described in this paper originated

from an attempt to answer the question, How
can one determine when a given antisymmetric
function is a Slater determinant? Its solution made
apparent certain additional applications of the
method employed to problems of approximation of
antisymmetric functions by single Slater deter-
minants or by linear combinations of them. As the
manuscript of this paper was being completed, we
were made aware' of the existence of some recent
work of Lowdin® which contain results and ideas
related to, and in some cases identical with, some
of the content of this paper. Since the present paper
begins with a somewhat different approach and
contains some results which we have not found in
the earlier literature, it was felt for reasons of
economy that publication of the manuscript in
what is essentially its original form would be
justified. In spite of differences in terminology,
notation, and normalization, there should be no
difficulty for the reader in tracing the connections
between the present work and that of Lowdin's.
Loéwdin’s work stems, in part, from a large volume of
work on the Hartree-Fock approximation, and some

* Work supported in part by the U. S. Atomic Energy
Commission. . o
1 We are grateful to Dr. M. K. Banerjee for bringing the

work of Lowdin to our notice.
2 P-0. Lowdin, Phys. Rev. 97, 1474, 1490, 1509 (1955).

ideas of Slater® on extending this approximation, as
well as some early work of Dirac' on the density
matrix. Rather than attempt to document again this
earlier work, we refer the reader to the extensive
references in the work of Lowdin and Loéwdin
and Shull.®

To those familiar with this earlier work, it may
be useful to designate those results of this paper
which, to our present knowledge, do not exist in
previous work. These are: the initial geometrical
approach to the problem including the criterion
for a function to be a Slater determinant in geo-
metric form, two algorithms for ascertaining
whether a function is a Slater determinant which
may in practice be simpler than employing the
criterion of Léwdin, the rather interesting Theorem
IIT of Sec. 3 which establishes that an arbitrary
linear combination of the n + 1 Slater determinant
for n particles formed from n + 1 one-particle
states can always be written as a single Slater
determinant, and some considerations on the

3J. C. Slater, Quarterly Progress Report of Solid-State
and Molecular Theory Group at Massachusetts Institute of
Technology, 6, January 15, 1953 (unpublished); Technical
Report No. 3, 39, February 15, 1953 (unpublished); Phys.
Rev. 91, 528 (1953). We have not seen personally the first
two of these references which are taken from Léwdin’s
papers.

+P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376
(1930); 27, 240 (1931).

¢ P.-O. Lowdin and H. Shull, Phys. Rev. 101, 1730 (1956);
J. Chem. Phys. 30, 617 (1959).
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problem of simultaneously approximating a set
of given antisymmetric functions in a limited
number of configurations. The relationship between
Lowdin’s notation and terminology and our own
is generally quite transparent, but we have added
footnotes to explicitly spell out the connections
where this was convenient.

The state of a quantum-mechanical system con-
sisting of n identical particles obeying Fermi statis-
ties is deseribed by a state function w(g;, ¢z, < -+ ¢.)
which is a completely antisymmetric function of
the coordinates g;, where g¢; stands for the collection
of coordinates describing the <th particle. All of
the variables ¢; have the same domain D(q) and
the scalar product of two state functions w, (g, - - - ¢,.)
and w,(q, -+ ¢.) involves an integration (and/or
summation) over the domain D(g) for all ¢ variables
of the product

(1

It will be convenient to employ an Einstein con-
vention for such integrations according to which the
repetition of a particular ¢ in any term implies
integration over D(q) on this ¢ variable. Thus (1)
according to this convention would already indicate
that all ¢ variables are integrated over. On the
other hand, an expression of the form

w#f(% cor gawagq Q)

Kage -+ g -+ @)F(uge - @u@icr - qn)  (2)
implies an integration over ¢;¢. - -+ g; thus yielding
a function of the variables gy -+ @u, ey - G

All functions of ¢ variables with which we shall
deal will be assumed to have the usual properties
required of state functions; in particular, a function
flg, - - ¢.) will belong to a Hilbert space of square-
integrable functions of n ¢ variables,

A particularly simple antisymmetric function in
the variables ¢, --- ¢, is a Slater determinant of
the n funetions u,(q), - - - u.(¢), which is defined to be

ul(Ql) uz(‘]l) un(q1)
Sfuy - w) = |ui(qe)  u(ge) U{g2) | - (3)
ui(gs)  U2(gn) Un(gn)

A Slater determinant has the following properties:

(1) It vanishes if the u; are not linearly inde-
pendent or if the domain D(q) consists of fewer
than n points.

(2) If the functions »,(q) are related to the func-
tions wus(g) by a linear transformation

va(g) = ; Qasts(q) @
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then
S{oy -+ - (5)

where |a| is the determinant of the a,s Two Slater
determinants will be said to be equivalent if one is
a nonzero multiple of the other. Thus the two
Slater determinants in (5) are equivalent provided
la| = 0.

(3) Any Slater determinant is equivalent to one
in which the functions u, are orthonormal through a
Schmidt orthonormalization process. If the u; are
orthonormal, then the scalar product of the Slater
determinant with itself has a value n!.

We shall say that an arbitrary nonzero anti-
symmetric function w(g, - -+ ¢.) is a Slater determi-
nant if there exists a set of functions u,(q), « - 4.(q)
such that w is equivalent to S{u, --- u,}. The
primary problem considered in this paper is that of
establishing eriteria by which it may be determined
whether a given antisymmetric function w(g, - - - q.)
is a Slater determinant. Clearly, if it is, the set of
functions u,, -+ u, will not be unique, but different
solutions will be related by linear transformations.

An approach to the solution of this problem is
suggested by the observation that if the Slater
determinant (3) is multiplied by an arbitrary
function of the variables ¢, - - - ¢,, and an integration
performed over each of these variables, the result
will be a function of the variable ¢, which is a linear
combination of the n functions %,, -+ u,. In geo-
metrical terms we may thus consider the function
w(g, --- g.) as giving rise to a mapping of the
Hilbert space [F] of functions F(g, --- ¢,) onto the
Hilbert space [f] of functions f(g,) through the
correspondence:

Un} = !al S{ul Tt un}’

F(g: -+ ¢.) = f(q) = w(g1qz -+ - ¢)F(qz -+ ). (6)

In general, this mapping is onto a subspace [f,] of the
space [f], which we may make definite by requiring
that it possess no proper subspace onto which all of
[F] is mapped by w. Our statement above is then
equivalent to the statement that if w is a Slater
determinant, then the image space (the subspace
[f.]) is n dimensional. What we shall now prove is
the converse of this theorem, namely that if w maps
[F] onto an n-dimensional subspace of [f], then w is
a Slater determinant. We will then have the result:

Theorem I. A mnecessary and sufficient condition
that a function w(q, --- q.) be a Slater determinant
18 that the space [f.] onto which w maps [F] be n
dimensional.

It will then be demonstrated how this theorem can
be converted into a practical means of determining
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whether a function is a Slater determinant. As
by-products of the proof we obtain additional
results which appear to be quite interesting.

2. SOME RESULTS ON MAPPINGS

Let us call the mapping [F] onto [f] through the
agency of the function w the mapping « so that
we write:

@) = oF(g: -+ ¢x) (7a)
as well as [f.] = w[F]. We may now define an
adjoint mapping of the space [f] onto the space [F].
We shall designate this adjoint mapping by " and
define it by

g} — wf(g) = F(g: -+ qn)

= w*q:¢: -+ a)f(q)- (7b)

Again the mapping is in general onto a subspace
[F.] of [F] which we make specific by requiring that
it possess no proper subspace onto which all of (f]
is mapped, and we write [F,] = w’[f]. We shall
now prove that [F,] = «'[fu], [fu]l = «’[F.], and
that these two mappings are each one to one.

To this end we consider the mapping @ = ww”
of the function space [f] onto itself:

(g — (@) = (g

= w(qqz - @IwW*(dq - wfla).  (8)

This is clearly a bounded Hermitian mapping of [f]
onto itself and is in addition positive semidefinite.
In particular, @ maps the subspace [f,] onto itself.
Since the mapping is Hermitian it has a complete
set of eigenfunctions in the space [f] belonging to
non-negative eigenvalues, and these eigenfunctions
can always be so chosen as to be orthogonal and
normalized. Let a complete set of orthonormal eigen-
functions be denoted wu(g), u.(Q), u,(q),
u,4:(g), - -+ where the order is such that the eigen-
values A2 associated with these eigenfunctions are
in descending order:

NN 2N 2, (9)
and where A\’ represent the last nonzero eigenvalue
in the sequence (we do not exclude the possibility
that » may be infinite). These eigenfunctions and
eigenvalues are of course the solutions of the

“integral”’ equation

Naa(g) = W(g, ¢)ualq), (10a)
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where’

W(g, ¢) = wig, ¢z -+ ¢)w*(¢'q> --+ ¢.). (10b)

Under the mapping «” each of these functions is
mapped into a function belonging to [F]. We define

Va(q2 M (11)

If we form the scalar product of two V,, we obtain

Vg -+ ¢)Valgz -+ qa)
u¥(Qw(gg: -+ g )w*(¢'% -+ ¢)us(q’)
>‘;7"'>¢‘;(Q)’Ufﬁ(9) = )‘Z Sas,

where we have used the orthonormality of the u,.
Thus V.(g. --- g0 = 0 for &« > v. The u,(q,)
with @ < » clearly form a basis in [f,] and the func-
tions V,.(¢g, --- ¢.) with @ < » clearly form a basis
in [F.,]. The mapping function w(q, - - - ¢.) can then
be written as

wigs - g) = 2 ualg) Vi - )

a=1

©ga) = W@z 0 @)U().

(12)

(13)

To see this we need merely note that (13) performs
the same mapping as does w. If the two functions
were different, their difference would then map every
function of [F] into the zero function in [f]. But then
the difference could be nonzero only on a set of
points of measure zero in the domain of all the
variables, and in quantum mechanics as well as in
the theory of Hilbert spaces such functions are
considered null functions. Thus w has the form given
by (13). We note from (12) that the V, (g, --- ¢.)
are not in general normalized; if we define the
normalized functions

va(q2 T gn) = (l/xa)Vt(g2 e Qn);
then

(14)

W@ - g) = 3 haualaa(as - g, (15)

a=1

Of course, the v functions V* and v, for a < v are
linearly independent and in fact orthogonal.

An important result following from (15) is that
if w is normalized and we form its scalar product
with itself and use (12) we obtain

TN =1,

a=1

(16)

8 The kernel W(g, ¢') is identical with the density matrix
of Lowdin except for normalization. The eigenvectors of the
kernel are called ‘“natural spin orbitals’”” in the papers of
Léwdin? and Lowdin and Shull.’! Léwdin’s criterion for w to
be a Slater determinant can be written in our notation as

W(g, ') W(¢", ¢) = nW(q, ¢'), W(q, q¢) = n.



534

We have so far not made use of the antisymmetric
properties of w(g, --- ¢,). By the use of these we
can obtain the desired converse theorem or actually
a generalization of it. We shall establish first the
following theorem:

Theorem II. If a completely antisymmetric
function w(g, - - - ¢.) can be written in the form

wigy - qn) = ;ua(ql) Valgs -+ ¢, (17)
where the v, and the V, are each sets of linearly
independent functions, then

(a) w is not identically zero;

(b) » > n;

(¢) if v = n, then w is a multiple of the Slater
determinant S{u, -« - u,};

if v > n, then w is a linearly combination
of the »!/n!(v — =n)! Slater determinant
formed by selecting in all possible ways n
distinet functions u, from the » such functions
occurring in (16) but cannot be written as
a single Slater determinant.

(d)

We lose no generality by assuming that the u,
are orthonormal, since the Schmidt orthonormaliza-
tion process assures us of the existence of a non-
singular transformation

14
Ue = anﬁu!;
B=1

such that the u} are orthonormal. Under this trans-
formation, (16) becomes

»

wigy +- ) = 2 uplg) Vige -+ qu),

p=1

(18)

with

Vi= 2 ¢V (19)
and the V} are linearly independent. We shall now
proceed under the assumption that the %, are
orthonormal. Then

Valge »++ ¢.) = u¥(g)wl(g -+ qn)- (20)

To establish conclusion (a) we now note that if w
were identically zero, then by (20) all the V, would
vanish contrary to the hypothesis of their linear
independence.

We now use the antisymmetry of w and permute
g, and g¢; in (16) obtaining

LESLIE L. FOLDY

2‘_1, wa(q) Valge -+ @)

= - a"zl ) Valq1gs -+ qa), (21)

whereupon forming the scalar product of both sides
with uz(q,) we obtain

'5(92 fee Qn)
= —;ua(qz)uz‘%(qé) Vldhes -+ ¢). (22
This may be rewritten as
Va(q2 trt qu) = GZ; uﬂ(q2) Vaﬂ(qii T qvu)y (23)
where
Vaslgs -+ ¢) = —u¥(@h) Valgigs -+ ¢n)
= —u(g)ut(gDwiglgbes - ¢.)
= uk(ghu¥(g)w(gigbes -+ ¢.). (24)

In obtaining (24) we have used (20) and also inter-
changed the integration variables ¢; and ¢} using
the antisymmetry of w. We then have from (23)
and (17)

w(gy + -+ qa)

= Z iua(ql)ua(qz) Vas(ga -+ qn)-

a=1 g=1

(25)

We now continue this procedure [at the next
step interchanging ¢, and ¢; in (25), ete.] until we
obtain finally

X ug(gs) -+ Ul@n) Vageero,  (26)
with
Vageoo = uk(ghu¥(qs) - - -
X wilg)wlgigs -+ q). (27

Now V... is clearly antisymmetric in all its
subscripts and is therefore proportional to the
Levi-Civita symbol e,g...,; this fact allows us to
rewrite (26) as
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» » v

Z > Z Vg

a=1 f=1 k=1

w(Ql e qr-) =

X Sfuusz - --
(a< B < -0 <k

For v < n, (28) clearly vanishes establishing conclu-
sion (b) of our theorem while for » = n we clearly
have conclusion (c¢). The first statement of conclusion
(d) also follows from (28). The last statement of con-
clusion (d) follows from the fact that if (17) is
considered as a mapping function of [f] onto [F],
the functions u#, are mapped into ¥, and since
these latter are linearly independent, the space onto
which w maps must be » dimensional. On the other
hand, if w were a Slater determinant, the space
must be n dimensional; since » > n, w cannot be a
Slater determinant.

Combined with our previous results, this theorem
then establishes that a necessary and sufficient
condition for a function w(g, --- ¢,) to be a Slater
determinant is that in the above sense, it generates
a mapping onto an n-dimensional subspace of [f].
We shall now give several applications of the results
obtained above starting with practical algorithms
for determining whether a given function can be
written as a Slater determinant.

wt, (28

3. IDENTIFICATION OF A SLATER DETERMINANT

To apply Theorem I to determine whether a given
function w(g, -+ ¢.) is a Slater determinant, we
select n linearly independent functions F(g, « -« ¢,)
from the function space [F] and map them through
w into n functions f(q;) of the function space [f]
and then form the Slater determinant of the latter.
If this determinant vanishes identically, we know
that we have been unfortunate in our selection of
our initial » functions and we repeat the process
by a new choice of n functions F until we obtain a
nonvanishing Slater determinant. The existence
of such a choice is guaranteed us by conclusion (a)
of Theorem II. In general, by a “random’ selection
of the initial n functions, there is only a negligible
probability that the projection of all of these onto
the subspace [F,] of [F] is onto a proper subspace
of [F,], which is the condition for the vanishing
of the determinant so that this will be a rare and
purely accidental contingency. In any case, having
constructed such a nonvanishing Slater determinant,
it is either equivalent or inequivalent to the original
function w. In the former case, w is of course a
Slater determinant, in the latter case, it cannot be.

Since a direct test of the identity of the function w
and the Slater determinant may be rather laborous,
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an alternative procedure can often be useful.
Namely, we select at “random’” n + 1 functions
F from [F], map them into » 4 1 functions f in [f],
and then form the Slater determinant of these
n + 1 functions. If this determinant is nonvanishing,
that is, if the » + 1 image functions are linearly
independent, then clearly by our theorems, w
cannot be a Slater determinant. On the other hand,
if the determinant vanishes, but one of its minors is
nonvanishing, then w is a Slater determinant. If
all of its minors vanish, we have been unlucky in
our choice of initial functions and must repeat
the procedure, but again this will be a rare con-
tingency.

As an illustration of this method, we shall prove
a simple but interesting theorem which was dis-
covered by these procedures. Suppose that we are
given n 4 1 linearly independent one particle
functions u,(g). From these we can form n 4+ 1
linearly independent Slater determinants in n-
particles by choosing in all possible ways n functions
from the set. We now prove:

Theorem III. An arbitrary linear combination
of the n 4 1 Slater determinants in n particles
formed from » + 1 linearly independent single-
particle functions is a Slater determinant.

The proof employs the second of the procedures
outlined above. We write

w(g ~- - ga) = @ S{uz + o Upp)

+ aaS{us ++ + UpiyUs}

+ oot GeaS{u o w} (29)
and choose our n 4 1 test functions F to be
Fig -+ @) = Uira@oiss(gs) « -~ %ira(gn),  (30)

where 7 runs from 1 to n + 1, and the subscripts
on the «’s are to be interpreted modulo n + 1. One
can then readily calculate the n 4 1 image functions
fitobe

(31)

fi(Ql) = aiui+1(q1) — ai+lui(q1)'

That these n 4+ 1 functions are not linearly inde-
pendent can be seen from the fact that if each f;
is multiplied by the product of all the a’s with the
exception of a; and a;.,, then the sum of the resultant
terms vanishes identically. On the other hand, any
n of the f, are linearly independent and their
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Slater determinant is equivalent to w thus estab-
lishing the theorem.”

While the theorem just established obviously
may have some useful applications in shell model
calculations, we have not explored the possibilities
thereby suggested.

Combining Theorem III with Theorem II tells
us that the image space [f.] can never be of di-
mensionality n 4 1. Construction of simple examples
shows that a dimensionality #» - 2 is not excluded.
Whether there exist other excluded dimensionalities
than n + 1, we do not know, but it appears unlikely.

4. RELATION TO A PROBLEM IN CLUSTER-MODEL
THEORY

Suppose that one had the exact wave function
(or a good approximation to it) for the ground state
of a system of n identical fermions and that this
function is w(g, -+ ¢.). The problem of obtaining
the ground state wave function for the system
with n - 1 fermions is often approached in the
following approximation: One assumes a variation
wave function of the form

Wg o0 Guer) = Awlg - @)y,  (32)

where A is an operator which completely anti-
symmetrizes the function which follows in the n 4 1
g-variables. Entering with this trial function in the
variational theorem one then derives an integro-
differential equation for the one particle function y.
Now there may exist a number of funetions y such

7 An alternate proof of this theorem based on a second-
quantized representation of the many-particle system has
been communicated to the author by F. Coester. [In this
connection the following papers are of interest: F. Coester,
Nuclear Phys. 7, 421 (1958); 17, 477 (1960).] The theorem
can also be proved by elementary methods based on the
addition formula for two determinants.

An interesting combinatorial problem arises in an attempt
at an extension of Theorem III, to which we have not found
a solution. Suppose that one considers an arbitrary linear
combination of the ml/nl{n — m)! Slater determinants in n
particles formed from m independent single-particle functions
and asks what is the smallest number of Slater determinants
in which the linear combination can be re-expressed. The
following combinatorial problem then arises: Consider all
combinations of n objects drawn from a set of m objects.
Divide these combinations into classes in which each class is
characterized by the fact that all combinations in the class
have n — 1 objects in common, Such a decomposition into
classes is not unique, but we have found in some simple
examples that carrying out the division into elasses in all
possible ways suggests the theorem that the number of
classes obtained is always the same and that the numbers of
combinations occurring in the various classes for different
divisions is also always the same. We have so far not proved
that this theorem is generally true, but if it is true and we
identify Slater determinants with the combinations, then all
Slater determinants belonging to one class can be simply
added to yield a single Slater determinant. We further do
not know the number of such classes for given m, n, nor
whether the resultant Slater determinants associated with
different classes may still be further combined to give a
smaller total number of Slater determinants.
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that the right-hand side of Eq. (32) is identically
zero; in such a case one can readily show that a
linear combination of such functions always satisfies
the integro-differential equation for any value of
the energy eigenvalue.® For example, if w itself is a
Slater determinant in the functions u,, -+ u,, then
any linear combination of these w’s is a function
of the type described. These functions represent
states which are forbidden by the exclusion principle.
While these ‘“‘spurious’” solutions can never really
cause trouble since they do not contribute to the
state function ¢, it may sometimes be convenient
to know whether such solutions exist and to find
them. We shall now show how our work is related
to finding the solutions of the equation

Aw(g -+ ¢)Y(garr) = 0. (33)

To this end we multiply the above equation by
w*(gy ¢.) and integrate over the variables
¢: ++- l.. To determine the result we note first that
the above equation can be rewritten as

W(as - )Y Gur) = W(ganr@e *++ g)Y(0)

+ w(@:1Gus1gs - €IY(g2)

+ o Fwle ot @i Gedy(gn). (39
Then, if we assume w is normalized to

w(gy <o+ gJw*(qr -+ g) = 1, 35)

we see that the result of the indicated operation is
that we obtain

Y @ns1) = nW0(Quir@e - -+ ¢IJWH@qe + -+ @)Y(q), (36)

or, in the notation introduced earlier,

A/myle = W(g, ¢ )y, (37

with W(g, ¢) defined by Eq. (10). Hence, any
solution of (33) is an eigenvector of the mapping ©
belonging to the eigenvalue 1/n. The converse is
not generally true, however. Thus if the manifold
of solutions of Eq. (37) can be obtained, among
them will be found all the solutions of Eq. (33).
In the particular case where w is itself a Slater
determinant, one sees immediately that any linear
combination of the functions w;, - - u, is an eigen-
function of W belonging to the eigenvalue 1/x.

5. BEST APPROXIMATIONS BY A SLATER
DETERMINANT

In actual applications of the cluster model, it is
not uncommon to mutilate the integro-differential

® In this connection, see, P. Swan, Proc. Roy. Soc. (Lon-
don) 228, 10 (1955).
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equation obtained strictly from the variation
principle. In fact one sometimes neglects the integral
(nonlocal) terms in the equation or replaces them
by (in some sense) equivalent local-interaction
terms.’ In this case the resultant equation may
possess spurious solutions which on a reasonable
interpretation should be excluded, but there is
now no unambiguous way of identifying which of
the solutions are the spurious ones and which are the
valid ones. The difficulty arises from the fact
that unless w is a Slater determinant, there do not
exist n one-particle states which are forbidden to
the (n -+ 1)th particle. A possible approximate
solution to this difficulty is suggested below.

The difficulties attendant when w is not a Slater
determinant could be avoided if w were replaced
by its ‘“best” Slater determinant approximation,
and we may ask whether there is a procedure for
securing this. One such procedure would consist in
asking for that Slater determinant of n one-particle
functions on which w has the largest projection in
Hilbert space. It is easy to show that the solution
to this problem may be obtained in the following
way. One constructs the mapping function W(g, ¢)
from w by the use of Eq. (10) and then determines
the n eigenvectors of this function corresponding to
the n largest eigenvalues A’ as described in Sec. 2.
The Slater determinant of these n eigenfunctions
will then be the best approximation according to
the above criterion. One can then use this Slater
determinant in place of the function w in the
variational problem. The states forbidden to the
(n + 1)st particle are then these n eigenfunctions.
Since the sum of the squares of all the eigenvalues
is unity, the amount by which the sum of the squares
of the n largest of these falls short of unity is a
measure of the goodness of the approximation. If,
after the substitution of the Slater determinant for
the function w, a mutilation of the integro-dif-
ferential equation is performed, or if one persists
in employing the mutilated form of the original
integro-differential equation, one can solve the
resultant equation variationally under the addi-
tional condition that the solutions be orthogonal
to the one-particle states of the Slater determinant.
Alternatively, any solutions of the mutilated integro-
differential equation which have large projections
on these one-particle states may be rejected. How
satisfactory a resolution of the difficulties these
suggestions provide is not clear however.

9 An example of this type of procedure is contained in some
recent work of Wackman and Austern on Li® (to be published):
P. H. Wackman, Ph.D. thesis, University of Pittsburgh
(1960).
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6. BEST APPROXIMATION BY LIMITED
CONFIGURATIONS

The idea involved in the preceding section of
finding the “best” Slater determinant approxima-
tion to a given antisymmetric function has a
natural extension which we here consider. A Slater
determinant describes a state of an n-particle system
in which there is one particle in each of n one-
particle states or “‘orbitals.”*® Such an assignment
of n orbitals for a system of n particles we shall call
a “configuration.”"" If there is given a complete set
of one-particle states, then the totality of configura-
tions constitutes a complete set of functions for the
entire system, and hence an arbitrary state of the
system can be described by a linear combination
of configurations. It may sometimes be convenient,
however, to approximate a function by writing it
as a linear combination of configurations formed
from a limited number of orbitals, say m where
m > n. The total number of such configurations is
of course m!/n!(m — n)! . One can now ask the
question: Given the number m, what is the best
choice of the one-particle states from which the
configurations are to be constructed? Before attack-
ing this problem, we introduce some ideas which are
convenient for the discussion.

Let us define a “primitive” of a given completely
antisymmetric function as any function which
when antisymmetrized yields the given function.
Every antisymmetric function has of course many
primitives, but we shall now define a specific
manner in which a primitive of a given antisym-
metric function can be constructed. Let u.(¢) be a
complete ordered set of orthonormal one-particle
functions. The totality of products of n such func-
tions with arguments ¢, --- ., respectively, then
form a complete set of functions in which any

function w(g, - -+ ¢.) can be expanded:
wlgs -+ qa)

= 2 Cottel@usles) - uda),  (38)
where the sum is taken over all values of o, 8, « - - .

If w is a completely antisymmetric function, then

10 These correspond to Lowdin’s “spin orbitals.”

11 Note that there is a slight difference from the ordinary
usage of the term “configuration.” In ordinary usage (with
a central field) the magnetic quantum numbers (projection
of angular momentum on z axis) of the occupied one-particle
states are not specified when a configuration is given, while
in the present usage all quantum numbers defining a one-
particle state must be specified. It would perhaps be useful
to borrow a term from classical statistical mechanics and to
call a configuration in our sense a “constellation” since it is
the direct quantum analog of the classical meaning of this
term. Lowdin also uses the term ‘“‘configuration’” in the new
sense.
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the coefficients ¢ are completely antisymmetric in
their n indices. If one now limits the sum on the
right side of (38) so that the sum is taken only over
all values of ¢, 8, - -+ ksuchthat a < 8 < «++ <,
then the resultant function will be a primitive of w.
A primitive of this type can be constructed by the
use of any complete ordered set of orthonormal
one-particle states. If w is a Slater determinant and
the states from which this determinant is con-
structed are included in the complete set of one-
particle states, the primitive obtained will consist
of only one term. If these states are the first n
states of the ordered set, then the coefficient of this
one term will be ¢103.... = 1/n! and all other ¢s
will then be zero. In the more general case, where
w is not a Slater determinant, it would be convenient
to select the ordering of the functions u, such that
the absolute magnitudes of the ¢’s form a non-
increasing sequence when the ¢’s are arranged in
dictionary order with respect to their subscripts,
that is, cag.... stands before cu.pr...r if @ < o,
orif « = o, provided g < 8/, - - - etc. An approxima-
tion to the primitive can then be obtained by drop-
ping those terms in the sum which involve one-
particle states later in the sequence that the mth.
Antisymmetrizing (and renormalizing) the resultant
function gives us the best approximation to the
original antisymmetric function in terms of the con-
figurations generated from these m orbitals. If we
now ask how to choose the m one-particle states such
that after truncation we have the best approximation
to the original function, the answer is clear. We
choose these to be the m eigenfunctions of the kernel
W(g, ¢'), formed from w in accordance with Eq. (10),
which correspond to the m largest eigenvalues N’
Indeed, since the sum of the \* is unity, we again
obtain a fairly precise idea as to how good the
approximation will be by seeing how far the sum of
the m largest \* falls short of unity. Alternatively,
one could discover how many orbitals would be
required to give a satisfactory approximation to a
given antisymmetric function by seeing how far in
the sequence of eigenvalues one must go in order
that the sum of their squares be sufficiently close
to unity.

A generalization of the above problem would
consist in attempting to simultaneously approxi-
mate two or more antisymmetric functions by
configurations derived from a common set of one-
particle orbitals. Since in general the kernels derived
from each such function will not commute,’® the

12 We mean here, of course, that Wi(g, ¢’') Wiq”, ¢’') #
Wilg, ¢'') Wig", ).
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kernels will have different eigenvectors. We do not
propose a general procedure for the solution of this
problem but content ourselves with pointing out
that the methods indicated above can still be
helpful. For example, suppose that the functions
which are to be approximated are w;, w,, - -+ w; and
they are to be approximated by configurations
derived from m orbitals. Corresponding to each of
the functions w,, w, - -+ w,, one can construct the
positive semidefinite kernels W,, W,, W,
using (10). The fact that these are positive semi-
definite suggests forming the new kernel W =
w,+ W, 4+ .- 4+ W,, determining the m eigen-
vectors of W associated with its m largest eigen-
values, and then employing these as the orbitals for
the approximation. The expressions for w,, w,, - - -
can be explicitly obtained in terms of these orbitals
then by replacing each kernel W, by PW .P where
P is the projection operator on the subspace spanned
by the m orbitals. Depending on other considerations
which may enter the problem, it may sometimes
be more advantageous to employ a weighted sum
of the W, (with positive weight factors) for W in
place of the simple sum.

An alternative approximation procedure, useful
when no definite bound on the number of orbitals
m is envisaged, but only an adequate representation
of each of the original functions w is desired, is to
find a sequence of eigenvectors for the kernel of
each function separately which by the Z z°
criterion yields an adequate approximation and
then to form the union of the subspaces spanned
by each of these sets of eigenvectors. Finally one
introduces an orthonormal basis in the union of
these subspaces. Variations of these procedures can
be constructed to take care of special situations.

Our discussion in the present section and the
preceding one has been rather abstract in that we
have not indicated in practical situations how the
initial antisymmetric function or functions w are
obtained. We therefore conclude this section by
describing an example of the type of situation in
which the procedures suggested above may have
application.® Suppose that one is engaged in a shell-
model calculation without configurational mixing
(in the usual sense) in which the number of orbitals
in the unclosed shell is greater than the number of
particles in this shell. One might then calculate the
wave function for the lowest state in this approxi-
mation by conventional methods yielding a state
function w. It is possible that by using the methods

13 For further discussion see also references 2 and 5.
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outlined above one finds that w can be represented
reasonably accurately by a single Slater deferminant
in a new set of one-particle states determined by
the use of the eigenvectors of the kernel W associated
with the function w. One might then usefully
introduce the set of eigenfunctions of W as a new
set of one-particle basis states in proceeding to
find the eigenfunctions of the higher states, and
hopefully, in this new representation, the off-
diagonal matrix elements of the interaction might
be sufficiently smaller than those in the original
representation that perturbation methods could
be employed where they could not be employed
before.

The problems involved in determining the eigen-
functions of the kernel W may be very formidable
ones indeed. There is one aspect of this problem
which may be favorable, however. One would be
interested in determining the eigenfunctions be-
longing to the largest eigenvalues primarily. For
these, certain well-known iterations methods are
particularly well adapted and hence may sub-
stantially reduce the actual labor involved. Beyond
this, little can be said conecerning the practical
feasibility of employing the methods of this paper
without testing them in specific calculations.

7. GENERALIZATIONS OF THE MAPPING PROBLEM

For the purpose of determining if a given anti-
symmetric function is a Slater determinant, it was
convenient to regard the function w(g, --- ¢.) as
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a mapping of the space of functions of n — 1 ¢
variables onto the space of functions of a single
g variable. There is an obvious generalization of
this procedure, namely, regarding w as a mapping
of a space of functions of n — k ¢ variables onto a
space of k g-variables through the identification:

F(gesr =+ @) = (@1 -+ q0)
=w(qr ** GGrer * WF(Qeir -+ ). (39)

The procedures we have employed in dealing with
the simpler case can be employed here, many with
little change.'* However, we have not pursued this
aspect of the problem except in an exploratory way.
It is clear that if w is a Slater determinant then the
subspace [f,,] of [f] onto which [F] is mapped in this
case will have a dimensionality n!/kf(n — k)!,
and it is likely that this is the minimum dimen-
sionality for any function w, but we have not given
a rigorous proof of this nor do we know whether the
fact that the image space has this dimensionality
is sufficient to establish that w is a Slater deter-
minant. Analyses of these other mapping situations
would probably be most valuable when many-body
systems with strong correlations are subjected to
serious study.

14 Obviously the adjoint mapping can be defined in an anal-
ogous manner to the earlier case, and the kernel W(g1 - - - qu;
qu o) = w(gr @’ cc 0 @) wia) o glgen” e
¢.”’) constructed which gives rise to a Hermitian positive
semi-definite mapping of [f] on itself. The kernal W is identi-
cal, apart from a normalization and transposition, with the
density matrix of order & of Lowdin.
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By the method of “modes’ introduced by Sawada, the excitation spectra of a fermion system with
singular interactions have been obtained in three cases; (1) with one additional particle above and
and one hole below the Fermi surface, (2) with one additional particle above the Fermi surface, and
(3) with two particles above the Fermi surface. The argument holds not only for the system of low
density (nuclear matter with a hard-core repulsion), but also for the case of the interacting electron
gas in the high-density region. The results have been compared with the Brueckner-Goldstone per-
turbation-expansion formulas, by using diagrams in the second- and third-order of the expansion in
interaction strength. We show that in the approximation of our treatment, the occupation proba-
bility function at temperature 7' has the same form as the Fermi distribution function.

INTRODUCTION

ONSIDERING that the operators a*6* and ba
(which represent a simple excitation ‘“‘mode”
for a many-fermion system) play essential roles in
the calculation of ring (or cluster) diagrams in high-
density electron gas, Sawada investigated' the equa-
tion of motion of these operators and succeeded in
obtaining knowledge about the ground-state energy
without a perturbation expansion in the coupling
constant \. Recently this idea of mode was developed
further and the so-called scattering eigenmodes o*
and 8 were introduced to show that the singular
two-body interaction can be consistently replaced
by the reaction matrix in the equations of motion
and in the expressions for the energies of states.?
However, the details of the pair-scattering mode
(particle-hole correlation) were not given. The pair-
scattering mode is essentially important to the
present problem, in which shall be evaluated an
excitation energy spectrum of a system of fermions
(nuclear matter) with one particle above and one
hole below the Fermi surface. We shall investigate
this mode using Sawada’s procedure and obtain
knowledge about the approximate excitation spee-
trum without a perturbation expansion. We shall
also evaluate the energies of one particle and two
particles when they are put above the Fermi surface.
These energies will correspond to the differences
of the binding energy of states of nuclei of ¥ 4 1
and N -+ 2 particles from the ground state of the
nucleus of N particles, respectively.
When the two-body interaction is of a Coulomb

* Supported by the National Science Foundation.

1 On leave from the University of Tokyo, Tokyo, Japan.

1 K. Sawada, Phys. Rev. 106, 372 (1957).

2 K. Sawada, Phys. Rev. 119, 2090 (1960). We shall refer
to this paper as (8.) from now on.

type, we can also apply our results, since the pair-
seattering mode is taken into account. We also
discuss the continuity at the Fermi surface in the
occupation probability function in our approxima-
tion. Finally in Appendix we give a extended pre-
scription of our procedure appling to a finite system
(real nuclei such as Ca*' and Ca*?).

PAIR-SCATTERING MODE

For the details of the procedure for constructing
and evaluating modes, we refer the reader to the
papers of Sawada."'” For our purpose the following
outline will be sufficient. Consider the total Hamil-
tonian written in the notation of second quantization
H= 200+ 2 CHC3ViiuanCali, (1)
3 i,i,l,m
where ¢, = kI/2m is the kinetic energy and C*
represents a creation operator of a particle in a
large volume with momentum, spin, etc., described
by k;. C* is separated into a creation operator of
a particle and a destruction operator of a hole by
the following definition’;

cr =
cr =

*
az,

b,

w,~>#,

2

(.0,-<,LL,

where w; is the “‘true’” one-particle energy which is
defined to be compatible self-consistently with the
equation of the eigenvalue problem, [Eq. (22) of (S.)]
and p = dEy/dN. (Ey = the ground state energy
of the N-particle system and N = total number
of particles.)

By this definition the Hamiltonian (1) can be split
into the following parts:

3 We use the letters p, ¢, P, - in the case wp, wy, =

> u
and the letters 7, s, 7/, * - - in the case w,, w,, *** < p.
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H=H,+ H,,
HO = Z ""patav - Z O),—b’tb, + Z €y
Hy = Z (a* + b)(ar + b)) 3)

X %V il m(am + b )(al + b*)
+ D (6 — wa*a, — 2, (e — w)b*b,.

The scattering mode operators a*, 8-, are defined by

- } = 3 yoratat
+ Y xb,b, 4+ 2 3 £ a%D,. 4)

In (4), the wave functions ¢, x, and ¢ are determined

by the eigenvalue equation which is obtained from
the following equation of motion:

o > } ( w(S)ek >

JHl = — V... 5

[:(B-n - w_(S)B-n + ®)

In (5) Y., contains the interaction term between

this mode and other modes only [Eq. (19) of (8.)].

In the approximation which negleets the interaction

term Y.,, the eigenvalue equation for determining

eigenvalues and eigenfunctions is

[wan(S) ~ {w,(8) + wo(8)}1¥s0
= Z, vp,a:zz’,q"p:’n.a - Z Up,qir’ er F
[wan(S) — {w,(8) + @,(8)}1x"
Zv,,p ¥t — Zv“, X

()

with
wi(S) = € + 2

X {Z v'i,r;i,r

R R,
{@:(8) + «,(8)}

- Z @, (8) —

RIIR:: }
2 o) = oS F S
Ra*’; = Zvi.i;n,a\b:.z - Zvi’i:r.s)(r*.’:)

4(V1 iil.m V’i‘.i;m.l—V

and ¢ is determined by ¢ and x.

We can show that the quantity w,(S), defined by
(6), is the single-particle energy in this approxima-
tion, from the following consideration. Using the
operators «* and 8 in (3) and shifting them to the
left and right, respectively, we can rewrite the
Hamiltonian in the following form;

i.i:l.m+Vi.v'=m.l>;

Viiitm™
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H = Z {G,, + 2 Z Up,sip.2
R, R,
{,(8) + w(S)}

B R, } .
~ 0,8 F @ (8)} ¥

+ Z{ef + 2 Zvr.a:r,a

-2 2 T

2207

BRI
=2 2 G T (a8 S]]

R’r’.sR:,s *
"2 LS T ST ws<S>}}b""

+ C+ H, + H,,

where
> —np ~n
RquRP-Q

Cm 2t X TG (S T o)

R: R,
t 2 oS T S Tl

R~nR -n
2 P, D, T
* », rZ—n w-n(b) - {wp(S) + wr(S)} y
2 Blotbth — 1 3 RIS

+ZR

()

=
I
(N

" bkb*ak.b,..,

r,s,p’
and
H, =} X R:.,o%aa, -3 Z R;a,0.8-.
p,a.n
+ 2 RLTabeaa,
p.2,p"
— > R ,o*b*a, + E R Ib*a,8_,
P.8,0 y—n
-2 3, RL b*:a,*;ub,uap.

&,p,p’

The definition of B is given by (18) of (S.).
When we take the modified Hamiltonian H ™
defined below, we have the equation of motion for
the one-particle mode,

la%, H™V]. = —w,(S)a%,
with
H™® = ¥ w(S)a*a, + 2 w.(S)b,b* + C + H,

(8
(noting the definition of w:(S), and the relation

la*, H,] = 0). From (8) we get (J]N) is the ground
state),
H™%a3 [ N) = {0(8) + Ex}a} | N). (8"



542

Equation (8’) shows that w;(8) is the single-particle
energy in this approximation. But since H ™% can-
not be solved easily, we must content ourselves
with omitting H, in H™%. Thus we can write the
modified Hamiltonian in the following compaect form,
using the definition of the C; operator

H(mod) — Z w,(S)C*:C: + C- (9)

In this approximation the ground-state energy could
be written in terms of w;(S) or the reaction matrix
R [(24) of (S.)].

Now we consider the excitation state which con-
tains one additional particle above and one additional
hole below the Fermi surface. To investigate the
state, the following pair scattering modes v* and é§_,,
must be constructed;

%
';m } Z <I>§",’a*b* + Z X a*a‘z
+ E ::”gb*br + Z @:.Zbrar‘

The reason is as follows. If we can find the operator
v* which satisfies

lys, H]- =

(10)

w0, (1

— WY,
we get,
Hyk | N) = (@ + Ex)vi | N),

where particle number of the state is still conserved.
Then v% | N) represents an excited state of the
N-particle system and from its definition it corre-
sponds to the state with one particle above and
one hole below the Fermi surface, and w, is the
excitation energy of the state.

For construction and evaluation of the pair
scattering mode (10), we use the same technique,
as we did in the case of the scattering mode. Using (3)
we have,

Z Irmakb* 4 Z X mata, + Z Ermb%b,
+ Z ®r.pbram H]- E a*b* (wv -
'—ZVP"’:TD +ZBDG irp’ a

=m =
- E Bp s’ r, r':r i + Z Up.v’:r.r'®r’.p’}
LY 4

w) B,

+ 2 ata =, — w)X

= 2 Vorriaw®T + 20 Brian

= Z BB T Unria 770}
+ Z brb, { —(w, — w,)Erm
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r,r’ie,p’

V*m
+ Z’ - EBra RN p
= m *

+ ZBrs ar:r st T Z r.p’is.r’ rmp’}

+ Z brap{—(wr - wp)®r.’:
- ,Z, 17r.r’;pz» -+ Zqu P

- EB,, o BT Z roior OF 0}
+ [p)? aib*fw, — w,(S) — w, + . (9} 87
+ Z ata.{w, — w, + 0 ()17
+ 2 b3b, {o, — 0.(8) — w, + W, (S)}E
+ E bea,{o, — w,(S) — w, + @,(5)}077
+ Z &M, ., + N,,)

- wp(s)

+ 2 XM, - M)
+ E Zn(N,..— N,.)
+ X ®,,':<—MI.,, — N, (12)
where
B _ ReLR
Ve = 2[” e SR O EPYG]

RIR:
+ _Z wn(8) — {w.(S) + wd(S)}:]’
R, .R: .
= {0.(S) + @)}

Ua,b;:,d = 2[va,b:c.d - Zw (S)

n

RIB:
t L T eSS wb<S);]'

_ RURI
= 2[ L= ol T o)
- ; w*,,(S)

£l
Bn,b;c,d

RoR: ]
= {w.(S) + w9}
and the definitions of M, , and N,,, are given by
Eq. (29) of (S.). By setting (12) equal to the following

quantity (representing the quantity in the square
bracket by Z.,),

(12) = —wun( E &, 7akb* + 3 X mata,
+ Z ESnbED, + DL 0rnh,a,) + Zew,

and construeting equations for &, X, =, and O,
we can get the approximate normal mode v* and 6_,,.
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[wﬁm—(wp—w)]f'"
= 2 Vo
+ ZBD-! rr'E::’",'a'

ZBPG ir.p’

~

-
- Z Up,p’:r.r'®r’"..v’r
vy

{w*m - (wv - wa)]X':m
=,Z’I7pr i¢,p’ ZBpa iq.p’
+ E] Bv 8’ 3q.r’ :fma - ’ZV Uv,v';q,r’®:’".'n'7
T ,8 T .D (13)
[‘"’-ﬁm__("““"’)r:::."al
=—:E: Vr.r’;;p + zqu ;e,p’
- Z Br 8’ 38,7’ :rtms + ’Z‘ Ur.p':a.r’®r’".'v'7
[‘-"-‘-m - (‘*’r - ‘*’p)] e,

~
=ZVrr 2,2’ —ZBra D’
s
B mEm *-m
r.e’ pr'-ra rv par! rp'-

B* represents the rather weak interaction induced
by the scattering and may be regarded as small.
The leading term in each term of B™ begins with a
term of the order of A* in the expansion of the
coupling constant A, and B™ contains the difference
of such terms. In this approximation (B = 0),
the eigenvalue equation (13) reduces to the simple
form in which essential coupling exists only for @
and ©, and X and E can be regarded as so called
attached field. Thus the equation for & and © in
(13) can be written as

[Oum — (@ — )]0

= 2 Voo ®7 ~ 2 Vorinn O,
P’ r’,p’

[0em — (@, — )]0

= 2 Veran e = Z oo O

In this reduction, the following relation has been
used,

(14)

~ ~
Va.b;c,d = Vc.d;a.b = Ua.b;p.d-

The solutions of (14) have both types of solution:
w 2 0. We denote these as wan, corresponding to
the case w, > 0 and w_,, < 0, respectively.

The wave functions ® and © have the ortho-
normality relations;

m m’e m m’*
Z q)p.r(I)zz.r - Z®r.p®r.p = 6M.m’:
.y

m m'
2 .2

o n>0
wm<0

(15)
E @ ®:’n".zz’ = BD.D’ Br.r’-

wm>0
wm<0

543

The following relations can be easily found from (14),
and these relations have been used in obtaining (15),

07, = —%,7, .= —-07,
and
Oy = — @ (16)
X and E are determined by ® and ©. We can see

(from (14)] that even when the interaction v contains
a hard-core repulsion, it can be replaced by the
reaction matrix V.

Now we introduce a matrix T defined by

~
3 +m
- Z va-r’:b.v’q)v r
p'r’
— m - -m
an ih,r! r 2T b,a-

By substitutmg T into (13) (but B* = 0), the
attached field X and = are expressed in terms of T

amn

T,
X*m — p,q — _anm
D, 4 Way — (w,, _ wq) a.p)
(18)
Tv*m
= .
Erle=— e -

Wem — (0, — @)

Thus the pair-scattering mode v* and & can be
expressed by ®, ©, and T; and conversely we obtain
the expression of a*b* and b.a, in terms of the pair
scattering mode v* and ¢ using the orthonormality
relations (15).

aibt = 2 ek -

2 0T vm

07T o
+ 3 ava ¥ Ol
F Y- m Wm

- (wa’ - wv')
Q;nvrT;"’,u'

- T |

b

(""n' - wa')
+ f;’ b’*,br,{- m wm

(I);n,rT:n'.c’
+ Z (CO,' - wa')}’

®:",DT:" rt

~ (e — w,0)

m Wm
b.a, = (@tb¥)*.  (19)
Here we used the relation;
Ym = —Om, v¥ = —§&*,. (20)

We substitute the value of a*b* and b,e, in Z.,
in (12) and express them as functions of v* and «.
Now since Z., contains v* and v, we shift v* to
the extreme left, and v to the extreme right in Z.,.
Noting that this procedure of shift for the scattering
mode o* and 8 has been done already, we can rewrite
Z . in the form;
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Fie. 1. Some excited states of a system with one additional
particle above and one hole below the Fermi surface.

Zaw = 2 a*b¥w, — A, — w, + A)®;7
+ Z a’*;)aa(""y - AD

+ Z btbr(wr - r

- w, + Aa)X;.’:

—w, + A)ET

+ Z brap(wr — A —w, + Ap)(a:,':
+ Z.n, (21)
where
A, = w,(S)
Y N A
T2 2, aza:m = (w, — wa)][wm - (wa - wq)]
vm T DR
T2 2 o = o = ellon =~ @ =)

The term Z., contains only the interaction term
between a*, 8, v*, v and other modes. We do not
give the explicit form here for economy of writing.
Then in the approximation which neglects Z2,, the
unknown parameter w, should be determined by

we = A, (22)

®, ©, and w., should be evaluated by Eq. (14)
with (22).

This substitution of v* and ¥ and shifting process
to the extreme left and right should also be done in
Y..in (5). Then Y., separates into two parts. One
part is given by Y., which only contain the inter-
action term between a*, 8, v*, v and other modes,
just as in Z.,. The other part gives the effect of
changing w,(S) in (6) to w, defined in (22). Accord-
ingly from now on, we must replace w,(S) in every

Lo b 0 o o fe 120
(1 ofth (£ [t (5D (50
R 40 600 (50 9 5D 14D

F1e. 2. Some excited states of a system with one additional
particle above the Fermi surface.
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equation given so far, by w,. Thus we obtain modified
eigenvalue equations for determining the scattering
mode, the pair-scattering mode and eigenvalues w..,
w.,, simultaneously, by changing w,(S) in (6) and
(14) to w,. The modified Hamiltonian given by (8)
must be changed too, by the effect of introducing
the pair scattering mode; we have,

(a3, ™) =
= 2 w30 + C,

—_— *
Wpd %,

(23)
T:n.rT:n'.DR’:::’ .
m (wr’ - wp)]
In this approximation the energy of the ground
state taking into account the pair-secattering mode
is given by [see (24) of (8.)]

Tr T7 R,

P.a,7,8,m [wm - (wa - wa)][ m T (wr - wn)] ’
with the replacement of w,(8S) in (24) of (S.) by
w, given by (22).

X X

r.r',p,8,m [""’m - (ws - wr)][w

+2 (24)

DISCUSSION

As stated before, v* | N), (v, > 0) is an excited
state with one additional particle above and one
additional hole below the Fermi surface: that is,
one-particle excitation. The excitation energy is in
this approximation w,, which is a positive eigenvalue
of the equation for the pair-scattering mode ~*.
Similarly, if we construct the double pair-scattering
mode, we can get the state of two-particle excitation,
and so on.

The state of the system with one additional
particle above the Fermi surface is expressed by
a* | N), (w. > u). The energy of the additional
particle in this approximation which neglects the
interaction between o*, 8, v*, v and other modes,
is w,, which is an eigenvalue of (23). This gives the
difference of binding energy between the ground
state of the N-particle system and a some state
of the N -+ 1 particle system. Similarly the difference
of binding energy between the ground state of the
N particle system and a some state of the N + 2
system, is given by an eigenvalue in (6) (w, > 2u).

We show the order of our approximation by giving
diagrams in Figs. 1-3. (We omit the diagrams ob-
tained by exchanging the lines of particles and
holes.) For the case (1) and (3) we give diagrams
up to second order in the expansion of the coupling
constant A, for simplicity, but to third order for
the second case in conjunction with the Fig. 4 for
the ground state. We draw these diagrams by ex-
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Fia. 3. Some excited states of a system with two additional
particles above the Fermi surface.

panding each term in the eigenvalue equations in
a power series in X. As is easily seen from the dia-
grams, our results contain the contribution from
the ladder type diagrams which are important to
the evaluation of the approximate excitation energy
and ground state energy in the low density Fermion
system (nueclear matter). Qur results also hold for
the Fermion system in the high-density region, even
when it has a hard-core repulsion or a Coulomb
type interaction between the constituent particles.
For the latter case it is known that the pair scatter-
ing mode should be taken into aecount. This cor-
responds to adding the ring diagrams (or cluster
diagrams) in the evaluation of the energy (Fig. 4).
These two cases combine in some low-density systems
in which the major contribution to the ground-state
energy may come from the ladder-type diagrams
but some excited states are highly collective and
require 8 knowledge of the ring diagrams in the

presence of hard repulsive cores. Such cases have -

been discussed in connection with the nuclear giant
dipole absorption for example.

Now, consider the grand partition function de-
fined by

Z = Tr {e PE™V -0y (25)

In (25), 8 = 1/kT and H™? is the modified
Hamiltonian given'in (23). If we write Z in the form

Z =¢", (26)

all the thermodynamic properties of the system in
this approximation may be derived very simply
from Q. From the definition of H™% (omitting C’
term), © is given by

Q= —1/8) 2 I+, (@27
for the case of noninteracting system, as is well
-known. The occupation-probability function is just
the same type as the Fermi distribution funection,
except the replacement of ¢; by w;. The occupation
probability of the individual-particle energy levels
at zero temperature is one for levels below the true
Fermi energy and zero for energies above the Fermi
level.

OF FERMION SYSTEM

e 03 ED A 0D ED D,
AUV

Fia. 4. The ground state of a system.
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Finally we mention the diagrams which are con-
tained in the evaluation of the occupation proba-
bility n., which is defined by;

—~B(Ho+Hp(mod) o yn
ny = Tr [ ?H*Tr wexCiy/Z,
H;mod) — H(mod) —_ HO-

As is familiar from field theory, (28) may be written
in terms of the Dyson ordering operator

(28)

Blu—ei) _Z_g

Z

loarv B o [

X C.PLH™" () - - Hf’“°d’(un)]C’*$>
alld

n; = €

(29)

In (29)
H;mod)(u) — euHoH;mod)e—uHo,
(4) = Tr {e—B(Ho_MN)A}/Tr {e—ﬂ(nn—um}’
Zy = Tr {e Py

The subscript all d. on the average means that in
evaluating this trace we are to take all diagrams.
When we take only “connected” diagrams, (29)

becomes
n, = eﬁ(u~ef)
n ﬂ
><<CC*+Z:1( )ff fodu,.--dun
X C.PH™ ) - §“‘°d’(un)]C*$> , (30)

where the subscript ¢ means that we are to take
only connected diagrams. Thus we can give the
diagrams which are contained within the frame work
of our approach in the evaluation of the average in
(30) by the method of Bloch and DeDominicis*

Fra. 5. Diagrams con- ¥,$.$, N ,%,N, N,
tained in the evaluation

of ni.
¢ C. Bloch and C. DeDominicis, Nuclear Phys. 1, 459
(1958).
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(Fig. 5). In Fig. 5, the symbol A represents the
contribution of all single-particle diagrams shown
in Fig. 2, and the diagrams which contain hole
lines correspond to the abnormal diagrams defined
by Luttinger.’'® This is the graphical representation
of the evaluation of the function

= —1—.
eB(we—u) +1
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APPENDIX
ENERGY SPECTRUM OF A FINITE NUCLEUS

In this Appendix the procedure for getting the
energy spectrum by looking at the normal modes
is extended to a case of finite nuclei consisting of
a core nucleus plus one additional nucleon and two
additional nucleons, say, such as Ca*' and Ca*.
The core nucleus means a nucleus consisting of
closed neutron and proton shells such as Ca*’. The
eigenvalue equations for determining the energy
spectrum are obtained for each quantum number J
(the total angular momentum of the nucleus), when
a spherical two-body interaction is assumed.

Although the mechanism producing the analogous
states in the finite and infinite systems is essentially
the same, the way in which the mechanism works
in the finite system differs from that in the infinite
system because of its shell structure. We shall
describe here how modifications of the scattering
modes are to be made so as to be appropriate in
the case of real nuclei. The prescription will be made
s0 as to bring out analogies in the methods used to
those employed in describing the infinite system.

We consider a system of nucleons (protons and
neutrons) which are moving in a certain spherically
symmetric self~consistent well. We choose, as basic
functions of the second quantization representation,
the wave functions of a nucleon in each well, and
states are designated by ¢ (n, (I) j, m); (r designates
proton or neutron), as is usually used when formu-
lating the problem in the j-j coupling scheme. Let
us introduce the Fermi operators C#¢’, and C!7)
which create and destroy one nucleon of the » kind

5 W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41 (1960).

¢ J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417
(1960).
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in the state ¢’ (n, j, m). The Hamiltonian for the
system of interacting nucleons is then

H= X H" 4B, (A1)
r=p,n
with
(r) (r) (r) (r) (r) (r)
H? = 3 07000 + 20 CET, nlCX 7,
n,j,m n,i,m

1y17(n) : . H . :
X 3V, di, mas e, J2, M | Ny gsy Mas Ny Ja, Ma)
(r "
X Cns,f;,fn;Cm.iumu
and,

(r,r") __ * (1) *{r’)
H - Z Cn;.i;,m:cﬂz:fn.mn

n,i.m
(ror") . . . . . . ‘
X V", goy Mas 02, J2y Mo | M, Js, Ma; s, Jay ma)
+" (r
X Cn;.ia.m;Cru.i.,m"

Here ") is the single nucleon energy of the r kind

(3%

in the ¢ (n, j, m) state, and

Vm("l; Jiy My M2y Joy Mo | N, s, My, Mgy Ja, Ma)
= ff YE (DT, a2V, 2)
X Yneiemd D) ¥ar i1 mi(2) - dri” dr”,

VO, fiy mayne, Go, Mo | Ny Gy Ma; g, Jay M)
= ff Y m (D980 (2 V0L, 2)
X Ynoriemd) ¥ni}ym(2)-dri” drg"”.

We consider for simplicity a core nucleus consisting
of closed proton and neutron shells. We denote the
ground state of the core nucleus by |0) and its
energy by E., and treat it as the physical vacuum
referring to absent nucleons and holes. Following the
analogy with the infinite case, we shall define the
separation of the operator C*{’, into a creation
operator of a r-nucleon and a destruction operator
of a r-hole as follows’;

(ry __ (r) (r) {(r)
Crim=arim, Wi = M1, (A2)
(ry __ (r) (r) (r)
C:‘.ir.m = bn':i.my wnt:’ < g

Here ") is the “true” one r-nucleon energy of the
state ¥'” (n, j, m) which is defined to be compatible
self-consistently with the equation of the eigenvalue
problem which we shall establish later and u{” is
the binding energy of the one additional r-nucleon
to the core nucleus. By this definition the Hamil-
tonian H'”, for example, in (1) can be split into the
following parts;

H(r) — Hér) + Hl(r)’

” We use the letters without prime in the case wp, ;7 > u; ™,
and the letters with a prime in the case w,r ;/ (7 < u; @,
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(ry __ (r) (r) _(r)
0 - anzar,r]man:m

n.i,m

_,Z + Zen1’

(ry __ *(r) (r) * () (r)
r = Z (@i + 0000k (a,,_,—,,k, + bi ik
1.0k

W B B,

’

X %V(”(iu Juy ki gz, Joy ke | 44, Js, Kas s, Gs, Ka)-

(r) (r) (r) (r)
X (@ 0 + 05 )@ e, + VR 0D

+ Z (en,i - wn.i)a:'(ir.)ma:tt;vm
n,1,m

— 2 (e = 0w DR by (A3)
n',i’,m

where the suffices (7, j, k) stand for (n, j, m) or
(n’, i/, m"). Now the scattering eigenmode operators
o* and 8 in the finite system are to be defined in the
following way,

% (1)

(23 a9 _ (r).=s *(r) %(r)
= Z VP VIR I P A oy s
AP ha, 02, M

(r})
J.~s

(r),=s (r) (r)
+ Z X)\x"PL'»)\z"Pz'3J[b)\l'vP1'7 bk.'.pz']l.M
Mupat At M
(r),=s *(r)
+ 2 E E)\l-ﬂx.)\n'.Pz':J[a)\hP17 b)\z Iy ] M
Ai,piAg’ p2' M
(A4)
and
a*(r.r')
J.s — (r,r’),=s % (r) *®(r")
- Z Mi.p1 e, pat J[a)u 3% a)\z pz]J M
(ryr’) NP1 Az, pa M
J.~s

(r) (r')
:J[b)\x'.Pr.'l b NI ]J M

*(r) (r')
:J[ah.pn bh p.]

+ z : (r,r'),*s
XA17pe’ Naspa’
Ai'upa’ gl e’ M

+ Z (r,r’).,=s
E)\x.Px-)\a"Px'
Aipida! pali M

(r,r’),=s %*(r")
+ Z M1’ Raipat LV 0 pal s ate
At ps’ Na,pa, M
(A4)

J. M

Where a term of the square bracket

*(7) *(r)
[a)\x p1y Oy, P:]J-M)

for example, equals
Z ar:(rp)x na;\kz(rp)z vz(Ply 01, P2, 02 [ JM)y
o14+oz=M
with the Wigner coefficient (p,, o1, ps, o | JM).
The reason is as follows. When we can find the
operators o*‘? and o%,'"" which satisfy

30, H]. = —ofla3?, 0l 2w
and
[a?;f:‘f’), H]’ = _w‘(,"'a")aff:"')’ w(Jr.‘Cr’) Z ,‘L;r.r'),
(A5)
we get
Ha3? | 0) = (i) + EJe) | 0),
and
Ho3"" [0) = @5 + BJak" | 0),  (A5)
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where u{” is the binding energy of the two additional
r-kind nucleons added to the core nucleus, and
pi™"" the same one referred to the additional one
neutron and one proton.

Then o*'7> | 0) and o*‘" | 0) represent the
ground state or some excited states labeled by the
quantum number J, respectively, and from the
eigenvalues ;") and 77", we can find out the
energy separations of the spectrum of each nucleus
in terms of the J value.

For construction and evaluation of the scattering
modes, we use the same technique, as done in the
infinite case. But because of the complicatedness
and tediousness, we omit here full calculations. For
our purpose the following outline will be sufficient.

We evaluate the anticommutator of the modes
defined above with the Hamiltonian using (A3),
(A4), and (A4’) and put the quantity equal to the
right-hand side of the next equation,

% ()

() (r)

I:[;J 8 } , H} —_ le,s ayr, a] _|_ Y-(r) (AG)
(r) (r) (r)
J,—s - Wy, -5 J,—s

and
£
(r,r?)
J,~s -
(A6")

In (A6) and (A6’) Y., contains the interaction term
between o*, @ and other modes, respectively. We
do not give the explicit form here for economy of
writing. Then in the approximation which neglects
the interaction term Y.,, the eigenvalue equations
for determining eigenvalues and eigenfunctions are:

[(JJ % - (w)(\:).lh i:)PQ)}

(r), =8 —
X ¥idesed =

ni,i1,Ma2.72

(r,r’") ®){(r.r")
. Wr.,a 2 s
(r.r")
J,~a

(r,r')
J,—s

B

X VO, o1y Aey pot M |y, G, B2, Go: JM)
X litts = 2
n1" 411 N2 W12
X V0, piy Ney 022 IM |, §i, 0, jo: JM)
X Xnir e mat viat iy
with = (ot e @it )]
X X)(\:)':::")\a':ﬂz'i-’ =
ni.f1.nz.4a
V(')()\l; Pl; 7\2, ps: JM lnn jl; Ng, Jai JM)
X it = 20
X VOM, o, M, pi: IM |, §i, nd, G JM)
X Xarh 70 mat a0 (A7)
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and
(r.e") (r) (r")
w7 L) = (ol + @nn)))]
(r,2"),
X \I’)‘:’;:,k:.apa:-f = Z .
Ni1,11.,02,12

X VO 2N, o1y Aey pot JM | 0y, i, e, G
X it — 2

LERAT FRAN PRI PO
X V("r,)O\], p1, Ae, poi JM | 1, 31, ms, 55
X Xned i s it o0
[w-(fr.’*r;) - (w)(\:z_,,, + w)\z P: )]

(r,r'), =8 —
X b O VRIS VROV PLEN S

JM)

JM)

ny.iy.ma,ia

X V(r'w)()‘{, P{y >‘£y pé: ‘]ﬂ/[ Inli jlan27 j2:
X i — 2

’ s ’ sy
LENS PRGN PO B

JM)

X VO, ol M, oh: JM | nl, §,nb, jb: JM)
X X;:;T;zzfnsz'.iz’:.l (A?’)
with
(r) _ (r) 2J +1
wa.b - ea,b + 2 Z] 2b + 1
X Va,b,n’, 7 JM | a,b,n, i: JM)
2J +1
+ ZJ 264+ 1

X V(r.r )(a, b,n’, j/: JM l a, b,n’, jl:
2/ +1 RS RSy

JM)

- 2 n.i;—a 2b + lwf;')_, (f) + wr(tr;
_ E 2J + 1 ;rbrn)y—!Rzgrbfn);—;
ﬂ71_82b+1 (rr)_ (r) ))
2/ + 1 Ry s JRi'iZ rad
-2 L= 2b + lwf,') - (r) +w(r)
gl B, R 2
J s 2b + 1 (T T ) (w(r) ﬂ 3 ’
(A7)

where
p(r),=
Ru,b.c,‘d:J = Z

n1,d1.m2.03

X Va, b, e, d: JM | ny, ji, 0z, jo: JM)
X 'p:l:?;x*‘,ﬂz..’izi-’ - Z

LPOS FRAE PREN PN
X V7(a, b, ¢, d: JM | nf, ji,ns, ji: JM)
(r),=s
X Xni? it ona?iin’ 10

R(r.r’).*a .
a,b.e,d:J

n1,i1.m2.72

X V(r.r’)(a} b, c, d: JM Inl, j1, Na, jz: JM)

S. YANAGAWA

(r,r’),=s
X Yl liomniinid — Z

n:'vJ':l’.nz'.le
X V7 2a, b, ¢, d: IM | n, ji, ni, ji: JM)
(r,r'),*a
x Xna’,is’ne’ia’s

Va, b,e,d: JM | a’, b, ¢’ a’: JM)

= [ winw, sciens.
X V(r)(l 2)[ (r) (1) ¢(r) (2)]JM dTl(r) dT(r)

— exchange term,
Ve Na, b,e,d: JM | a’, b, ¢’ d": IM)

[ wow, verensa

X VO, 2 (D), ¥ 0 @)oa dr” dry”

In this approximation, w!} defined above is the
““true’’ nucleon energy in the state ¢7 ... (A7) and
(A7’) are not independent of each other. They are
dependent on each other through the single nucleon
energy o' and 0. (A7), (A7'), and (A7"), should
be solved so as to be simultaneously self-consistent.
The solutions of (A7) and (A7’), have both types
of solutions w’”? > ui”, 09’ < ui”, and w777 >

$or Wt < ui . We denote these as Y.,
and w(J',',I;’, corresponding to the cases wy, > u.
and wy,_, < u,, respectively.

The attached fields

(r), s (r,r’),=s
‘E)\x.i‘xu)‘z'-ﬁz’:J} ‘E)\x,m.h’,pz’:J

and

(r,r’), =2
M7y’ Naspsd

are determined by the following equations;

(r),=s
E)\hp:»)\z'-ﬂn' o
— R(r).*s
= AWM Rl T

(r,r'), =2
E)\lv/’l.)\z'-ﬁz' :J

(r,r’),=2 (r.r")
= Rx:,;x.)\a’.pa’:.’/[w-f.*s

[w.l =g (w;:)p; )(\:) N )]y

- ( )E:)Px )(‘: )Pz )])
and

(r,r'), =32

M’ ei’ Naypa:d
(r ')y, =2 (r,r") (r)
- R IS Pail/[w-"*t — N7 000 )\2 Pz)]

The expression for the energy spectrum for the
nucleus consisting of a core nucleus and two nucleons
is given by the set of the eigenvalue equations (A7),
(A7), and (A7") which are to be self-consistently
solved. They give the expression for the energy
splitting of the nucleus in terms of the quantum
number J. In the case in which some knowledge of
the ring diagrams is required, one must add the
pair-scattering modes ¥* and § (particle-hole inter-
action) as shown in the infinite case.
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Locally Maxwellian Solutions for a “Positronium” Plasma

H. L. Friscu

Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey
(Received September 1, 1961)

Exact locally Maxwellian solutions of a neutral “positronium’ plasma are explicitly presented.
They correspond to a flow which is a superposition of a parallel flow, a radial expansion, and a rigid~

body rotation.

ONSIDER a neutral plasma consisting of two
species + and — whose particles possess equal
magnitudes of charge and equal mass (ie., e, = e,
e_ = —e,m, = m_ = m). In the absence of external
forces there exist exact, nonequilibrium, locally
Maxwellian solutions for the distribution functions
f-(x, £ t) of these species. These distribution func-
tions satisfy the transport equations

e g g 0=y [E-+%zx3]

e .
X5g =iy O

where the electromagnetic fields E, B satisfy Max-
well’s equations with electric charge and current
densities given by

nx, ) = e [ [, = 1)

o =e [ &~

respectively. The J* for the case of the Boltzmann
transport equation are

J =

@
-1dg,

C++ + C+-

3)
J =040
with the usual collision terms'*
“= —[ar -y [ aeen
X [f'x, & 0f %, &, 0
- f+(x: Ely t)f—(x; 'Efy t)], ete, (4)

where ¢** is the appropriate collision cross section.

More generally, /= must (1) be invariant under
Galilean transformations in phase space, (2) iden-
tically vanish for the equilibrium Maxwellian dis-
tributions, and (3) conserve the usual three additive
collisional invariants,” as for example the J= of the
Fokker-Planck equation, ete.

When f° is set equal to the locally Maxwellian
distribution functions f2(x, ¥, 1),

1 8. Chandrasekhar, Plasma Physics,
Chlcago Press, Chicago, Illinois, 1960).
( H) Grad, Communs. Pure and Applied Math. 2, 331
1949).

(University of
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o __ex, 8 (£ —ux, )T’
1 & ) = g o &P { 2RT(x, ) }

= iz, &, 1), = k/m; 6))

then, by virtue of the previously listed properties
of J~,
I 1) = 0. (6)

On substituting (5) into (2), we find that n and J
vanish identically and Maxwell’s equations reduce
to the form which they possess for a vacuum. A
perfectly acceptable solution of these equations is
obtained then by setting

E=0 and B=0. M

Introducing (6) and (7) into the transport equations
(1) we see that these equations simplify to a single
partial differential equation,

f+Ef—;

8
from which, together with (5), we obtain the density
p, mean velocity u, and temperature T previously
obtained by Grad® in the case of a single-component
uncharged Boltzmann gas. After a translation in
space and time, Grad’s solution can be written
[Eq. (A2.21) of reference 2 for o # 0, see (A2.14)
for the more general case)

RT() = —1/2(a, + afY),

a — 2aix + Q xx
2((14 + atz) !

ux, ) = —

1{ o(x, £) }

[27RT(x, 1))}

_ 400,2” 4 4ata-x — (a 4+ Q xx)° ©
e, + o)) ' )

with a,, @, a4, a, and Q constants. Thus this locally
Maxwellian plasma can undergo a flow which is a
superposition of a parallel flow, a radial expansion,
and a rigid body rotation.

In regard to the H theorem’ for such a plasma,
these solutions play the analogous role® to that
played by the locally Maxwellian solutions for a
Boltzmann gas. We are investigating the question
of whether such solutions exist in the presence of
external fields (particularly gravitational fields).

= (1,
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Studies in Nonequilibrium Rate Processes. V.
The Relaxation of Moments Derived from a Master Equation

Kurt E. SHULER,* GEORGE H. WEiss,t ANp KNUD ANDERSEN ]
National Bureau of Standards, Washington, D. C.
(Received December 9, 1961)

A study has been made of the relaxation of the moments
of probability distributions whose time evolution are governed
by a master equation. The necessary and sufficient condition
for the first moment, M (%), to undergo a simple exponential
relaxation is found to be

2 ndum = fm + 7,

n=0
where A4,. is the transition probability per unit time for
transitions from state m to n, and where 8 and v are constants.
The necessary and sufficient condition under which the
first & moments, My(t), Mu(t), ---, Mi(t), satisfy a closed
system of linear equations is found to be

@ k
> A, = Z B,.m*.

n=0 =0

Near equilibrium, i.e., as t — =, all the moments M ,(t) obey,
to a good approximation, a simple exponential relaxation law
irrespective of the form of the 4.n.

For systems described by the Fokker-Planck equation

oP(x, 1)
a

2
1 aq
? 9x®

=2 B@PG, 0] + 4 5 L@PGE, 1],

the necessary and sufficient condition that the first moment
M (t) undergo a simple exponential relaxation is found to be
bi(z) = Bx + v and the necessary and sufficient condition
for the 2nd moment, M,(¢) to have a simple exponential
relaxation is 2zbi(z) + b; = B2x? + v It is shown that
these conditions are equivalent to the conditions on the
A, stated above.

I. INTRODUCTION

IN an earlier paper of this series, one of us (K.E.S.),
in collaboration with Montroll, has presented the
theory for the relaxation of a system of harmonic
oscillators in contact with a heat bath.' Starting
with the master equation

ix(?gi) = i {Ivynmxm(t> - ‘/I'rmnxn(t>} = i A"mxm(t)’

N )

where () is the fraction of oscillators with energy
nhy at time ¢ and where the W,,, are the transition
probabilities per unit time for transitions from
state m to n, we showed that the first moment of the
distribution,

M) = f_.:nxn(t),

obeyed a simple exponential relaxation law of the
form, where a is a constant,

dM,(8)/dt = —alMi()) — Mi()] @

* Present address: Institute for Defense Analysis, Wash-
ington, D. C.

+ Congultant, National Bureau of Standards; permanent
address: Institute for Fluid Dynamics and Applied Math-
ematics, University of Maryland, College Park, Maryland.

1 NATO Post Doctoral Fellow; permanent address:
Institute for Physical Chemistry, University of Copenhagen,
Copenhagen, Denmark.

tE. W. Montroll and X. E. Shuler, J. Chem. Phys. 26,
454 (1957).

independent of the initial distribution {x,(0)}. This
result, which had been obtained previously by Bethe
and Teller,” is somewhat surprising in its simplicity
since the relaxation of the distribution {z.(f)}, as
a function of the initial distribution {z,(0)}, follows
a quite complicated behavior. In general, the solu-
tion of the transport equation (1) is given by a
linear combination of eigenfunctions u;(n) as

x,,(t) = ZQ’#J’(”)e)\”; (3)
where the A; are the eigenvalues of the matrix
A = (A,,.) and the ¢; are related to the initial
distribution {z,(0)}. While A, = 0 in order that
z. () — 22! as t — o, the \; (j % 0) are different
from zero so that the solution (3) will in general
not reduce to the simple exponential form (2) for
the moment M,(t).

As has been pointed out previously® the simple
exponential relaxation of the moment M, exhibited
in Eq. (2) depends entirely on the form of the
transition probabilities W,, (or 4,,) which enter
into the kinetic equation (1). It is the purpose of
this paper to derive the necessary and sufficient
conditions on the form of the transition probabilities
A ., under which the moment equation (2} is obtained
from the master equation (1). This result will then

2 H. A. Bethe and E. Teller, “Deviations from thermal
equilibrium in shock waves,” Ballistic Research Laboratory,
Report X-117, 1941 (unpublished).

3 K. E. Shuler, Phys. Fluids, 2, 442 (1959).
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be generalized to obtain the necessary and suffi-
cient conditions on the form of the A4,, in order
that the first & moments, M, (), M,(t), --- , M(t),
satisfy a closed system of linear equations. We
shall also derive the necessary and sufficient con-
ditions for the exponential relaxation of the first
and second moments, M,(t) and M,(t), for systems
described by the Fokker-Planck equation derived
from the master equation (1).

II. RELAXATION OF THE MOMENT M,(¢)

Our consideration in this section is restricted to
systems whose time evolution is described by the
master equation [see Eq. (1)]. In general, this
equation, for systems with discrete states, can be
written as
PO 3 hblm, ) 1 =0,1, - =,
where P(n, t) is the probability that the system will
be found in state n at time ¢, and where the A4,,
are the elements of the transition probability matrix.
The P(n, t) have the obvious normalization

4

iP(n, f) = 1.

n=0

(5)

For systems with continuous variables, Eq. (4)
reads

Qf)_(;;_tz = j:o A(xy y)P(y) t) dy’

where P(z, t) dr is the probability that the variable
z(t) is in the range from = to z + dz at time ¢ and
where A (z, y), one of the elements of the transition
probability matrix, is the probability per unit time
for a transition from y to z. We shall limit our
discussion here to systems with discrete variables;
all of our results, however, carry over readily to
systems with continuous variables. The only change,
essentially, is the replacement of summation by
integration.

We begin by inquiring under what conditions the
time evolution of the first moment, defined by

(6)

M\(5) = 2 nPn, 1), @
n=0
can be written as
dM,(¢)/dt = BM,(2) + v, ®

where 8 and v are constants. From Eq. (4) and the
definition (7) it follows that

MI—(Q = i inAnmP(m; t)'

dt N n=0 m=0

9)
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A comparison of Eqs. (7) and (8) and use of the
normalization (5) shows that the relation

S NAum = Bm + v

n=0

(10)

is a sufficient condition for the simple exponential
relaxation (8) to hold. Since we consider here only
stationary processes, i.e., 4., is not a function of
the time, and since all the other quantities appearing
in Eq. (10) are independent of the time ¢, it is
evident that condition (10) will hold for all time .
In addition, in order for Eq. (10) to be a sufficient
condition for the validity of the moment relaxation
equation (8) we require that the relation (10) hold
for all values of m.

It can readily be shown that Eq. (10) is also a
necessary condition. The initial condition for P(n, t)
can be chosen arbitrarily subject only to the con-
ditions [see also Eq. (5)]

P(n,0) 20, S P@,0) =1. (1)

Let us then choose the special initial condition

P(s,00 =1; P(,0 =0 forall j=s. (12)

Then from Eq. (9) it follows that

LA | S S wdPm, 0) = 3 nd,.. (13)
dt t=0 n=0 m=0 n=0

Equation (8) becomes

dﬂfl;(t) - BM,0) +v =8 EonP(n, 0+~

= BsP(s,0) +v=8s4+7v. (19

A comparison of the r.h.s. of Eqs. (13) and (14)
shows that Eq. (10) is also a necessary condition.

As an example of the above relations we now
discuss briefly the relaxation of M,(¢) for a system
of harmonie oscillators in weak interaction with a
heat bath at temperature 7. It has been shown in
reference 1 that for such a system the transition
probabilities A,,, for transitions from m to =, are
given by

(I/K)Anm = (n + 1) 6n+1,m
~n4 @+ e’ b + 16 b0y,  (15)

where « is a rate constant, the §'s are Kronecker
deltas, and where 6 = hy/kT with » equal to the
frequency of the oscillator. Substitution of (15) into
the Lh.s. of Eq. (10) yields

©

E NAum

n=9

=« —1)m+e'l=8m+vy, (16)
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which is of the correct form to give the exponential
moment relaxation (8) with a ‘‘relaxation time”
equal to (—8)™" = [x(1 — ¢™*)]™! as obtained in
reference 1. Note that

‘1:6_'”:_( 1 )z_
B et —1 ¢ —1

as required for the first moment

E (=)
h ’

(17)

M,(t) = b 2 nP@n,t) = E(),
n=0
where E,(f) is the vibrational energy of the oscil-
lators at time ¢, to relax to its equilibrium value
asl{ — o,

III. RELAXATION OF THE MOMENTS M.(¢)

The development presented above can readily be
extended to study the relaxation of the moments

M.() = i n'P(n, t).

n=0

Specifically, we ask under what conditions on the
A, the first k moments M,(t), M.(), --- , M)
satisfy the closed system of linear equations

dﬂglt(t) = 611M1(t) + 6121”2(':)'*' o +B”‘M"(t) + "1
dﬂé;(t) = BuM () + BoaMo8)+ -+ - +BuM(t) + 72

(18)
dﬂfi;(t) = BklMl(t) + ﬁk2M2(t)+ o +BkkM’°(t) + Ve

In vector notation Eqs. (18) become

dM(s)/dt = BM + G. (19
The time evolution of the rth moment is given, in
analogy with Eq. (9), by

W) _ 5 > wa,Plm, 1.

n=0 m=0

(20)

If now the transition probabilities 4.,,, in analogy
to Eq. (10), obey the relation*

o

Z nrAnm =Y + ﬁrlm + Br2m2 + e

n=0

+ Brkmk (21)

4 Note that for r = 0,

Y A = DO Apm =0

n=0 n=0
as can readily be seen from Egs. (4) and (5). This is a con-
sequence of the conservation of particles (mass) during the
relaxation.

SHULER, WEISS,

AND ANDERSEN

forall r = 1, 2, --- k, then the moment relaxation
equation (20) becomes

dﬂ/lr(t)/dt =% + :BrlMl(t)
+ BoMo(t) + -+ + B M), (22)

This is of the form of Eqgs. (18) so that the relation
(21) on the A,, is a sufficient condition for Egs.
(18) to hold. That relation (21) is also a necessary
condition can easily be verified by repeating the
development in Eqgs. (11) through (14).

As a specific example, we shall again discuss the
relaxation of a system of harmonic oscillators with
A, given by Eq. (15). Substitution of A4, into the
Lh.s. of Eq. (21) yields

—ZnA,.,,,—m(m—l)

—(mm+@m+ D'l + (m+ D), (23)

Performing the indicated expansions then yields a
polynomial of rth degree in m

N Zn Anm = T(e - l)m'
+ 3+ ) e — Ylm T A e e
(24)

which is of the form (21). That the higher moments
for a system of relaxing harmonic oscillators form
a closed system of equations where the factorial
moments, f,, depend only upon the mth and lower
moments has been shown by Montroll and Shuler'
who obtained the equation

dfu/dt + m(l — € Vfn = me’f,..,  (25)
for the factorial moments
ful) = 20— 1) -+ (0 — m + DP@, 1)
n=0
=1,2 -k (26)

The formal general solution of the moment equa-
tion (19) is

= ¢®M(0) + &* f e

0

M(¢) "B drG

= ¢®M(0) + ¥B7'(I — ¢ 3G 27

To evaluate M(¢) explicitly it will be necessary to
find the eigenvalues of the matrix B. A particularly
simple case arises when B8,; = 0 for r < j where
then the rth moment, M .(t) depends only on the
lower moments M, _;(t), with ¢ = 0, 1, --- r — 1.
Under this condition, B assumes the triangular
form
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B O oo 0
B = 1?21 Bz O --- O (28)
B Bie Bax

For 8,; # Bz # --* B, the eigenvalues of B are
distinet and are, explicitly,

A = 611, Ay = B2z, * A = Bk, (29)

and by the Lagrange-Sylvester interpolation formula
one then finds
C ’ (B - 6‘11) (B - BkI:D

M) = ; Bii = Bu) -+ Bis — Bu)

Bift
where the prime indicates that the term B — g;;1
is missing from the numerator and the zero term is
missing from the denominator. Simple analytical
forms for M(¢) can also be obtained for other special
cases of the matrix B for which the eigenvalues A,
can be evaluated.

. [GB“le(O) +

IV. RELAXATION OF THE MOMENTS NEAR
EQUILIBRIUM

In an attempt to reduce the relaxation of physical
systems to a mathematically amenable basis, the
assumption is made frequently that the relaxation
of some of the macroscopic variables related to the
moments of the distribution such as temperature,
momentum, number density, etc., follows the simple
exponential course given by Eq. (2). The classic
example of this is, of course, Newton's law of
cooling

dl(9)/dt = —a[T(t) — T()] @D

but more sophisticated and recent examples can be
found in the literature. As discussed above, such a
simple exponential relaxation will be found only
under special conditions and certainly not in general.

Near equilibrium, however, such a simple exponential
relaxation will be found to hold, to a good approxi-
malion, for all moments M ,(t) for systems whose time
evolution is described by the master equations (1) or (6),
irrespeclive of the forms of the A,,. Ast — o, one
can neglect, to a good approximation, all but the
lowest (nonzero) eigenvalue A, of the expansion

(3) and write®
P(n, 1) lz-.m = copo(n) + clﬂl(n)e_)‘”' (32)

5 As has been shown in reference (3), all the eigenvalues
are real.
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From the definition of the moments
M.(}) = Z:,) n'P(n, 1)
one then finds that
@%@ = —\ce M Zm: n p(n). (33)
P ey
From (32) one obtains
MO iow = M=) = ¢ 0o, (39)
so that
M) e = M) + 0™ Twml).  (©5)
The use of (35) in Eq. (33) then yields
WD =\ - M=), @9

which is of the same form as Eq. (2). In this de-
velopment, we assume that all the moments M, (¢)
exist. Since macroscopic state variables can be ex-
pressed in terms of the moments of the probability
distribution,® simple exponential relaxation laws for
these state variables will be found to hold near
equilibrium,

V. RELAXATION OF THE MOMENTS M;(f)
M.(t) OF THE FOKKER-PLANCK EQUATION

AND

We shall now consider the relaxation of the
moments

M) = f " Pz, 1) dx
’ (37)

M) = fo " 2P, b do

of the Fokker-Planck (F-P) equation

D) = 2 1@pl, 0] + 3 Lz (b@P, 0],
(38)

with?
b, = f (v — DAy, ) dy (39)
b= | T oAG D dy. (40)

¢ In the case of translational relaxation, for instance, the
zeroth moment is proportional to the density, the first
moment to the momentum, and the second moment to the
temperature since kT ~ {(mv?) = m 2, v:P(v, t).

7 We shall assume here, to be consistent with the previous
discussion on the discrete master equation, that the range
of the continuous variable y extends from 0 to .
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As is well known® the F-P Eq. (38) can readily be
derived from the master equation (6) under certain
restrictive assumptions on the form of the moments
b,(z) and the probability distribution P(z,

A. Relaxation of the Moment M,({)

To obtain the relaxation equation for the first
moment M,(t) defined in Eq. (37) we multiply the
F-P Eq. (38) by z and integrate over all z:

f axP(x d[xP(z, 1] da _ M)
dt

- f e % [b.@)P, §] dz

i e

Partial integration on the r.h.s. of Eq. (41) leads to

aM,(5
dr

2 [bz(x)P(x Hlde.  (41)

~Eb@P@ ]| + [ b@PE ) i

4 % [xP(x, )é)bz(x) + abaa) 6P(x t)] L

(42)

In order to arrive at the moment relaxation equation
(8) we must impose some general conditions on the
distribution function P(z, ¢) and the coeflicient b.(x):

(i) bs(z) can be represented as a polynomial in z
without a constant term.’

(i1) P(z, t) goes to zero sufficiently rapidly as
x — o that all the bracketed terms in (42)
go to zero at the upper limit z = .

Under these conditions, all the bracketed terms in
Eq. (42) go to zero at both limits and Eq. (42)
reduces to

dM (t)

f by(@)P(z, §) d. (43)

If we make use of the continuum analog of the
normalization (5), i.e.,

f " P, dr =1, (44)

it follows that the necessary and sufficient condition
for the exponential relaxation of M, (¢) is

8 See, e.g., N. G. van Kampen, Ned. Tijdschr. Natuurk.
26, 225 (1960), Can. J. Phys. 30, 551 (1961).

* The absence of a constant term is necessary for the last
bracketed term in (42) to go to zero at the limit z = 0. If the
range of the variable z is from — « to «, no assumptlon
has to be made about the form of bs(x) prov1ded that P(z, t)
also goes to zero sufficiently rapidly as z — — .
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bi(z) = Bz + 7. (45)

As an example of this relation we shall again
consider our previous example of the relaxation of
a system of harmonic oscillators in a heat bath. The
F-P equation for the relaxation of a system of
classical oscillators in a heat bath has been found
to be,'® using our present notation,

fciéf(aitt—) — _5% (1 — 02)P(z, 7)]

2 6 8 (46)
where k;, is a rate constant and where P(z, f) dx
is the probability that the oscillators will have an
energy between hvz and Av (z -+ dx) at time ¢.
Rubin and Shuler have shown'® that the relaxation
of the first moment, the mean vibrational energy
(E,) = hv [} zP(z, t) dz, is indeed exponential
with 8 of Eq. (8) given by (—k,.6). A comparison
of the condition (45) with the b,(z) of Eq. (46) shows
that b, () is of the proper form and that 8, = —k,.8
as required. In addition, it will be noted that b,(z) =
2z is of the proper form in being a polynomial in
z without a constant term.

B. Relaxation of the Moment M,(¢)

The relaxation equation for the second moment
M,(t) defined in Eq. (37) is obtained in a manner
completely analogous to that used for M,(t). We
multiply the F-P Eq. (38) by z° and integrate over
all z to obtain

f a[sz(x 5] e _ M)

dt
- f T 5"; [b:(2)P(z, £)] dz

3] ¢

Partial integration of the r.h.s. of Eq. (47) leads to
aM 2(t)

2 [bz(w)P(x Hldz.  (47)

f P(z, )[20by(z) + by(2)] dz
- [.'L'le

[ o, () 2P D aP(x t) 2P, b 6b;ix):| :

@

— [2b(x)P(x, 1)]

(48)

10 R. J. Rubin and K. E. Shuler, J. Chem. Phys. 25,
59 (1956).
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Making use again of our assumption (ii) on the form
of the P(z, t) we find that the bracketed terms in
Eq. (48) vanish since they go to zero at both the
upper and lower limit.'" Equation (48) then reduces
to
dM,(t)
dt

For M,(#) to follow a simple exponential relaxations
1.e.,

= | " Ple, Hi2eh@) + bi@)] de. (49)

sz(g}/dz = ﬁzzMz(z) + e, (50)

the necessary and sufficient conditions on the b,(x)
and b,(z) are found to be

2&7?}1(:5) + bg(x) = 3222:2 + Ya. (51)

For M,(t) to follow the relaxation law given in
Eqgs. (18), i.e.,

dMa(t)/dt = 1322M2(3) + ﬁziMx(f) + Y2, (52}

the necessary and sufficient conditions on the b,(x)
and b,(z) are found to be

23761(33) + 62(33) = 322372 + Bax® + vo. (53}

If b.(z) is given by Eq. (45), i.e., M,(!) undergoes
a simple exponential relaxation, then b,(z) in Eq.
(53) will be a quadratic polynomial in z.

As an example of the relaxation of the second
moment M,() for a system described by a F-P
equation of the form of Eq. (38), we consider the
relaxation of the mean translational energy (E.)
of a dilute electron gas dispersed in a heat bath of
molecules. For this example of a Rayleigh gas the
Fokker-Planck equation for the electron distri-
bution function f(v, £} can be written, using certain
assumptions about the electron-molecule collision
cross sections, as'’
o b 54(%{% ) z)}, (54)
where 4 is a constant, m is the mass of the electron,
and M is the mass of the heavy molecule. Using the
transformation v*f(v, £} = P, 1), Eq. (54) can be
rewritten as

oPw,f) _ _ A
a M
3| (2kT o P, )
% {av [(7 me)Pw, t)] + ir 228 } (55)

it Note that we can dispense here with the requirement
that the constant term in the polynomial bix(z) be equal
to zero. The last term in Eq. (48) will go to zero at the lower
limit even with a nonzero constant term in the polynomial
be(z) since by(x)P(x, t) is now multiplied by z.

128 1, Kahalas and H. C. Kashian, Phys. Fluids 2, 100
(1959); D. 1. Osipov, Bull. of the Moscow Univ., Series III
1, 13 (1961) {(in Russian).

NONEQUILIBRIUM RATE PROCESSES 555

where P(v, t) dv is the probability that an electron
bas a velocity between v and v 4+ dv at time ¢ and
where P(, f) is normalized as shown in Eq. (44).
From Eq. (55) we find
() = (A/M)CkT /v — mw)
by(v) = 2(4/MET.

Combining these quantities as shown in the con-
dition (51) we obtain

(56)

20b,(v) + b.lv) = RA/M)BET — m®), (57
which is clearly of the required form with
622 = —ZAm/ M
and (58)
vy = 6AKT/M.

We should therefore predict an exponential relaxa-
tion for the second moment

M) = fo " 0P, B do = 3—‘3-! (E.(0)

of the electron gas with a relaxation time —g5)
given by

—Br = 3M/Am. (59)

This is indeed the result obtained by Osipov'? by
another method.” Note that

Yo/ Bez = —3kT/m = —(E (=))2/m, (60)

as required [see also Eq. (17)] for the mean trans-
lational energy to relax to its equilibrium value
ast— o'

The development presented in this section pro-
vides a convenient and easy test of the relaxation of
the moments of distribution functions whose tempo-
ral development is described by the F-P equation
(38). If the relations (45), (51), or (53) hold for the
coefficients b,{z) and b.(x), then the moments relax
according to Eqgs. (8), (50), or (52). The relaxation
times —B;" and —8;,; are, respectively, the recipro-
cals of the coefficients of » and 2° in Eqs. (45) and
(51), and the equilibrium values of the moments,
M,(») and M,(=), are, respectively, (—v:/8,) and
(—72/Bs2)- It is thus possible to write down the
explicit expressions for the relaxation of the moments

18 Qur Be: is Osipov’s « and our A is his V/X. Osipov was
concerned with the relaxation of the translational temperature
of a relaxing Maxwellian velocity distribution of electrons
which is, of course, proportional to the mean energy (see
footnote 6).

1 The results of Keilson and Storer, Quart. Appl. Math
10, 243 (1952) on the relaxation of M (t) and Ma(t) for the
velocity distribution of the Brownian Motion F-P equation

are also in complete agreement with the results presented
above.
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without a knowledge of the distribution function
P(z, t) from the solution of the Fokker-Planck
equation. If none of the relations (45), (51), or (53)
are found to hold, then one at least knows that the
moments M,(f) and M,(f) do not obey the simple
relaxation equations (8), (50), or (52).

C. Equivalence of the Conditions on the 4,..
the A(y, x)

We now wish to demonstrate that the conditions
(45), (51), and (53) are completely equivalent to
the previously derived conditions (10) and (21)
on the A,... If we perform the indicated integrations
in Egs. (39) and (40) for the moments b, (z) and b,(x)
we obtain

b = [ yAw, 2 dy (61)

and

be) = [ A, D dy — 20 [ yAw, 2 dy, ©2)
0 0

where we have made use of the result* that
f% A(y, ) dy = 0. The integrals in Eqgs. (61) and
(62) are the continuums analogs of the summation

> A, and D n*A..

n=0 ne=g
in the expressions (10) and (21). If we now assume
that the necessary and sufficient conditions on the
A, of Egs. (10) and (21) also apply to the A(y, ),
le.,

SHULER, WEISS, AND

ANDERSEN

f yAy, x) dy = 8,z + 7 (63)
fo VAW, 2) dy = Bs2® + Buz + 7.,  (64)
we obtain, from (61) and (62),
bl(T) = Bz + Y1 (65)
bz(x) = xz(ﬂzz — 28, + (B — 2v1) + ve. (66)

Note that Eq. (65) is identical with Eq. (45).
Multiplication of Eq. (65) by 2z and addition to
Eq. (66) leads to

2$b1(x) + bz(x) = 622x2 + Baux + v, (67)

which is identical with Eq. (53). For the simple
exponential relaxation of M,(f) as given by Eq. (50),
it is necessary that 8, = 0. Under this condition
Eq. (67) becomes identical with Eq. (51). The con-
ditions (63) and (64) on the A(y, ) are thus equiva-
lent to the conditions (45), (51), and (53) on the
coefficients b,(x) and by(x) of the F-P equation.
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To every irreducible representation W of the rotation group in 21 - 1 dimensions that is used to
classify states of the electronic configurations I?, there correspond two couples (v, S), where v and S
stand for the seniority number and total spin, respectively. Determinantal product states are intro-
duced to examine this correspondence in detail. It is shown that for two double tensors Wx%) and
W%, the set of reduced matrix elements

(o WESLL ||W ek || Inp W' E'S1 L),
for fixed =, v, v/, W, and W’, is proportional to the set
(Imy s W ESLL ||[W k0 || Imy' W' £'S,'L),

where £ and ¢ are additional labels that may be required to define the states uniquely, provided (a)
the two couples (v;, 81) and (v, Sz) are distinet, (b) the two couples (v/’, Si’) and (v, S¢’) are distinct,
and (c) the sum « + «’ + k is odd. The amplitudes of the double tensors are chosen so that the con-
stant of proportionality is equal to the ratio of two 3-j symbols, multiplied by a phase factor. An
explicit expression for this factor is given for f electrons, and a number of applications are discussed.

MAY-JUNE,

1962

I. SYMMETRY

ONJUGATE electronic configurations of the

type I" and I****™ share many properties.
Perhaps the most familiar is the occurrence of
identical term schemes; as a consequence of this,
a table of the terms occurring in the configurations
0B, -, I*"** exhibits a symmetry about the
half filled shell, ****. A glance at Table I” of Condon
and Shortley,' which lists the terms of all con-
figurations of the type p", d", and f", makes it
obvious that other kinds of symmetry exist. The
most striking is the symmetry with respect to L
(the quantum number of the total orbital angular
momentum) of the terms of maximum multiplicity
about the quarter- and three-quarter-filled shells.
For example, the terms of f° with S (the quantum
number of the total spin angular momentum) equal
to 5/2 are °P, °F, and °H; while those of f* with S
equal to 1 are P, ®F, and ®H. At first sight, it
appears difficult to find similar types of symmetry
for terms possessing less than the maximum value
of S. However, this is because the quantum number
that should be associated with a sequence of L
values is not S, but M. With this clue, we can
uncover a large number of symmetries of a rather
spectacular kind in Condon and Shortley’s table;
for example, the L values of the terms of f° that
can produce components with M = =£3/2, namely,

* Work done under the auspices of the U. S. Atomic
Energy Commission.

1E. U. Condon and G. H. Shortley, Theory of Atomic
Spectra (Cambridge University Press, New York, 1935).

SP*D*F'G*H'I’K’LM, (1)

are precisely the same as the L values of the terms
of f* that can produce components with Mg = +1.
[The superscript to a letter of the sequence (1)
indicates the number of times the corresponding L
value occurs.]

We can gain some understanding of the recurrence
of a sequence of L values by listing the irreducible
representations W of R,;.,, the rotation group in
2] 4 1 dimensions, to which the representation D,
of R, belong. From Table 2 of Elliott ef al.,” we find,
for example, that sequence (1) corresponds to the
irreducible representations (110), (211), and (111)
of R, both for f* and f°. The problem of explaining
why certain sequences of L values recur in different
configurations can thus be made equivalent to the
problem of explaining why certain sequences of W
values recur. In the latter form, the problem is seen
to be closely connected to an observation of Racah,®
namely, that to every representation W of the type
used in classifying states of [", there correspond two
values of the couple (v, S), where v stands for the
seniority. If we denote two such couples by (v,, S))
and (v, S:), then, according to Eq. (54) of Racah,®

U1+2SZ=1)2+281=2Z+1- (2)

For the representations (110), (211), and (111) of
our example, we find, from Table 2 of Elliott
2 J. P. Elliott, B. R. Judd, and W. A. Runciman, Proc.

Roy. Soc. (London) A240, 509 (1957).
3 G. Racah, Phys. Rev. 76, 1352 (1949).
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et al.,? that the couples (v, S) are (5, 5/2), (5, 3/2),
and (3, 3/2) for f and (2, 1), (4, 1), and (4, 2) for f*.

In themselves, the symmetries with respect to L
possess little more than a curiosity value. Our
reason for introducing them lies in the hope that
they will lead to symmetries with respect to matrix
elements. It is well known that the matrix elements
of most operators exhibit simple symmetry proper-
ties about the half-filled shell, and for states of
maximum multiplicity it is usually not difficult to
derive relations between matrix elements in sym-
metrical positions on either side of the quarter- or
three-quarter-filled shell [see, for example, Eq. (15)
of Judd*]. It therefore seems reasonable to anticipate
analogous relations for other types of symmetry.
This expectation is strengthened by Eq. (73) of
Racah,® which relates matrix elements of the part e,
of the Coulomb interaction between states defined
by one couple (v,, S;) to those between states defined
by the corresponding couple (v,, S,). Furthermore,
Wybourne® has shown that many matrix elements
of the spin-orbit interaction between states be-
longing to the two representations W and W’ of R,
are proportional to similar matrix elements in other
configurations. Some of his results are examples of
Eqs. (67) and (69b) of Racah,® and are of no interest
here; of the others, in each case the pair of couples
(ry, 8,) and (v,, S,) corresponding to W, and also
the pair (¢f, S{) and (v5, S5) corresponding to W',
separately satisfy Eqs. (2).

The first aim of this paper is to explore the sym-
metries within configurations of the type [". Most
single-particle interactions of atomic spectroscopy
can be concisely expressed as the components of
double tensors, and the second objective is to derive
relations between the matrix elements of such
operators. Since the spin-orbit interaction is the
scalar part of a double tensor of rank one with
respect to spin, and of similar rank with respect to
orbit, the second part of the program can be re-
garded as a generalization of Wybourne's® work to
arbitrary double tensors.

II. DOUBLE TENSORS

In order to define the operators with which we
shall be concerned, we first introduce the tensors
t* and v that act in the spin and orbital spaces,
respectively, of a single electron, and for which

(s [ 9) = @2« +

4 B. R. Judd, Phys. Rev, 125, 613 (1962).
5 B. G. Wybourne, J. Chem. Phys. 35, 334 (1961).
6 G. Racah, Phys. Rev. 63, 367 (1943).
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and
™D = @k + DY
The (2« + 1)(2k + 1) products
wyy = (~k<r<x;-k<g< k)
form the components of the double tensor w*,
for which
(sl |Jw™®]] sh) = (2« + 1)}2k + 1)E. (3)

Many-electron tensor operators for the configuration
" can be easily constructed by summing the operators
for the n individual electrons; thus

(x) (k)
1y U,

W = Z (W),
and
Ve = Z v'®),.
We note
V(k) — W((w)\/é.

The set of quantum numbers WSLM ;M is not
always sufficient to specify a state of I* completely.
We therefore include the additional symbol £; for
f electrons this can often be replaced by an irre-
ducible representation U of the group G,.° All
reduced matrix elements of W** can be calculated
by means of the formula

(I"WESL [|W || I'W'g' S’L)
=nl(28 + D@ + @S + DL + 1)
X 2k + DEL + D
X Ef‘ Wil D P(=1y

{SK S’}{L I L’}
s Ss 1L 1)
where

r=8+s+8+«+L+1+L+Ek,

and where ¢, ¢/, and ¢ are abbreviations for WtSL,
W'gS'L', and WESL, respectively. However the
construction of the fractional parentage coefficients
(¥t| ¥) and (¥'{| ¥), and the summation over the
parent terms ¢, are often extremely tedious to
perform. In seeking to establish relations between
different reduced matrix elements, we aim to
circumvent this procedure as much as possible.

X

(4)

III. DETERMINANTAL PRODUCT STATES

In Sec. I we mentioned the correspondence be-
tween the states f° with My = =+3/2, and those
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of f* with Mg = =+1. For both configurations, the
state for which M/, = L = 9 can be expressed as
a single determinantal product state. However,
without examining the phases of our states in de-
tail, we cannot be sure whether, for example, we
should identify
l fs, 4]1/[, ]l/[s = _3/2,]|rIL = 9)
with
{3,37,27,17, 07}
or with
- {3+7 3_) 2—: 1_: 0~}
We shall return to questions of phase later. For the

moment, we avoid the difficulty by introducing the
new states

| I'WESLM M)

characterized by angular brackets, whose phases
are at our disposal. We can therefore write

[f,'M, Mg = —3/2, M, =9

= {37,07,17,27,37} (5)
and
[f4°M, Mg = —1,M, = 9)

={3°,17,27,37}. (9

Operating on Eq. (5) with W%, and using Eq-
(3), we find

W% ("M, Ms = —3/2, M, = 9)
= (5/89)*{17,07,17, 27,37}
+ (5/42)'{3", —27,17, 27, 37}
+ (1/7)%{3+7 —1_;0_:2-’3_}' (7)
Similarly, from Eq. (6), we get
W |, M, My = —1,M, = 9)
= (5/89*17,17,27, 37}
+ (5/42)1{3%,17,07, 37}
+ /73, -17,27,37). (8)
The striking similarity between Egs. (7) and (8)
prompts us to ask the following questions:

(i) Can the determinantal product states of f°
for which Mgy = —3/2 be put into a one-to-one
correspondence with the determinatal product states
of f* for which M = —1?

(il) If (1) is true, what is its generalization?

(1ii) If it ean be established that the determinantal
product state {a,} of " corresponds to the unique
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determinantal product state {b,} of 1™, and vice
versa, what are the conditions on «, k, ¢, «’, &/, and ¢’
if ¢,, and d,, in the expansions

é:k){av} = ch{ap} (9)
and
Wee (b, = 20 dy, by} (10)
are to satisfy
C‘YF = d')’ﬂ (11)

for all v and p?

Questions (i) and (ii)) can be taken together.
Suppose that the g integers m;, ¢ = 1,2, --- , ¢),
constituting the set P,, satisfy the inequalities

(12)

and that the & integers m! (j = 1,2, --- , h), con-
stituting the set P}, satisfy the inequalities

I>2m>m>--->m;> - -->m, > —1

I>2m{>mi>--->ml>--->m,>—1. (13)

We denote the combined set of g + & integers by
Q,. We can construct two determinantal product
states, corresponding to any such set @, according
to the following rules:

(a) Delete from

{l+: (l - l)+7 ) (_l)+; l—y (l - 1)_7 Tt )(—l)_}i
the state corresponding to a completely filled shell,
those entries (m,)* for which m, coincides with a
member of P,, and also those entries (m;)” for

which m, coincides with a member of P4.
(b) Delete from

{l+7 (l - 1)+7 :("'l)+};

the state corresponding to a half-filled shell with
maximum Mg, those entries (m;)” for which m,
is a member of P,, and insert the sequence

(_m;)_: (_mg)_y ) (—m{,)'
between (—1)* and the final bracket.

The resulting quantities, which we denote by
{a,} and {b,}, respectively, are

fa,} = 0%, -+, (mi + 17,
(m; =D - (=D, 17, -+ ,(mi + 17,
(mi —1)7, -+, (=07} (14)
and
. =" -, (mi + 1)7,
(m; = 17, -+ (=07, (=m]),
(=mi) , -, (=m)7, -+, (=mi)7}. (15)
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The first, {a,}, is a determinantal product state
of I*'**7°7*; the second, {b,}, of *******, The values
of M s for these two states, which we write as M,
and M s,, are given by
and
Upon writing

41+2 —g—h =mn,

and
oL+ 1 — g+ h =n,,
we see
Mg =—-32l+1~-mn) (16)
and
Mg, = —321+ 1 —n,). (17

If two entries of a determinantal product state
are interchanged, the state becomes multiplied by
—1. Two determinantal product states, whose
entries can be perfectly matched by a process of
rearrangement, are equivalent. The inequalities (12)
and (13) impose a standard ordering on the entries
of the states (14) and (15), and guarantee that no
two determinantal product states {a,} and {a;},
deriving from two distinct sets @, and @;, are
equivalent. Similar remarks apply to states of the
type {b,}. Iif we suppose [, g, and h to be fixed,
it follows that to each state {a,} of I"* there cor-
responds a unique state {b,} of I"*, and vice versa.
From inequalities (12) and (13), ¢ and h are non-
negative integers, not exceeding 2! 4+ 1. Provided
we restrict our attention to configurations " for
which n < 2] 4 1 —and, in view of the familiar
symmetry with respect to the half-filled shell,
nothing is gained by considering configurations in
the second half of the shell—these conditions imply
only that n, + n, must be an odd integer greater
than or equal to 21 + 1. Given, then, two con-
figurations ™ and I™ comprising an odd and an
even number of electrons, the total number being
at least 21 + 1, the states of I for which Mg is
determined by Eq. (16) can be put into a one-to-one
correspondence with those of [, for which Mg
is determined by Eq. (17). This statement answers
questions (i) and (ii) above.

Having established a method for drawing cor-
respondences between states of the types {a,} and
{b,}, it is straightforward to construct the right-
hand sides of Egs. (9) and (10) in detail, and to
pick out corresponding coefficients ¢,, and d,,. For

B. R. JUDD

Eq. (11) to be valid for arbitrary [, the conditions
on k, k, q, &', k/, and ¢’ turn out to be

=49
K o= I,
(_1)x+x’+k — _1

The last equation holds if x + «" + k is odd. These
equations provide the answers to question (iii).

4

(18)

IV. MATRIX ELEMENTS

The infinitesimal operators of the group R,
can be taken to be W{* where k is odd.> Any
one of these operators, acting on a member {a.,}
of the collection of determinantal product states
of I" with Mg = Mg, generates a linear com-
bination of states of the collection. It follows that
the collection of states {a,} for all possible Q,
forms a basis for a representation of R,;.,. Now
for every operation with W on a state {a,}
of I", we can construct a corresponding operation
on the state {b,} of I". According to Egs. (18),
the appropriate operator is again the infinitesimal
operator Wi of R.;.,. Hence the transformation
properties of the basis functions {a,} are identical
to those of the basis functions {b,}. We conclude
that the irreducible representations W, into which
the two representations with these bases decompose,
are also identical. This accounts for the recurrence
of sequences of W values, the existence of which
was mentioned in Sec. 1.

The correspondence between the transformation
properties of the two sets of basis functions {a,}
and {b,} holds not only for R.,;, but also for
any of its subgroups, since the infinitesimal operators
of the latter can be chosen from those operators
Wo® for which k is odd. The labels L and M,
can be interpreted as irreducible representations of
R; and R,; hence, given a particular expansion

| oo, WES LM s, M) = D )\, {a,} (19)

for I™, we can be sure that the linear combination
22 N0, (20)
I

corresponds to the same set of quantum numbers
W, L, and M. The symbol £ can also be carried
over if its choice influences the properties of the
linear combination of determinantal product states
with respect to the tensors W{2*' for which % is
odd. However, since either n, or n, is odd and the
other even, the couple (v,, S;) associated with the
expression (20) cannot be the same as (v, S,).
We may therefore write
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| oo, WES, LM 5, M 1) = D N 1b,},  (21)
P

with the understanding the vy, v,, S;, and 8. satisfy

Eqgs. (2).

The construction of the matrix elements follows
easily. If we operate on the right-hand sides of
Eqgs. (19) and (20) with W§* and W', respec-
tively, where « + « 4+ k is odd, the resultant
linear combinations of determinantal product states
correspond perfectly. The matrix elements are
readily completed in a quite general fashion, and
we obtain the result

(W' SILM g My [WP | Uop, WS, LM ,M 1)
= (l""véW'E'SéL’MS;,ML: !W(f:,k) ]l""UZW‘;’SgLJVISbML).

To bring the notation into line with that of Eq. (4),
we reverse the labelings of the states, and replace
the angular brackets by regular ones. The latter
operation introduces a phase factor (—1)%, where
z is independent of «, «’, and k. Passing to reduced
matrix elements, we obtain

(o, WESL |[W || Il W'e' SIL)
(0, WES,L [|W ™2 || "uyWg S3L7)

— (__])S,—S,—.r‘15b+)lls¢+z

S

ﬂ[SuJ

X

S, « S} ][ S, K
—][{Sb 0 Z‘{Sh “"ﬂ!sa O

(_1)z+(7bb+vz—v)“7la)/2

% [%(21 +1—0) «

11+ 1 — vo}
2l4+1—n,) O

~%(2l + 1 - na)
120 4+1 — v;)]“

—3@l+ 1 —n,)
(22)

9 {%(2l+ 1—m) «
1204+1~n) 0

The last line of the above equation follows from
Egs. (2), (17), and (18). To complete the program
outlined in the last paragraph of Sec. I we have
but to determine z.

(o, WES, L [|[W )| I"v, — 2W'¥S, + 1 L")
("0, WES,L |[[WO|| 1", + 2 WS, — 1 L")

- _E(U1sl{LU1 -~ 1,8 —
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V. PHASE

Racah® has shown that the fractional parentage
coefficients can be factorized according to

(¥{| §) = (TWeSL{| I 9WESL)
= ('wS{| I""'98 + H(WEL | WEL + ).

If the fractional parentage coefficients are always
constructed as a product of these two parts, we
can be sure that the second factor does not contain
any hidden phase factors dependent on n. Under
these conditions, we can often use Eg. (4) to gain
information about z.

Suppose, for example, that we make the substi-
tutionsk = k=« =1,0{ =0, —2,and 8] = 8, — 1
in the reduced matrix elements of Eq. (22). Equa-
tions (2) must be satisfied by the primed quantities,
and we deduce that v} = v, + 2, 8, = S, + 1.
The ratio of the reduced matrix elements can be
related by Eq. (67) of Racah® to a ratio for which
n, and n, assume the special values », and v, + 2,
respectively. The couple (7, S) for the matrix ele-
ment of the numerator can now be only (v, — 1,
S; — 3); that for the matrix element of the de-
nominator, only (», + 1, S, + %). Both of these
couples correspond to the same 17 ; hence, if Eq. (4)
is used to compute the ratio, the sum

2 (WeL | WEL + p(W'e'Ly | WEL + 1)
LE
X (—1)"{1’ I_L}, (23)
1L1
where
e=L+1+L+1,

occurs in both numerator and denominator, and
therefore cancels. Equations (52) of Racah® give the
magnitudes of the coefficients of the type

WwsS{] 58 + 1.
The phase of such a quantity is independent of »,’

and following Racah, we denote it by «(S{| #.).
The result of the calculation is

1/2ew, — 2, 8 + 1fjo, = 1,8 —1/2) _

€(UQS2{|7}2 + ]., Sz + 1/2)6(7)2 + 2, Sz - l{ivz + 1, ASz + 1/2) =

where

24

e +2—-0v)dl+4—n, — z'1)(2S1 - 1>281(281 + 1)

== [(nb - Uz)(4l +2—-n, — 1)2)(282 + 1)(282 + 2)(252 + 3)] )
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So much for the left-hand side of Eq. (22). The
right-hand side, involving the ratio of two 3-j
symbols, evaluates to

(=D&, (25)
The immediate conclusion, independent of the
choice made for the phases e(»S{| #S), is that =z
is independent of £ ¢, L, and L/, and depends
solely on the spins and seniorities of the states
involved in the matrix elements. Equations (2)
permit us to narrow down the dependence simply
to the seniorities.

The above analysis can be repeated for other
special cases. There are not many to consider, since
the seniorities and spins with common subscripts
can differ by, at most, 2 and 1, respectively, if the
matrix elements are not to vanish. If §/ = §,,
however, S can sometimes assume two values, and
we cannot be sure that the simple factorization that
allowed us to cancel the summations (23) still
prevails. This difficulty can be circumvented, if
the matrix elements are not completely diagonal
with respect to », W, £ and L, by making use of
the fact that the corresponding reduced matrix
elements of W, being proportional to those of L,
must vanish. The sum over L and £for § = S, — 1
can now be related to the similar sum for S =
S: + 31, and, with a little manipulation, the de-
pendence of the ratio of the reduced matrix elements
on ¢ L, &, and L’ can again be removed. This
method, which has been previously used by Elliott
et al.” breaks down if one of the matrix elements is
completely diagonal in all quantum numbers; but
in this case it is easy to see that the other matrix
element must also be completely diagonal, and
hence (—1)* = 1. The result of working through
the various special cases is that the conclusions of
the preceding paragraph are true in general: x is
always independent of &, &, L, and L’, and depends
only on the seniorities.

Thus

z = a(vy, v2, v], v5). (26)

The precise form of z depends on the phases
e(@S{| #S). If these are still at our disposal, then
we can go no further in our determination of z.
However, for some values of ! a particular choice
has been made; for example, Eqgs. (56) of Racah®
determine the phases of ¢(#S{| #S) for f electrons.
We may therefore compare expressions, such as
(24) and (25), for all the various types of couples
(v, S); the resulting values of z required to lead to

B. R. JUDD

agreement as to phase for f electrons can be sum-
marized in the equation

r =1 6(?)1, l’]’) + V2 6(”2} v:) + 1'

Upon putting this value of = into Eq. (22) the ratio
of the two reduced matrix elements is made un-
ambiguous.

VI. APPLICATIONS

We may specialize Eq. (22) in several ways. A
prudent step is to check that it reproduces those
special cases that are already known. Wybourne®
expresses his results for the matrices of the spin-orbit
coupling in terms of the matrix elements of a
quantity A defined by

(I'WESLJIM ; | 22 (si-1)| U'W'g'S'L'TM )
_ A AL SLJ mYy7, nII72e? QI
= (=1 {L,S,l}(z WESL |A| I'W'E'S'L),

where y = 0 or —% according as » is even or odd:
From Eq. (25) of Racah,® we may easily prove

(\bl A|ii)_ — (_l)Sl’—S:’+y3-u1 (\bl W(ll) ¢/1’)

(b [A] 0 (e (W] 9) 2
(27)

where

¥ = "o, WS, L,

Yl = "elWESIL,

Yo = ", WES,L,
and

vh = Mo, WE S5L.

By combining Eqs. (22) and (27), the ratio of
the matrix elements of A for any set of states y,,
Y1, ¥s, and ¢4 can readily be found. Of the 31 entries
in Table III of Wybourne,® 20 are special cases of
this kind; the remainder are examples of Eqs. (67)
and (69b) of Racah.® We obtain complete agreement
with Wybourne for 16 of the 20, but the signs of
the right-hand sides of the sixth, ninth, tenth, and
eleventh equations of his Table IIIb are incorrect,
and should be reversed. In a private communication,
Wybourne has confirmed these four corrections.”

Although we have distinguished between Eq. (22)
(for which v, # v, and »{ = v}) and Eqgs. (67) and

7 Table III of Wybourne contains other errors that are
more obviously typographical. Of these, three possess a
mathematical significance: In the second equation of Table
III a, the representation (110) on the extreme right should
be (111); in the fifth equation of this table, the seniority

number 4 should be replaced by 3; and in the last equation of
Table IIIc, the factor —{2(2)/3]' 2 should read —[2(2)2/3].
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(69b) of Racah® (for which »; = v, and v/ = v}),
it should be pointed out that Racah’s equations
can be derived from Eq. (22). It is only necessary
to compare Eq. (22), as it stands, to a similar equa-
tion in which 7n, possesses its minimum value,
namely the larger of »; and v]. Suppose, for example,
we take v, = v = v and choose « + k to be even.
For Eq. (22) to be valid, we must have ' = 1.
We set n, = v in Eq. (22) and then n, = n. The
matrix elements

W3 W] ¥
can be easily eliminated, and we get

(FoWESL [|W™ || IoW'g 8'L)

(PoWESL [|W"2 || 1vW'g' S'L")
=«4wwﬂﬁﬂ+l—m 13RI+ 1)
1204+1—-m) 0 —2@2l+1—1n
% [%(2l+1—v) 1 %(21_;_1_0)]‘1
1QU+1—-9 0 —3Q2+1-0y

=@Ql+1—-n/Ql+1-yuv),

which agrees with Eq. (69b) of Racah.®

The applications of Eq. (22) that have been
considered so far simply reproduce established
results. However, it is only necessary to take k
to be even to obtain a large number of new equations.
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This is because « + &’ must be odd, and so « cannot
equal «. We may therefore relate the matrix ele-
ments of W"® in one configuration to those of
W in another; in fact, for any matrix element
of W"? a matrix element of W in another
configuration can be found to which it is related
by Eq. (22). Since tensors of the type W% and
W are used in the study of hyperfine structure
and crystalline field effects, respectively, a con-
siderable amount of labor can be saved by taking
advantage of this relation. For example, on setting
v, =0, 8 = 8, v, =0, and 8, = S} in Eq. (22),
we obtain, for even k,

(o WES,L [[WP || I, W' S, L")
(", WES,L || V] I, WE S,L7)

__Fm+1—mm+z—mm+3—wy
N 2204+ 1 — n)’

(28

This result is independent of v, and 8., and relates,
for example, the matrix elements of part of the
hyperfine interaction for the quartets of f° to the
matrix elements of V® for the terms of f* with a
seniority of 4. Matrix elements of the latter kind
are the easier to evaluate, since fewer parents are
involved. Equation (28) should therefore be useful
in calculating, for example, the contribution to the
hyperfine structure of PmI 4f° °H, coming from
admixtures of quartet states.
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Transient Response of a Dipole Antenna
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The transient current in a long dipole antenna excited by a step-function voltage across an in-
finitesimal center gap has recently been calculated by Wu. A simpler derivation of Wu’s result is

given using double Fourier transformation.

N a recent paper,"” Wu calculates the current in
2 long dipole antenna driven by a voltage im-
pressed across an infinitesimal center gap. The im-
pressed voltage is a step function of both space and
time, and the current is found up until the time that
the discontinuity spreading out from the gap first
reaches the ends of the dipole. Since Wu'’s analysis,
while ingenious, is somewhat roundabout, the follow-
ing more direct solution may be of interest.

In a cylindrical coordinate system (p, ¢, 2), the
resultant electric field at the surface of the antenna,
which is the negative of the applied electric field,
may be expressed as®

Ez(al 2, t) = _'6(2) U(t)

- lim _l_ sinh 3vs Wd"’f e
_'YS Co 14

=0 41l'

where ¢ is the velocity of light, and the contours
C, and C, are up the imaginary axes, with C, in-
dented to the right of p = 0

The electromagnetic field will be transverse mag-
netic and derivable from a stream function II(p, 2, {)
which satisfies the scalar wave equation.” Such a
function may be written in the form

dp, (1)

Cy

I(p, 2, 1)
[ [ A giBe iy, @
where
A= = ®

In order to represent outgoing or damped waves at
infinity, A must lie in the fourth quadrant or on
its boundaries when Im p < 0, and in the first
quadrant or on its boundaries when Im p > 0.
To carry out the p integration when v = 48, where
8 # 0, take the contour C} shown in Fig. 1, indented

T, T. Wu, J. Math. Phys. 2, 892 (1961).

28. A. Schelkunoff, Electromagnetzc Waves (D. van
Nostrand Company, Ine. ., New York, 1943), pp. 34-35 and
375-377.

P - PLANE A-PLANE

inl:
Cp’ %

~inl;

|8l

-t

F1a. 1. Contours of integration.

to pass to the right of p = 4¢8. It is easy to verify
that if X is taken to be negative imaginary when
p lies on C’ below —1 |8|, then \ describes the con-
tour C{ shown in Fig. 1 as p describes €/, and so
only outgoing or damped waves are included in the
integral (2). If 8 = 0, then C’ coincides with C,
and A = p. To make the Bessel functions single
valued, the A plane may be cut along the negative
real axis.

The electric field corresponding to (2) at the
surface of the antenna is

Ea,2, 1)

1
[ [ 4w

where 5, is the characteristic impedance of free
space, so that the function A(p, v) may be deter-
mined by comparison with (1). The antenna current,
which is proportional to the surface magnetic field,
is given by

"'Ir)>\2

== """ dp dry, 4
P p dvy 4)

Iz, 1) = —2ra g_ﬂ
= - a ._I.(_l(_@. yz+pet
211, fc, f . NKo(Aa) ¢ dp dv, (5)

where the convergence factor (sinh 1vs)/1ys has been
dropped on the assumption that z and ¢ are not
simultaneously zero.

To simplify the expression for I(z, t), we observe

564



TRANSIENT RESPONSE OF A DIPOLE ANTENNA

that the integrand of (5) does not have a pole at
p = 0, so the center part of C! may be deformed
into an infinite semicircle in the left half-plane,
over which the integrand vanishes when ¢ > 0.
The final stage of deformation is shown as C’/ in
Fig. 2, where nothing is left but the integrals around
the branch cuts from p = =1 |8] to £i=. The cor-
responding contour in the X plane is C{’. It is easy to
show that during the deformation C\ does not leave
the right half-plane, in which the function K,(Aa)
has no zeros; furthermore, the ratio K,(Aa)/K.(A\a)
approaches 1 as |\| approaches «. The contributions
from the circles around p = =17 |8| ean be shown
to be of the order of 1/|log 8|, where & is the radius
of these circles in the p plane, so the contributions
vanish as § — 0.

If we now set

@~ 8 (6
where v is real, we can write down the four integrals
along the branch lines. Expressing the modified

Bessel functions K, (+%va) in terms of Hankel
functions and combining terms gives

o[ s

H(z)(va)
HiT va)

y=i8, p=is, »=

I(z, ?)

:| sin (web)e' dw dB

_ f f sm (wet)e'™ dw dB
10 o ¥V [Jova) + Nj (va)] ’

where in the last step we have used the Wronskian
relationship between the Hankel functions. Changing

(7

=
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F1c. 2. Contours of integration.

the inner variable of integration from « to » and then
inverting the order of integration and using the
result®

“ sin [et(8® + v)Y 5.
‘/‘_m (62 + y?); € dﬁ
_ % 0 if 2] > e, )
rJ (e — 2 i ] < e,

we find that the antenna current vanishes for
lz2f > . For |z| < ct it is given by

= Jou(Ef — D) dv
770 Jowa) + Nowa) v ’

a result which is clearly equivalent to Wu's Eq. (17).

Iz, ) = (9

3'W. Magnus and F. Oberhettinger, Functions of Mathe-
matical Physics (Chelsea Publishing Company, New York,
1954), p. 118.
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An Approach to Gravitational Radiation
by a Method of Spin Coefficients*

Ezra NEwmayn
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A new approach to general relativity by means of a tetrad or spinor formalism is presented. The
essential feature of this approach ig the consistent use of certain complex linear combinations of
Ricei rotation coefficients which give, in effect, the spinor affine connection. It is applied to two
problems in radiation theory; a conecise proof of a theorem of Goldberg and Sachs and a deseription
of the asymptotic behavior of the Riemann tensor and metric tensor, for outgoing gravitational

radiation.

I. INTRODUCTION

N the study of gravitational radiation, two
techniques have recently gained prominence; the
tetrad calculus’™® and the spinor calculus.””® In the
present paper (Secs. II, II1,'° and IV) it is shown
how the two techniques can be used to derive a very
compact and useful set of equations, which are
essentially linear combinations of the equations
for the Riemann tensor expressed in terms of either
Ricei rotation coefficients or the spinor affine con-
nection. In Sec. V, we give a short proof of a theorem
of Goldberg and Sachs' to the effect that if in
empty space there exists a null geodesic congruence
with vanishing shear, then the Riemann tensor of
the space must be algebraically specilized (i.e., the
Riemann tensor is not Petrov type I nondegenerate).
The last application of our formalism is to the
asymptotic behavior of the Riemann tensor and
metric tensor in empty space. In Sec. VI a coordinate
system and tetrad are built around a hypersurface-
orthogonal null-vector field. In Sec. VII, this
special coordinate system and tefrad are used to
* This work was done while both authors were at Syracuse

University. It was supported by the Aeronautical Research
Laboratory.

T Visiting NATO Fellow. .

t Present address: Mathematics Department, King’s Col-
lege, University of London, London, England. )
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Phys. Rev, 105, 1089 (1957); Bull. acad. polon. sei. 5, 143

1957a).

( 8 B, Newman, J. Math. Phys. 2, 324 (1961).

+ J. Goldberg and R. Kerr, J. Math. Phys. 2, 327 (1961).

s R. Sachs, Infeld Volume and preprints.

s H. Bondi and R. Sachs (private communication).

7 L. Witten, Phys. Rev. 113, 357 (1959).

8 R. Penrose, Ann. Phys. (New York) 10, 171 (1960).

9 J. Ehlers, Hamburg Lectures. . .

10 Tt is possible, if one has no familiarity with spinors to
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1 J, Goldberg and R. Sachs (to be published).

prove essentially the following theorem. If a partic-
ular complex (tetrad) component of the Riemann
tensor (complex because we are using a complex
tetrad system) has an asymptotic behavior O(r™%),
the other four complex components are, respectively,
oF™), 0™, 0¢™%), and O(¢™"). The last com-
ponent represents the pure radiation field. Special
cases of this theorem have been known for some
time.'*"** Qur theorem is also a slight generalization
of a similar result recently obtained by Bondi and
Sachs.®

II. TETRAD CALCULUS

We deal with a four-dimensional Riemannian
space with a signature —2. Into this space a tetrad
system of vectors I, m,, 7,, », is introduced, I, and
n, being real null vectors and m, with its complex
conjugate 7, being complex null vectors. The
vector m, can be defined from a pair of real, orthog-
onal unit space-like vectors @, and b, by m, =

(1/v2)(a, tb,). The orthogonality properties
of the vectors are
LUV = mm* = m,m" =nn" =0,
o = —mm" =1,

2.0
L.m* = [m" =nm" =nm" = 0.

It is of great convenience to introduce the tetrad
notation'*

Zm[l = (Z“J nl-l) m“? ml-‘)} m = 1’ 2’ 3} 4'

12 R. Sachs (to be published).

137, Robinson and A. Trautman, Phys. Rev. Letters 4,
431 (1960).

14 Greek indices (values 1, 2, 3, 4) are tensor indices,
bold face a, b - - (values 1, 2, 3, 4) are tetrad indices, capital
Iatin A, B --+ (values 0, 1) are spinor indices and small
lightface latin a, b - - - {values 0, 1) are spinor “dyad’ indices,
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The tetrad indices can be raised or lowered by the
flat-space metric nu,

01 0 0
ma 10 0 0
Nma = 7 = . (2.2)
00 -1
0 0 -1 0

The following two relations are easily seen to
be true;

Gur = Zmgar?

= ln, + nl, — mm, — m,m, (2.3a)

Non = Zmulard” - (2.3b)

Complex Ricei rotation coefficients are defined by
Yo? = Zmu 2 (2.4)

with the symmetry

mnp

v =

nmp
.

-

The tetrad components of the Riemann tensor
defined by

(2.5)

can be expressed in terms of the rotation coeflicients
by15

Rmnpq —_ ’Ymnp:q

a §
Rmnpq = ‘Raﬁydzm‘ﬁzzzq

_ ymnq;p + 'ylmqlem

— ™y Y — ™), (2.6)
with
,ymnp;q = ,YTPZQ#'

This can easily be derived from the Ricci identity

Cmp;(af] = %zva:aﬁ (2.7)

by repeated application of (2.4).

The relationship between the Riemann tensor,
Weyl tensor, and Ricei tensor goes over in tetrad
form unchanged'®

Rmnm = - ‘é‘(nvanq - ﬂqunp + 7aqRmg
- ﬂnpqu) - (R/ 6)(’7mq77np - "Imp‘ﬂnq)- (28)

In the tetrad notation the Bianchi identities,
Reasivs:e = 0, take the form

Cnmpq

Ronipgins = ’lelxqulln
(2.9
Though they appear to be considerably more

1
- 'Ynlerpq]lm + 2Rmnl[p7r ql-

15 L. P. Eisenhart, Riemannian Geomelry (Princeton Uni-
versity Press, Princeton, New Jersey, 1960).
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complicated, it will be seen in Sec. IV that with a
new notation they take a simple and useful form
in empty space.

In Eq. (2.6) we used the intrinsic derivative
defined by ¢'™ = ¢,,2™. It will be of great value to
obtain the commutator of two intrinsic derivatives,

mn

) — ¢ We have
T = (0,8™) .2 = 0, + 0 Y. (2.10)

By interchanging m and n in (2.10) and using
2.,

2" = 4% obtained from (2.4), we see

Jm;n

;ﬂ
e — o

;m

(2.11)

In Sec. IV it will be advantageous to dispense
with the semicolon notation for intrinsic derivatives
and use the following;

Dy = w:uluy

— ¢:l[7mln _ _ynlm].

Ao = ¢ (2.12)

dp = ‘P:um“) dp = ¢’;umu'
III. TWO-COMPONENT SPINOR CALCULUS

The connection between tensors and spinors'®
is achieved by means of a quantity ¢*, 5., satisfying

3.1)

For each value of u, ¢,*%" is a (2 X 2) Hermitian
matrix. The ¢s are Levi-Civita symbols, that is,
skew-symmetric expressions with e; =

" v _
Juv0 AB'0 ¢D* = €4c€B'D’-

€1 =
€' = & = 1, and they are used for lowering or
raising spinor indices:
A AB A
£ = €k, &8 = Eeun,
A’ A'B’ A’
7" =€ Tns,  mp = 19" exn. (3.2

(Note the ordering of the indices.) The spinor
equivalent of any tensor is a quantity having each
tensor index replaced by a pair of spinor indices,
one unprimed and one primed"’;

2y AB’'CD’ AB' oD’ A
X “, - X EF' = O g, X “VU,EF"
Inversely:
e A 'S >AB'CD’ EF’
X, = ¢ apcten X EF Oy .

Equation (3.1) tells us that esces n is the spinor
equivalent of g,,.

When taking the complex conjugate of a spinor,
unprimed indices become primed, and primed
indices become unprimed. For example, the complex

conjugate'® of X*%' % ;.. is X*' 2% %5, whence

16 See, for example, W. L. Bade and H. Jehle, Revs.
Modern Phys. 25, 714 (1953).
17 We use primed rather than dotted indices for typo-

graphical reasons.
18 Many authors omit the bar over the complex conjugate.
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the condition for X™*, to be real is the Hermitian
property

XAB’CD’ — XB’AD'C

EF’' — F'E-

The covariant derivative £,., of the spinor £, is

EA;u = £A,u - SBI‘BAM} (33)
where T?,, is the spinor affine connection. The
corresponding quantity T'*,., deals with the primed
indices. The rules of covariant differentiation for
spinor indices are exactly analogous to those for
tensor indices. The choice of I'?,, is fixed by the
requirement that the covariant derivatives of
0*45,€4p, €4-5- shall all vanish.'®

Observe that, by (3.1), the four expressions

(3.4)

satisfy the same orthogonality relations (2.1) as
the four vectors I*, »n*, m" m*. We would like,
therefore, to identify the expressions (3.4) as a
convenient tetrad. However, this would not be
strictly accurate and is a little misleading. The
expressions (3.4) do not really denote vectors as
they stand, as is exemplified by the fact that while
covariant derivative of ¢45. 1s zero, this is not so
for I*, m*, m*, n* [see Eq. (2.4)].

To get around this difficulty we introduce two
basis spinors o*, «* (a “dyad’) normalized thus:

4= 1. 3.5)

A dyad (in spin space) is analogous to a tetrad in
vector space. We may put

B 5 # »
T 00, G 117y T 01y G 10

A A B __
Oql = €40 L = — 140

(3.6)

The covariant derivatives of these expressions will
now involve the covariant derivatives of o* and .°.

As with the tetrads, it is convenient to have a
generic symbol for both o* and 4. Define ¢,4, £,4" by
g.lA - LA’ g:OIA' - 6‘4’,
&4 =0 (3.7
Then, for example, given a spinor Y z.., we can
define its dyad components

Yabc YAB Cg'n g‘b g-cc'

The lower-case indices behave the same way
algebraically as ordinary (capital) spinor indices,
but when covariant differentiation is applied, no
term involving an affine connection appears for
the lower case indices. Thus, the important formal
difference between the lower-case and capital
indices is simply the difference with respect to
covariant differentiation.

m' =

E. NEWMAN AND R. PENROSE

Bearing this in mind, it is permissible to choose
the components of {,* to be the Kronecker delta.
The dyad components of any spinor will then, in
fact, be identical with its spinor components. It
is by no means essential to make this specialization
but it will be convenient to do so here. The expression

(3.8)

now gives us I, n*, m*, 7" as ab’ take, respectively,
the values 00’, 11/, 01/, 10’, by (3.6). With this
interpretation, the expressions (3.4) may indeed be
though of as giving the required tetrad. However,
it is essential to maintain the distinction between
the dyad and spinor indices when covariant dif-
ferentiation is involved.

The components of {,; are now the same as those
of e45. Hence, ¢, = —f'acrc,u = fgrcu = Toay
by (3.3). For the analog of the rotation coeﬁ"lclents19
(2.4), we therefore have

Ag B!
U“ab' = U"AB’g.a g-b'

Topear = faA;ufbAU“cd' (3-9)
with the symmetry
Tavesr = Thocar- (3.10)
Writing
¢ T e = B (3.11)
the intrinsic derivatives (2.12) become
D=3y, A=20d,, 8=0yn, &=0d,. (3.12)

The commutation relations for these derivatives
acting on scalars

{8ar Bear — Bear Bup- oo
= {(Tpacar s — Thearr 8gar)
+ & (T 8ar — Toanra 8a)le (3.13)
can be obtained by direct calculation from (3.13)
using (3.8) and (3.9). By a slight extension of this

calculation, when the derivatives act on ¢,, we
obtain

050 Tacar’ — Oar'Tacrer = € {Topap Toerer
+ Pacpb’r‘qdfe' - I‘aﬁfe'rchb' - PﬂcFG'FGfdb'}
+ € {Tacar Tyvrers = TaeserTararyral
F Wocareern + A€y (€catar T €nreey)
+ Doctror€ray (3.14)

1» The quantities (3.9) can be defined directly in terms of
derivatives of the o,45/, as follows: .

Tabear ‘%G” o {U'cd ‘ap’be’ — Ted’bg’ap’ U'ap'bq'cd'}

where

Oabredroft = ﬂ[“abla"]cdr Tuef'oy
or

Tobedr = €0 0 alaqi07ca 0 up’ ;5o
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where the spinors ¥, zep, ®asc pr, and A correspond,
respectively, to the Weyl tensor, trace-free part
of the Riecci tensor, and scalar curvature. They
have the symmetries:

Yinen = Yianen,
®apcrpr = Busycny = Popas (3.15)
with
A = (1/29)R.

The spinor equivalent of the Riemann
R.sy; decomposes as follows™:

tensor

_RAE’BF’CG’DH' = W pcoee r€en
+ GABGCD‘i’E'F'G'H'
~+ 2A(£AC£BD5E’F’EG’H’ + GABGCDCE'H'EF'G'>
+ €4pPepp ran + €cpPase nerr- (3-16)
The relations®
a(AP’ dmpke = _‘FABCI;ED + Afisene,
decpr aco‘)EA = q)ABP’Q‘EB

have been used to obtain (3.14).
The Bianchi identities in spinor form are

3.17)

D H'
0 ¢ Vagep = ¢ Pumorn

aAG'q)ABG'H' = —3 dpg-A

(3.18)

from which we obtain
apd"I’abcz) - a(c”q’ab)d'w = {3‘I’m(abI‘c)Wczv
+ Voo %0} — zpp(ab!"i’c)pe‘d’
- {f‘t'd'u'(aq’b’c)m’ + Ft’u’n’(aq)bc)"d'}
and
30 A+ & Dy
= ev,w’{(pap“w'rb’t'w'p + cpapb’t’r‘!'w'v'p}
— { @y T F Bor 700}

IV. THE SPIN COEFFICIENTS

(3.19)

(3.20)

In the present section we will show how the
formalisms developed in Secs. II and III can be
put into a relatively concise form, despite the
fact that all summations will be written out
explicitly.

Twelve complex functions (called spin coefficients)
are defined in terms of either the rotation coefficients
(2.4) or spinor affine connection (3.9).

30 These definitions of ¥ pep, ano-pe differ by a factor 2

from those given in reference 8. Also, the Riemann tensor
used here is the negative of that used in reference 8.
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K = Yia1 = l,“,m“l', T = =Y = _nu;,‘ffl"l',
e = 3{vin — Yau) = 3L 2T — m,,, W),
P = Yias = L, m'A, N = =gy = —n,,mW,
a = 3(Vi2s = Yaad) = 3L A — m,,,AR),
¢ = v = Lom'm', p = —yu = —n,,Wm,
B = $(viza =~ ¥s3) = (L' M — m,,,Am'm),
I N i R 74
v = $(vies = Y3a2) = $(,.,AR" — m,,, 7N,
T =y = Lam'n’, (4.1a)
or
AN
\\ ab 01
N 00 or 11
cd’ \\ 10
00’ P A
107 p |«
Pacr = o | o] gl @
1 T Y v

It is seen that the spin coefficients appear more
naturally when dealing with spinors than with tetrad
vectors. This fact reappears when Eq. (2.6) is
rewritten in terms of these new functions. The
equations are rather unattractive until certain
linear combinations are taken. These simpler
equations are just the ones, (3.14), that arise
naturally in the spinor caleulus. Equation (3.14)
or the appropriate linear combinations of Eq. (2.6)
using (2.8), with the notation of (4.1), is

Dp — 6k = (" + ad) + (e + &p — &r
— k@Ba+ B — 7 + ®p  (4.29)
Do — 8k = (p + Blo + (B¢ — &o
—(r—F+a+38)c+¥  (4.2b)
Dr— Ak = (r+®p+ (F+ no
F—r— By + P+ ¥, + &y (4.2¢)
Do — be = (p+ & — 20a + Bé — fBe
— kA — &y + (e + o7+ @ (4.2d)
DB —be=(a+me+ (7 — &8

—wtnk—@—-De+ ¥ (42¢
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Dy — de=(r+ @Da+ (F+ 7B — (e + &y
— (et m—vk+ T — A+ &, (4.20)
DN — o =(pN+6p) + 7 4+ (@ = f)r
— vk — (Be — DN + B (4.20)
Dp — & = (pu + oX) + 77 — (e + &
~m@—B) —vk+ V¥, + 20 (4.2h)
Dv — Ar=(r+ Au+ F+ A
=P — Bet+dp+ ¥+ &,  (4.20)
A== —(+ DN~ @y — I
+ Ba+Bf+w— 7w~V (4.2p)
bp — bo = p(@+ B) ~ o(3x — B)
+~pr+ @—Br— ¥+ &, (42K
b — 88 = (up — Ao) + aa + BB — 208
+rve =P+ el —m — ¥+ A+ 0, (@2)
AN—bu= 4=+t @— D
tula+ B FAG —38) — ¥ + & (4.2m)
v — A=+ N+ ¥+ e
—9r+ [r — 38 —alp + @ (4.2n)
y—A8=(r~a— @y +ur— o
—~ad—By—7—u+ok+&, (420
01 — Ao = (uo +1p) + (+ + 8 — )7
— @y =)o — @+ &y (4.2D)
Ap —br=—(pa+ N+ @B —a—Dr
+ &+ +re— ¥, ~2A (4.2q)
Ao — Gy = (o + v — (r+ B
+ G —wat+ (B— Py — ¥  (42r)

The notation for intrinsic derivatives (2.12) has
been used. The quantities ¥,, ¥,, ete., B, ete.,
and A are, respectively, related to components of
the Weyl tensor, Ricci tensor, and scalar curvature
by the following;

Yo = —Crags = —Copysl™m’I'm’ = ¥yp0e  (4.32)
Y, = —Cips = —Cappal 0 U'm’ = ¥y
V, = —3(Ciaiz F Cizsd) = —3Cupys
X (000 F 1'n°m' ) = Yoo
Yy = Crpos = Copysln M’ = ¥y,

By b
¥, = —Cogs = _Caﬁ'yﬁnam n'm = ¥,
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So = —3iR;; = Poooror = Pog,

&, = ~HR, + Rsy) = P01 (4.3b)
By = ~1R; = By = Dy,

b, = —1R = Dyyyeqs

By = ~1Ri = Poi00r = Doy,

@y = —1Ry = By1p

Bp, = —31Ra = Boprrrr = Boo,

B = —3Rs = Byyyes

D,y = —3Ry = Pigrpr,

A = R/24.

With the present notation the commutators (2.11)
or (3.13) are

(AD — Dh)e = [(y + 9)D + (¢ + 84

—(r+ 5~ F+mile
(6D — D&)p = [(@ + 8 — #D + «A

—db—(F+e—9 e

(84 ~ Ad)p = [—3D + (r —a — B)A
+ A+ =7+ Die

(66 — 8d)p = [(B — WD + (5 — pA
—@—£5— B —adle.

The Bianchi identities (2.9) or (3.18) when written
out in general, are very long and unwieldy. How-
ever in empty-space, R.p = ®,z¢:p- = 0, they do
have the simple form®

4.4)

DU, — §¥, = —3«¥, + [2 + 4p1¥,
— [—7 + 4%, (4.5)
DV, — §¥, = ~24¥; + 3p¥,
— [—27 + 2a)¥, ~ ¥,
DV, — &¥, = — ¥, — [2¢ — 2p]¥,
+ 3x¥, — 2A¥,
DY, — &, = —[4e — pl¥,
+ [47 + 2]¥; — 3\,
AV, — &, = [4y — ¥,

- {47 + 2‘3]‘1’1 + 30"1’2

2 For completeness, though it is never used in this paper,
we give in the Appendix the formulas for the Bianchi identi-
ties in the presence of a Maxwell field as well as the Maxwell
equations using the notation of this section.
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AV, — 8, = v, + [2y — 2u]¥,
— 377, + 207,
W, — 3u¥,
+ [—27 + 28]%; + o¥,
AV, — 0¥, = 3pl, — [2y + 4]V,

+ [—7 + 48]¥,.

A\Pg - 5\1/3

Before proceeding to applications of the formalism
developed here, it is useful to examine briefly the
geometric meaning of some of quantities (4.1) and
(4.3) which will be used frequently in the remainder
of the paper.

The spin coefficient « is related to the first curva-
ture of the congruence of which [, is the tangent
vector by the equation

im, + (e + &l,.

It is easily seen that if x = 0, [, is tangent to a
geodesie. By a change in scale [, — ¢l,, ¢ + & can
be made zero. In the case of a geodesic with the
above choice of scaling for [, we have

%[_l“;u + ¢ curl lu])

lu;vly = -‘Kmu - (4.6)

p =
where

curl I, = (I, ")} 4.7

and ¢ is the complex shear of 1, satisfying'*'**

06 = 3{lan " — 3.

The quantity = describes how the direction of I,
changes as we move in the direction n, as follows
from the equation

l,.;,n' = —Tm, — TMm, + ('Y + 'i)ln (48)

Again we can make vy -4+ § zero by the change
l, — ¢l,.

The spin coefficients », u, A, 7 are analogous,
respectively, to x, —p, —o, 7, the difference being
that the congruence used is given by n, instead of I,.

If 1, is taken tangent to a geodesic congruence
and we wish to propogate the remainder of the
tetrad system parallelly along this congruence, then

(4.9)

k=¢e=7=0.

If in addition to being tangent to geodesics, the
1, are hypersurface orthogonal, that is, proportional
to a gradiant field, we have

=7 (4.10)

2 1. Robinson, J. Math. Phys. 2, 290 (1961).
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if equal to a gradient field
T=a-+ p. (4.11)

One can understand the meaning of ¥,, ¥,, ¥,, ¥,,
and ¥, by the following:
Consider the five cases

(a) ¥y 5 0, others zero
(b) ¥, % 0, others zero
(€) ¥, # 0, others zero

p =D,

(d) ¥, = 0, others zero
(e) ¥, 5% 0, others zero.

The Weyl tensor or the tetrad components of the
Weyl tensor will have the following algebraic
properties in each of the five cases;

(a) Petrov type N (or [4])® with propagation
vector n,,

(b) Petrov type III (or [31]) with propagation
vector n,,

(c) Petrov type D (or [22]) with propagation
vector n, and 1,

(d) Petrov type III (or [31]) with propagation
vector [,,

(e) Petrov type N (or [4]) with propagation
vector [,.

By a propagation vector, we mean a repeated
principal null vector.?

If in empty space the vector field I, satisfies the
equation [R5, sl "l = 0, then I, corresponds to
one of the four principal null directions of the
Riemann tensor and

‘I/o = 0- (412)

If two or more of the principal null directions
coincide and are represented by [,, they must satisfy
Rap.”,sl,,)lﬁly =0or

¥, = ¥, = 0. (4.13)

(In this case, one refers to the Riemann tensor as
being algebraically specialized.)

In the following section it will be shown that in
empty space if the [, are tangents to a geodetic
congruence whose shear ¢ vanishes, then (4.13)
must be satisfied, and conversely.

V. GOLDBERG-SACHS THEOREM

In this section the conciseness attained by the
use of spin coefficients will be illustrated by an
example. Here and in the remainder of the paper
it will be assumed that we are dealing with empty
space, i.e.,

R,_,g = 0.
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First we will prove that if the Riemann tensor is
algebraically specialized, having ¥, = ¥, = 0, then
o = k= 0. With these assumptions the pertinent
Bianchi identities become

30"1’2 = 0,

— o, = —377, + 207, (5.1a)
AW, — 30, = —3u¥, + (=21 + 28)%; + o,
—3x¥, = 0
D¥, = —2«¥; + 3p¥, (5.1b)

D\Ilg'— S‘I’2=

It is easily seen from this that unless the space is
flat, ¢ = 0 by (5.1a) and « = 0 by (5.1b).

The converse is more difficult to prove. We
assume ¢ = x = 0 and wish to prove ¥, = ¥, = 0,
We can, by a transformation of the form m, — e*’m,
and by using a suitable scaling of I, set ¢ = 0.

The pertinent Eqs. (4.2) are then

- K\I’4 - (26 - 2P)‘I’3 + 377@2.

Dp =, (4.2a")

0=, (4.2b")
Dr=(G+dp+ ¥ (4.2¢")
Dg=pp+ ¥, (4.2¢")
dp=p@+p+G-—pr—¥.  @2%)

With the fact that ¥, = 0, [Eq. (4.2b’)] the
needed Bianchi identities and commutator are

&, = (47 + 28)¥, (5.2)
D‘I’l = 4/)\1/1 (5-3)
(D8 — éDyp = (+ —a — B) Do + 5 dp. (5.4)

There is yet a freedom in the choice of the vector
n,, the {reedom being that of the so-called “null
rotations,”

L— L

m, — m, + al, (5.5)

n, —n, + am, + im, + adl,.

This rotation of the tetrad does not change I,
or disturb the relation ¢ = 0. The complex function
a can be chosen so that r = 0. [It is possible to do
this only if p > 0. However from (4.2 k') it is easily
seen that if p = 0, then ¥, = 0, and our theorem
is proved.]

Equations (5.2) and (5.3) are rewritten

dln¥, = 28
DIn¥, = 4p.

(5.6)
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Taking mixed derivatives and subtracting the
two expressions, we have

(D6 ~ 6D) In ¥, = 2 DB — 4 8p
= 285 — 4p(@ + B) + 6¥, (5.7

after using (4.2 ¢') and (4.2 b’). The commutator
(5.4) with ¢ = In ¥,, and using (5.6) is

(Dé ~ 8D) In ¥, =285 — 4p(a + 8) + 407. (5.8)
Subtracting (5.8) from (5.7) we have
¥, = Zip.
If this is compared with (4.2 ¢’), ¥, = —#p we

have, since p is assumed different from szero,
¥, = # = 0. This completes the proof.®

VI, SPECIAL COORDINATES

It is always possible, in a hyperbolic Riemannian
manifold, to introduce a family of null hypersurfaces

u = const, that is,
gu ., = 0. (6.1)

The vectors I* = ¢*"u, are tangent to the family

of null geodesics lying in the hypersurfaces
u = const, and satisfy
", =0. (6.2)

Robinson and Trautman'® show that if one
chooses as coordinates v = z' and an affine param-
eter” along the geodesics » = z°, and two coordi-
nates 2°, z* that label the geodesics on each surface
u = constant, the metric takes the form (¢, § = 3, 4)

01 0 0
v 1 22 23 24
g = 923 g9 (6.3)
0 i
go g
0o ¢

(It is not always most convenient to use an
affine parameter as z°. Sachs uses a “luminosity”
parameter, ¥ = 2/[*,, which makes the ¢g'* different
from unity. However, for our purposes an affine
parameter seems simplest.)

With these coordinates the vector I, becomes

I, =38, I*=¢. (6.4)

2 Though we have not seen all the details of the Goldberg-
Sachs proof, we believe our proof to be essentially equivalent,
but, due to the conciseness of our notation, much shorter.

2 An affine parameter is a parameter along the geodesic,
such that the equation for the geodesic takes the standard

form. See, for example, E. M. Schrédinger, Ezpanding
Universes (Cambridge University Press, New York, 1956),
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To preserve In* = 1, and Im* = 0, we have

(=34
m' = 6 + £ &
n* = &+ U s+ X 8.

(6.5)

The relation between the tetrad components (6.4)
and (6.5) and the metric components (6.3) is

g° = 20U — wa), (6.6)
¢ =X — (o + Fw),
gl = —EF +FY),

(¢, 7 = 3, 4). This follows from (2.3a).

There is still complete freedom for the rotation
of the tetrad vectors m" and n* leaving ?* fixed. This
freedom is eliminated by demanding m* and n* be
parallelly propagated along !*. This requirement, in
addition to the knowledge that [, is a gradient field,
is stated in terms of the spin coefficients by (see
See. IV)

k=n=¢€¢=0, p=2p 71=a+8. (6.7)
With these simplifications the commutators (4.4)

are

(AD — DA)p = (v + 7) D¢

— 1 8p — F 8
(8D — Dd)e = [a& + B] De
—ode—pdp (6.8)
(6A — Ad)p = —7 Do
+ X+ ut+T7—7]d
(56 — 88 = (u — &) Do
—[a—pBlé —[B—a]lde
with [using (6.5) and (2.12)]
D = 9/or, §=wd/or + ¢ 8/ox 6.9)

A= U3d/or+ 8/du + X' 3/0x".

In order to relate the tetrad components (or
metric components) and the spin coeflicients we
replace ¢ by u, r, and ', respectively, in the four

commutators. The result of this operation is
(i =3,4)

D = pt' + of' (6.10a)

Do = pw + oo — @+ B) (6.10b)

DX’ = F + 7 (6.10¢)

DU =15+ 7w — (v + ) (6.10d)
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SXT— A = (ut T -+ N (6.10¢)
& - =0@-af +@-—pF (6.101)

06— bo=F—aw+(@—Pao+u—pg (610g)
U —Adw=(q+7— 7o+ I -7 (6.10h)

We will refer to these as the metric equations.

To conclude this section we will write the Egs.
(4.2) and the Bianchi identities using the conditions
(6.7).

Dp = p* + o5 (6.11a)
Do = 2p0 + ¥, (6.11b)
Dr=1p+ 70+ 7, (6.11¢)
Da = ap + G5 (6.11d)
D8 =Bp+ac+ ¥, (6.11e)
Dy =ra+ i3+ ¥, (6.11f)
D\ = \p + ué (6.11g)
Dy = pp + Ao + ¥, (6.11h)
Dy = A4 7049, (6.111)
AN —=2ww+@F -3y —p—BA—¥ (6.11)
Sp—bo=0B+ap+ B — 30—V (6.11k)
b — 68 =pp — Ao — 2a8 + aa+ B8 — ¥, (6.11))
MN—bu=(a+Bu+@—3N—¥ (6.11m)
o — Ap = yp — W8 + Gu -+ 47+ AR (6.11n)

oy —AM8=m—ov+ @u—v+9B8+ A (6.110)

6r — Ao =278+ ( + 1 — 3v)o + Xp (6.11p)
Ap—br=(+TF—Bp—2ar— Ao —¥, (6.11q)
Aa — 8y = pr — A — N8
+EF—v—BHa—¥s  (6.1lr)
DY, — ¥, = 4p¥, — 4a¥, (6.12a)
DV, — §¥, = 3p¥, — 2a%, — \¥,  (6.12b)
D¥; — &%, = 2p¥; — Y, (6.12¢)
DV, — ¥, = p¥, + 2a¥; — 3\T, (6.12d)
AV, — O¥, = [4y — u]¥,
— [47 + 28]1%, + 30%.  (6.12¢)
AV, — 8¥, = »¥, + [2y — 2u]V¥,
— 370, + 20,  (6.12f)
AV, — &V, = 20, — 3u¥,

+ [—27 + 28]%; + 0¥,  (6.12g)
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A‘I’a it 5‘1’4 = 31/‘1’2 - [2’)’ + 4:[1]‘1’3
+ [— T + 46]\]?4.
VII. ASYMPTOTIC BEHAVIOR

(6.12h)

We shall now investigate the asymptotic behavior
of the Riemann tensor, spin coefficients and metric,
for a general type of radiative empty space time,
In order to do this, it is necessary to impose some
condition of approach to flatness at infinity on the
space time. This is usually done in terms of the
metric tensor, but it is a little more satisfactory to
impose restrictions on the Riemann tensor instead,
as we shall do here.

The main condition that will be adopted here is™®

¥, = 0™ (7.1)
but a condition

D¥, = 0(°) (7.2)
on the r derivative of ¥, will also be used. Further-
more, an assumption of “uniform smoothness” will
be imposed, that as many as four or three deriva-

tives with respect to z°, z* do not spoil the above
dependence:

d¥, = 047, -+ ,d. d; d. d¥, = 00
@, 5,k,1=3,4) (7.3)
d; DY, = 00™®), -+ ,d, d; d. D¥, = O(°)
where
d;, = a/dz" (i =3,4).

It will also be assumed that the hypersurfaces
u = const are not so chosen that they are “asymp-
totically cylindrical” or “asymptotically plane.” The
exact meaning of this condition will be explained
later. It means, in effect, merely that certain very
special choices of coordinate system are to be ruled
out. From these assumptions® we shall prove:

2 The meaning of the order symbols used here is that
f(r, u, ¥) = Olg(r)] means [f(r, w, x%)] < g(r) F(u, z*) for
some function ¥ independent of r and for all large r, and
f(r, u, %) = olg(r)] means

.l u, 29)
m_ .

li
= g(r)

6 These assumptions, though stated in terms of a partic-
ular coordinate system appear to have a considerable amount
of coordinate independence. For example, given a null
geodesic with affine parameter » and tangent vector lu, if
the r parameter of the original coordinate system can be so
adjusted that

F=r+or),l =1 1+ 00, _
then (7.4) implies that ¥4 = O(r~%) also, where ¥, is the
complex Riemann tensor component associated with Ip.
However, additional global assumptions appear to be neces-
sary to ensure that r can always be so chosen.

= 0 for each u, z*.
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o¢™),
o¢™), (7.4)

If, in addition, we were to assume that the
Riemann tensor (in tetrad form) could be expanded®
in negative powers of r, for large r, then (7.4) would
tell us that the coefficient of r™(n = 1, --- | 5)
has the algebraic form of an empty-space Riemann
tensor having the direction I as a (5-n)-fold principal
null direction. Bondi and Sachs® have obtained a
similar result under somewhat different (and more
restrictive) assumptions.

The choice of ¥, as the quantity whose properties
are specified in order to characterize the space-time
is in accordance with a certain form of characteristic
initial value problem. Given a suitable null hyper-
surface © = const, the function ¥, on this hyper-
surface constitutes the main part (and sometimes all)
of the initial data® for gravitation that is required
for continuation. This matter will be discussed
elsewhere,” but it is worth pointing out here that
the determination of ¥, --- , ¥, from ¥, seems to
be a natural first step in this continuation problem.
Other quantities such as ¢ or certain metric variables
can be used equally as alternative initial data, but
the choice of ¥, seems simpler and is apparently the
natural analog for gravitation, of certain charac-
teristic initial data that are appropriate for other
fields.

The exponent —5 in (7.1) is in agreement with
what one would expect from the linear theory of a
radiating quadripole. Also, (7.1) holds for a general
null hypersurface in Schwarzschild’s solution. If
the hypersurfaces © = const open out into the
future (i.e., they are analogous to the future null
cones given by constant advanced time) then
the condition (7.1) would be expected to hold for
an isolated system in the absence of incoming
radiation, as is suggested by the linearized theory.
In fact, even incoming radiation of sufficiently
curtailed duration would not be expected to affect
(7.1), (7.2), or (7.3).

We now proceed to prove (7.4) from our assump-
tions.*® The proof of (7.4) for a particular null

¥, = 00
¥, = 0@ ).

v, =
¥, =

27 This may be a fairly strong restriction. It is, of course,
stronger than just local analyticity in r since, for example,
7" In r cannot be expanded in negative powers of 7.

28 More properly, the quantity D¥, — 5p¥, may be the
most significant one to specify on the hypersurface.

28 R. Penrose (to be published).

230 The necessity of (7.3) for the deduction of (7.4) and of
ruling out the “asymptotically plane” case can be illustrated
bfr considerations of certain plane waves. Plane waves can
also be used to show that, for example, a local assumption
merely of ¥+ = O(r1) or even R,,,, = O(r™) is quite
inadequate for obtaining (7.4).
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geodesic u, z°, z° = const will depend on (7.1),
(7.2), (7.3) only along this geodesic and its neighbor-
hood within the hypersurface ¥ = const. The order
of procedure will be to obtain the r dependence of
first p, o and then the various z° derivatives
(i = 3, 4) of p, ¢ up to third order. Next, a, 8, £, w,
¥, are similarly obtained, followed by their z°
derivatives. Then \, u, ¥,, are treated correspond-
ingly, followed by ¥, ¥,. The r dependence of the
remaining quantities 7, v, », X*, U and hence g°’
may also be obtained if desired.
Writing

P__‘{pa}, Q:{O‘PO
G p ¥, 0

(6.11a, b) become

DP = P* + Q. (7.5)
This equation may be solved by
= —(DY)Y™, (7.6)
where
Y = [yl y2J 7.7
Y Y2
is a nonsingular solution (for given P) of
DY = —PY (7.8)
and so satisfies
DY = —QY. (7.9

The asymptotic behavior of the solutions to (7.9)
when [ 7 [¥,| dr = 0(1), is*

DY = F + o(l)
Y =7rF + ofr)

(7.10)
(7.11)

where F is a constant matrix. We can improve on
this here since @ = O(°). From (7.9) and (7.11)
we get

DY = —QF + o(r™) = 0(¢™).

Hence, integrating’® twice and comparing with
(7.10), we get

DY
v

F + 067,
rF + E + 067,

(7.12)
(7.13)

i

3 B, Coddington and N. Levinson, Theory of Ordinary
Differential Equations (McGraw-Hill Book Publishers Inec.,
New York, 1955), p. 103.

2 It is permissible to integrate order symbols formally
but not to differentiate them.
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where E is another constant matrix. The solution
(7.6) for P can now be used giving

P=—7I+r7EF" +06¢7)  (7.14)

provided F is nonsingular. If F is singular, the
asymptotic behavior of P is quite different. The
case |[F| = 0, F # 0, gives the “asymptotically
cylindrical” case and P becomes asymptotically
proportional to a singular matrix, with p = —3r™' +
O@r™*). If F = 0, we get the “asymptotically plane”
case and P = O(r™®). [In each case, E must be such
that there are two linearly independent columns
among those of E, F. Otherwise it follows that in
fact [¥Y] = 0 for all r so we do not get a solution of
(7.5) for P.] These two exceptional cases are to be
ruled out by assumption. For any given null geodesic
u, ¢°, ¥ = const the two types of exceptional
behavior can always be avoided by an arbitrarily
small change in the coordinate system which changes
the relevant hypersurface u = const into a slightly
different one through this null geodesic. Such
exceptional solutions of the Eq. (7.5) do not occur
for general choices of initial values for p and o.
From (7.14) we get

p= —r! + O(T~2))

In fact, a lot more can be obtained about the
asymptotic behavior of p and o, but (7.15) is all
that will be needed here.

In order to proceed further, we shall require
the following lemma:

o= 00%. (7.15)

Lemma. Let the complex (n X n) matrix B
and the complex column n vector b be given functions
of r where

B =067, b=06". (7.16)

Let the (n X n) matrix A be independent of r and

have no eigenvalue with a positive real part. Then

all of the solution of
Dy=(Ar'+By+b (7.17)

are bounded as r — =, y being a complex column
n vector function of r.

Proof. Putr = e', then (7.17) can be rewritten:
9 1)
d(yy _J 4 E ¢ E Uy -
01| * W] e
lo--0lo) lo---0i0
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where
C(l) = ¢'B("), c() = e'ble). (7.19)
Now, the solutions (z = {exp Al}z, ¢ = {o) of

are all bounded. Also, by (7.16) and (7.19) it follows
that the integrals with respect to I of the moduli
of the elements of C and of ¢ are bounded as | — .
Hence by a theorem of N. Levinson,*® the solutions
of (7.18) are also all bounded [with y = {exp Al}y, +
0(1)]. This proves the lemma.*

Suppose, now, that B, b, and y are also functions
of z°, z*. Then, differentiating (7.17) with respect
to z* we get

D(dy) = (Ar™" + B)(d.y)
+ {dB)y + dib}, (=3,9
which is again of the form (7.17) provided that
d.B =007, db=0@?).

If this is the case, it follows from the lemma that
d,y must also be bounded. Repeating this, we get
the correspondiag results for higher derivatives.

Now consider the z° derivatives of (6.11a, b)
which can be put in the form

J p 2p + 2r7" § o
Dt d ol = 20 20 + 2r77 0
{ @ 2q 0 20 + 271
P 0
Xrdlo| + 7 di| ¥, - (7.20)
G ¥,
The lemma applies with A = 0, by (7.15), (7.3)
whence
dip = 0¢™%), dio =00 (i=3,4). (7.21)

The lemma applies again to the next two z’ deriva-
tives of (7.20) successively, whence

8 N, Levinson, Am. J. Math. 68, 1 (1946).

# It may be seen from the proof 'to the lemma that condi-
tions (7.163’ are in fact, rather stronger than is necessary.
They may be weakened to B, b= %r)] where f dr = 0(1),
f > 0. This enables condxtlon (7.2) to be weakened to D ¥, =
O(r=#f(r)) and (7.4) can still be obtained. Condltlons (7.3)
[and even (7.1)] can also be correspondingly weakened.
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d,’ d,-p, d,' djO’, d.’ d,’ dkp, d,’ d,‘ dkO' = 0(7“-2). (7-22)‘

Next, using (6.9), we can apply the lemma to
(6.12a), (6.11d, e), (6.10a, b), and their complex
conjugates, y being the column vector

4 4 - 3 .3 .73 .4 T -
{7' \Ill,'r\Tl,,Ta,ra, 8,18, 7€, 1€, 1€ ,Tf4, w)w}:

b=0
and
0 .. 0/0 0
0 - 010 0
|
b
1= 10 0,0 0|,
|
—a  -10
I
L0 ~1

" [0001100000}
0010010000

the elements of B being O(r™*) expressions in
r, p, o, Yo, D¥,, and d;¥,. Hence

v, = 00 (7.23)
and
@, B, 8,8 =007, w=01). (729
Also, by (6.12a)
DYy, = 0¢™°). (7.25)

Taking successive z* derivatives and using (7.21),
(7.22), and (7.3), the lemma also gives

d¥,, d.d¥,, d,d;d¥, = 00",
da, - ,d', didaa, -+ ,d; d; dg = 0@,
dw, »++ ,d; d; dw = 0(1)
and so by (6.12a)
d; DY,, d.d; DY, = 0@ ™%).

Next consider (6.12b) and (6.11g, h). The lemma
applies again with y as the column vector {r*¥,,
T\, ru}, with A = 0 and B, b as certain O(2)
expressionsinr, p, ¢, ¥,, a, ¥,, w, D¥,, ¢, d;¥,. Thus

v, = O(r's_) (7.28)
A= 00, (7.29)
Hence,
DY, = 00",
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and continuing with the z° derivatives we get
d¥,, d.d;¥, = 0@F?);
d\, -+ ,ddu = 00™");d. DY, = O(r™).
Similarly, the lemma applies to (6.12¢) with

y = r’¥, then to its z* derivative and then to
(6.12d) with y = r¥, giving
Y, = 00 %) (7.30)
d¥, = 00™%), D¥, = 00
and then
¥, = 0G7Y). (7.31)

We may also continue the process and obtain
r=00""; v,r, X5, X' =0Q1); U= 0r); (7.32)
whence by (6.6)

g° =00, ¢ =01, g¢"=007,

(G,j=3,4. (7.33)

It is possible to obtain a great deal more informa-
tion about the asymptotic behavior of all these
quantities by examining the above procedure a
little more closely and then substituting the expres-
sions obtained back into the equations. Also, by
specializing the coordinate system further many
simplifications can be obtained. (We have, in fact,
not even used 7+ = & -+ B here.) This, together with
the integration of the remainder of the Eqgs. (6.10)
and (6.11), will be discussed elsewhere.

VIII. CONCLUSIONS

In the last section we showed that under certain
fairly general assumptions of approach to flatness
at infinity that are to be expected in radiative
empty spaces, the Riemann tensor exhibits a
characteristic asymptotic behavior. This is given
by (7.1), (7.23), (7.28), (7.30), and; (7.31); namely

v, = O(T—5+") (’I’L = 07 17 74)

We may thus, in general, break the space up into
five regions; namely, a near zone, where all terms
are important; three transition zones, where ¥,
¥,, ¥, become negligible in turn; and finally the
radiation zone, where only ¥, remains important
and the Riemann tensor is essentially null. The
fourth zone is, of course, generally essentially
type III and the third is essentially “‘algebraically
special” or usually type II.*** The second zone
is essentially a region in which there are ‘‘goedesic
rays” in the terminology of Sachs'® and the first
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zone is of “general” type.® Thus, as we move back-
wards from infinity along a suitable null geodesic
the principal null directions “peel off”’ one by one
from the (outgoing) radial direction. This behavior
was first observed by Sachs by considering the
linear theory.® (It must be pointed out, however,
that in many particular cases the actual positions
of the principal null directions and the Petrov
types encountered may not, in fact, agree with the
above in detail since some of the ¥’s may be
fortuitously small in some regions.)

"The analogy between the above and the case of
electrodynamics is striking. In the latter case there
are three regions to consider, namely, the near
zone where r™° terms are important, the transition
zone where % terms are important and the radiation
zone where the field goes essentially as r~' and is
null. The two electromagnetic principal null direc-
tions exhibit, in the general case, the same charac-
teristic ‘“‘peeling off’’ as in the gravitational case.

An interesting further question to consider will
be the corresponding “peeling off”” theorem for
the Kinstein-Maxwell theory. The relevant spin
coefficient equations are given in an appendix.
Another question of importance here is that of the
extent to which the assumptions made here are
coordinate independent.
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APPENDIX
In the spin coeflicient notation Maxwell’s equa-

tions take the form

Dd, — §®, = (r — 20)®, + 2p®, — kD,
D&, — §&, = —Ad, + 2r®, 4 (p — 2D, (AD
88, — A%, = (u — 27)®, + 27®;, — o,
60, — AD, = —v®y + 2ud, + (1 — 28)P,
with
®, = F,lI'm’, & = iF,(I'n" + @'m’),

‘1’2 = F ,‘,.’n_”t“n'.
If the Ricci tensor is proportional to the Maxwell
stress tensor, so that

®,. = kd,.2, (m,n=20,1,2) (A2)
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then the Bianchi identities become (choosing & = 1 for convenience)

(6 — 7+ 46)¥, — (A + 2y + 4u)¥, -+ 37,

=& AP, — &, 6®, + 2($, 0y — BB\ — B,y + $80),

(6 — 27 + 200¥, + o¥, — (A + 3u)T, + 2T,

= 3, 5%, — &, DI, + 23 & — 8,51 — $,:3,8 + $8.0),

(6 — 37)‘1’2 + 20%,; — (A -2y + 2#)\1’1 + ¥,

= <§1 Ad, — éz 0, + 2(‘51‘:1307 - CT)2<I>Oa - &,%,7 + c'_['>2<I>1p),

(6 — 47 — 26)‘1’1 + 30¥; — (A — 4y + H)‘I’o

= &1 5@0 - &2 D@o + 2($1¢OB i @2@06 e §1¢10' + @2@1’(),

(D + 4e — p)¥, — (6 + 47 + 2a)¥; + 3NV,
= &, AD, —
D+ 2 - 20, + ¥, — (5 + 30T, + 2A¥,

(D — 3%, + 2V, — (8 + 2r = 20)¥, + T,

(D — 2¢ — 4p)¥, + ¥, — (6 + 7 — 4a)¥,

(A3)
&, 60, + 2(P, @ — BB\ — Dby + B, B.0),
=&, 68, — &, Dd, + 2Du — $, &1 — $B,8 + 3, %26,
= 3, AB, — B, 6B, + 2ABByy — Br1Boa — Syby7 + B1B1p),
= &, 6&, — &, DO, + 2($,P8 — &, Ppe — FyP,0 + B, D).
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The isothermal transition of a strip of superconducting material from the superconducting state
to the normal state, under the influence of a supereritical external magnetic field, is studied on the
basis of the London theory of superconductivity. The problem can be formulated as a free boundary
problem with parabolic differential equations which is solved mainly by numerical methods; an
analytical solution in the form of series expansions is given for the early part of the transition.

It is found that, in the beginning, the transition in the strip behaves almost like the transition
in a half-space. However, the two differ quite drastically as the transition nears completion. It is
pointed out that to predict the total transition time for the strip by extrapolating from the analytical
solution for the half-space is incorrect. The results show that such an estimate for the transition time

would be much too small.

I. INTRODUCTION

HE transition of a superconducting material
from the superconducting state to the normal
state has been considered in several recent papers.
The problem has an obvious application in the use

* The results reported in this paper were obtained in the
course of research jointly sponsored by the Mathematics
Branch of the Office of Naval Research [Contract Nonr-
3504(00)] and IBM.

of superconductors in computer elements such as
the cryotron. All of the work published thus far
has been concerned with the case where the super-
conducting material fills an infinite half-space. For
example, Ittner' and Duijvestijn® have considered

the effects of latent heat and eddy currents on

! W. B. Ittner, III, Phys. Rev. 111, 1483 (1958).
(19”5%‘;\). W. Duijvestijn, IBM J. Research Develop. 3, 132
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switching rates under the assumption of zero pene-
tration depth. Cohen and Miranker® have investi-
gated the effect of nonzero penetration depth for
an isothermal switching process.

In the present paper, the process is again taken
to be isothermal and the penetration depth nonzero,
but the superconducting half-space is replaced by
a finite strip and the combined effect of the finite
boundary distances and the nonzero penetration
depth is studied.

The introduction of the finite strip width brings
with it rather serious mathematical difficulties. A
similarity treatment can no longer be used and
asymptotic methods are not applicable to the case
of greatest interest in which the strip width is of
the same order of magnitude as the penetration
depth. The difficulties are overcome mainly by
applying a numerical method based upon finite
differences, although an analytical solution is also
given.

The effect of combining nonzero penetration
depth with finite strip width is shown graphically
in Figs. 5 through 9 and discussed in detail in Sec. I'V.
It is found that in the beginning the transition in
the strip almost coincides with the transition in the
half-space, but later on it can be radically different.
Unless the strip is very thin, its complete transition
takes much more time than the transition in the
half-space takes to reach the same distance from the
surface, all other circumstances being the same.
In particular, the results show that it is dangerous
to predict the total transition time 6 by exfra-
polating the analytical solution valid for small times
all the way to the center of the strip.

The problem studied in the present paper can be
formulated in the following manner: Consider a
two-dimensional strip of superconducting material
of width 2w, and let z denote the distance from one
of its surfaces measured across the strip (Fig. 1).
Let an equal external magnetic field exist on both
sides of the strip, perpendicular to the z-y plane.
Assume the superconductor is kept at a constant
suberitical temperature, T < T,, and the critical
magnetic field associated with T is H..

If at time = 0 the external field is instanta-
neously raised from a suberitical value, H, < H.,
to a supercritical value, H, > H,, two normal
conducting regions begin to form along the two
surfaces, z = 0 and z = 2w, with a superconducting
strip of reduced width in between. The two plane
fronts separating the three regions move inward

3 H. Cohen and W. L. Miranker, J. Math. Phys. 2, 575
(1961).
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Frc. 1. Cross section of strip.

until, after the total transition time 6, they coincide
at the center. Because of the symmetry with respect
to z = w, it is enough to consider the transition in
one half of the strip, say for 0 < z < w.

The transition problem will be studied on the
basis of the London theory of superconductivity.
The amount of penetration is measured by the
London penetration distance, d = (Ac*/4x)}, where
A is the London penetration constant and c¢ the
speed of light. At a given time 7 the interface will
be at a certain distance {(r) from the surface, where
¢(0) = 0. The unknowns of the problem are {(r),
as well as the field distributions H™(z, 7) and H* (2, 7)
in the normal and superconducting regions, defined
by 0 < z < ¢(r) and ¢(r) < z £ w, respectively.
For the total transition time # one has {(8) = w.

The corresponding problem in a half-space
(w = ) and with an external field on the left side
only, has been solved analytically, for small times
and for { — «, by Cohen and Miranker.> These
authors found it useful to employ dimensionless
space and time variables, z and ¢, respectively, by
letting

x = 2/2, (1)
where z, is a convenient distance scale, and
L= 7/7, 2
with
o = dmo 25/c, 3)

where ¢~ denotes the ohmic conductivity in the

normal region. Furthermore, let
a = zy/d*

(4)

and 8 = o¢*/¢”, where d is defined above and ¢*
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P(x,t)

A D
Q\(r,s) /
B [

X

Fie. 2.

is the ohmie conductivity in the superconducting
region. Finally, let

a = w/zo (5)
80 = ¢(1)/, (6)

and
5 = 6/7. (7

Then, £(0) = 0 and £(6) = a.

Mathematically, the transition of the strip, from
the superconducting to the normal state, is described
by the following free boundary problem (in which
0<i):

H.=H, [0<z <], 8
H. =aH" 4+ 8H7, ) <zx<a, t<d (9
H©,1) = H., (10)
Hia, ) =0, (i< 9 (1)
H'¢WD,) =HED, )=H., (<3 (12)
H(&(h), ) — BHLE®), 1)

= o H@nd, (<o (13

E(t)
H*(z,0) = H, cosh [V/(a)(a — x)]/cosh [\/(a)a],
O<z<a). (149

The diffusion and London equations, (8) and (9),
boundary condition (10}, and continuity relation (12)
are equivalent with Eqs. (14), (15), (17), and (16)
of reference 3, respectively. Relation (11) is a
symmetry condition replacing (19) of reference 3.
Interface condition (13) replaces (20) of reference 3
and is derived in the same way but using the fact
that the supercurrent j* vanishes at the center z = a
of the strip. Finally, initial condition (14) says that,
at t = 0, the subcritical field distribution is stationary
[relation (14) is the solution of (9), with HY = 0,
which satisfies (11) and H*(0, 0) = H,].

In Sec. II of the present paper, the transition
problem defined above is solved analytically for
small times by expansions in powers of 4/t In
Sec. III, a numerical method is described which
gives an approximate solution over the full time

LINIGER

interval 0 < ¢t < 6. Finally, in Sec. IV, the numerical
and analytical results are discussed and compared
with each other for various sets of parameter values.

II. ANALYTICAL APPROACH
1. Solution for Small Times

The problem defined in Sec. I can be solved
analytically, for small times, using a Green's formula
for the diffusion equation. However, the calculations
involved are somewhat tedious. Therefore, the
method will be explained in principle but only the
more important relations, as well as the final result
will be given in the following.

Consider a domain such as the one shown in
Fig. 2, and assume u(z, ) satisfies diffusion equation
U4,. = U, in this domain. Then the following Green's
theorem holds (reference 4, p. 311):

u(z, t) = f {K(x, t;r, s)ulr, s) dr + u,(r, s) ds}

- Kr(x) t; r, s)u(r, 'S) dS}, (15)

where the point P(z, t) is between A and D, in the
proper sense, Q(r, §) is on the boundary ABCD, and

Kz, t;r,s)

= exp [—(z — 1)°/4(t — 91/2@}t — 9 (16)
is the fundamental solution of u,, = u,, associated
with P(z, t). The segment BC is allowed to shrink
to a point.

In this section, it will be assumed that 3 = 1;
this amounts to passing to a new time variable,

called ¢ again, which is the old one divided by 8.
One can introduce new dependent variables,

w=H — Hu (17)
v=1¢"H", (18)
both of which satisfy diffusion equation (8), u being

defined in the normal region and » in the super-
region (Tig. 3). Let 0 < ¢ < & and let Q(r, s) be a

1
Sl e ___

Fic. 3. (schematic). A

v

(r,s) ¢

(o) a %

4 E. Goursat, Cours d’analyse mathematique I1I, (Gauthier-
Villars, Paris, 1942), p. 287 et. seq.
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point on the boundaries of the normal region, 4A0B,
or of the super-region, BOCD. In terms of u and v,
conditions (10) through (14) become

(0, s) = 0 (19)
v,(a,s) =0, (20)
u(t(s), s) = —(H, — H.);v(ts),s) = H, e** (21)
e “v.(&(s), 8) — u.(&(s), )
= —ae ™ fe(s) v(p, s) dp, (22)
o(r, 0) = vo(r)
= H, cosh [V/(@)(a — »)/cosh [V (@a],  (23)

respectively. The following notations will be used:
u,(0, 8) = {(s), u.(&(s), s) = ¢(s), v.(£(s), 8) = h(s),
and v(a, s) = p(s). Formula (15) can be applied
to both u and ». Noticing that dr = 0 along OA
and CD, ds = 0 along OC, dr = §(s)ds on OB,
and using the boundary and initial conditions,
except (22), one gets

ue, ) = — [ Kz, 1,0, 9f(9 ds

+ [ K, 5860, 9096 — (. — HO)]

+ K.(z, t; &), 9(H. — Ho)} ds, 29
and
o, ) = = [ {KG, 650, 9. €50 + Ao
— K.z, ;£s), )H. "¢ ds
+ f K, t; 7, Opolr) dr
- [ K@ a0 s @

If x passes to the limits 0 and £(¢) in (24), and to
£(t) and a in (25), four integral equations for f(s),
g(s), h(s), p(s), and £(s) are obtained. A fifth equa-
tion derives from (22). These equations will be
called I,, I,, - - - I, respectively. They can be solved
for small ¢ by expanding the unknown functions
into powers of \/t. The following steps must be
carried out to achieve this.

Let ¢(s) be a boundary of a domain, such as,
e.g., OA, OB, or CD in Fig. 3, and let + — ¢(¢) &
denote the fact that z passes to the limit ¢ (¢) from
right (4+) or left (—). As x — 04 and £(¢) — in (24),
and r — )+ and a— in (25), certain relations
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are needed for treating single- and double-layer
integrals. Denote these two types of integrals by

S0, 8 = [ K, 6 906, 996 ds,

Dae, b = [ Koo, 1 909, 9 d,

respectively. Then, in passing to the limit, the
following relations hold (reference 5, pp. 6, 7):
lim  $*[gl(z, ) = S*[I(v(»), D),

zoY (L) =

1}{{1)_ D’[ql(z, ) = D*[qJ(¥B), #) %= q(8)/2.
Equation I, corresponding to (22) contains expres-
sions such as S![g] and Df[g]. According to reference
5, (p. 7) they can be transformed as follows:

Siq) = —Dq],

q(0) 2 tr o P
——L exp (—a?/41) — DYqE] — S'[q],
VD) p (—a'/48) [g£] (4]
using the fact that £(0) = 0.
Let K = K(x, ¢; r, ). With the help of relations

K, = —-K, = K-[(x —n/2(t ~ 9]
K, = -K,
= K-{[(z — /4t — 9°] — [1/2(¢ — 9]},

derived from (16), one can rewrite all integrals in
terms of K only.

In I, through I, it is useful to replace the inte-
gration variable s by ¢ = s/t, where 0 < ¢ < 1.
Also, new unknown functions can be defined by

x(s) = &)/ Vs,
3(s) = V(9)f(s),
1) = V)90,
(8 = V(h(s).

Having made these transformations, the denomina-
tors of the integrands, the denominators of the ex-
ponents in the kernels, and the integration limits,
of all integrals with respect to ¢ are independent
of t (in I;, in order to achieve this, one must also
multiply all terms by /¢).

In solving I, through I; for small ¢ by power-
series expansion, one can drop the unknown function
p(?) and Eq. I, (corresponding to & — a—) for the
following reasons. Equations I, and I, are free of

Dilq] =

5 1. I. Kolodner, Commun. Pure Appl. Math. 1, 1 (1956).
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p(s) to begin with. In I,, the only term containing

p(s) is

fl exp { —x() = (a/ VI /41 =)} () = (a/ VD]
0 1V (1 — o)f

X p(to) do.

Assuming |p(s)| bounded for 0 < s < tand x(f) =
0(1) as t — 0, this integral is smaller than any power
of ¢ as £ — 0. The same is true for the terms of I
containing p(s). On the other hand, if one writes

x(s) = Zox,-sm,

and similar expansions for ¢(s), ¥(s), and 7(s), and
if the integrands are expanded with respect to o
and integrated term by term, most integrals of
1., I,, I3, and I; have expansions in increasing powers
of v/t. Thus, one can neglect the terms containing
p(s) which do not contribute to any finite power
of V/t. As p(f) itself is uninteresting for small ¢,
one can drop I, and is left with four equations and
four unknowns.

The only integrals in the new system of equations
which are not taken with respect to o are

f: Kz, t:7r, O){Z?Slﬁ}[\/(a)(a — ] dr.

They can be evaluated in closed form using the
normalized error function,

2 y b
d(y) = 7;-/; e’ dv.

The values of y which occur are O(1/4/%) as t — 0.
Thus, for small ¢ one can use the asymptotic ex-
pression of ®(y), which holds for large y's:

By) =1~ 0E"/y.

As terms O(A/(f)e™"") are dropped systematically
in this small-time analysis, one simply has
d(0(1v/1) = 1.

The solution has been calculated in zero-order
approximation only. If x, is for a moment assumed
known, the zero-order approximations I3, I3, and I3,
of 1., I,, and I, respectively, form a linear algebraic
system of equations for ¢, 7o, and 7, The coeffi-
cients are transcendental expressions in x, which
can be evaluated in closed form by quadrature,
using ®(y) again. The solutions ¢,, v,, and 5, can
then be plugged into I3, the zero-order approxi-
mation of 7;. This yields a transecendental equation
for x, which reduces to

(26)

H, — H,

q:'()(0/2) = He - H,’ (27)

LINIGER

and from which x, is obtained by inverse inter-
polation of the error function ®(y) defined above.
Equation (27) will be discussed in Sec. IV.

2. Remark on Final Part of Transition

Under certain conditions, one can predict that
the transition in the strip should reach the center
with infinite speed. In fact, assume

lim [H3(E(?), ) — Hia, )] = 0. (28)

It is clear that

lim H'(z, t)dx = 0,

t—3 E(t)
because H* is bounded and [a — ()] — 0asi — &.
Thus, from (11), (13), and (28) it follows that

lim H3((9), 1) = lim H (&9, 1) = 0. (29)

Differentiating (12) with respect to time gives

dH(E(1), §/dt = HZ(E®), DE@) + HW(@), 1) = 0.
(30)

Assume now that

lim H(E(t), ©) and lim H (%), 8
t—d t—+§

do not vanish simultaneously. Then, it follows from
(29) and (30) that £(f) — « ast— 3, thatis £ — a.
The numerical solutions, obtained by the method
described in Sec. III, seem to confirm this result
(Figs. 7, 8, 9).

3. Limitations of Analytical Approach

As pointed out before, the analytical derivation
of (27) requires tedious calculations. Furthermore,
the result is disappointing because (27) is equivalent
to the corresponding result for the half-space
[reference 3, Eq. (65)]. This means that, if there is
any substantial effect of the finiteness of the specimen
upon the transition, this effect is not seen initially
but must show up later.

In order to study the transition over the full
time interval 0 < ¢ < 8 it seems desirable to attack
the problem numerically by reformulating it in
terms of finite differences. Such an approach is
described in Sec. III.

III. NUMERICAL SOLUTION
1. Finite Grid with Variable Time-Step

The moving-boundary problem formulated in
Sec. I is to be solved approximately on a finite grid.
The numerical field distributions will be denoted
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by H; , & H™(z;, t,), with integers ¢, k, 0 < 7 < n,
0<kLeta, =0;2; = 7,0 <1 < n;and z,
nh = a. Applying a method used before by Douglas
and Gallie,® a variable time step, I;, 1 < j < n,
is to be determined in such a way that the interface
passes through the mesh points (z, ), 0 < k < n,
where t, = 0, and

>

i=1

t L, k>1.
This means £({,) is approximated by z, = kh, and
8 by i, (since z, = a).

The advantage of this method is that one can
classify the grid points a priori as left-hand, inter-
face, and right-hand points (¢ < k, ¢ = k, and
i > k, respectively) and one knows exactly how
and where to apply the various difference operators
and boundary conditions.

Solving the free boundary problem numerically
means determining all internal field values of both
regions and at the right-hand boundary, ¢ = n,
as well as the unknown time steps. The solution is
obtained by stepping forward in time. In the first
(k = 1) and last (k¢ = n) time steps the general
procedure used for 2 < k < n — 1 must be slightly
modified.

2. General Procedure 2 < k <n-—1)

Assume H;; and [; known for all ¢, and for
i<k—12<k<n—1(Fig4).

In passing to the k level one first has to let
H,, = H,and H, , = H, because of (10) and (12),
respectively. The diffusion equation (8) and London
equation (9) can be replaced by the backward-
difference equations

(Hiv o — 2H, o + Hoy )/ = (Hi o — Hew)/ b
1<i<k-1 @31
and
(Hiovo — 2H, o + Hi /0
=aH .+ B(H,» — Hi 1)/l
E+1<i<n—1, (32

respectively. This yield as many equations as there
are unknown internal field values.

There are two additional unknowns, H, , and 1,
and two additional conditions, (11) and (13). As
these conditions involve differentiation, it is useful
to formulate (31) once more at P, using h/2 as

§ J. Douglas, Jr., and T. M. Gallie, Jr., Duke Math. J.
22, 557 (1955).
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F1e. 4. Finite grid with variable time step.

space step and u, as time step (Fig. 4). An approxi-
mation for w, is obtained by drawing an arc of
parabola through the points (k, k), (k — 1,k — 1),
and (¢ — 2, ¥ — 2) and determining the distance
P(Q accordingly. This yields 8u, = 5l — L_,. At
@ the field is H,. Similarly, Eq. (32) can be formul-
ated at R and S, using the steps h/2 and [,. The
field values at A and B are obtained by interpolating
the known distribution at the (¢ — 1) level. For
example: 8H, 3H 141 + 6H, ., — H, In
this way the quantities, Hp, Hg, and Hg can be
expressed by field values in regular grid points and
by .

The standard three-point forward and backward
differentiation formulas (reference 7, p. 96) with
the step h/2, and the trapezoidal rule (reference 7,
p. 117) with the step i can now be used to write
(11) and (13) in difference form:

3Hn,lc - 4IIS + Hn—l.k = O

(33)
and

(—3H¢ + 4HR - Hk+1,k) s /3(3Hc - 4Hp + Hk—l,k)
n—1

+ (Olh2/2)(Hc + 2 Z H:’.k + Hn.k) = O) (34)
i=k+1

respectively. Relations (31) through (34) form a

nonlinear algebraic system of n equations whose

solution gives the (n — 1) unknown field values

and lk.

The very nature of the nonlinearity suggests an
iterative method for solving the equations. The
system becomes linear if one replaces [, by a given
trial value, I{". If (34) is dropped temporarily, the
remaining linear system yields the trial field values
H{", associated with I{"’. The H{!} are inserted into
(34); this makes the left side of (34) equal to a
residue 7;"’. By suitably choosing new trial values,
I, » =2 3, ---, the quantity |r{”| can be made

?W. E. Milne, Numerical Calculus (Princeton University
Press, Princeton, New Jersey, 1949).
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smaller and smaller. The process stops when |r;”’| < e
with a suitably small ¢ > 0.

The solution A = I, of r,(A) = 01is first approached
from below, by letting I, = vl /u, v = 1,2, -+ , ,
where u is, e.g., 5 or 10. In doing this, one assumes
the solution is suitably smooth in terms of A so that
1. will not be too different from I,_,. It can be ex-
pected that r{” will change sign. Let « be such that
this happens when » passes from w — 1 to ». Then
the correct [, is trapped between I{°™V and [*’
and the final approximation of it can be found by
repeatedly using the rule of false position. This
last approximation will be taken for I, and the
corresponding field values for H, ,.

3. First and Last Integration Steps (k = 1, n)

Fork =1, H,, = H,and H,; = H.. In lowest
order approximation one has £(f) = xo4/t, where x,
is obtained from (27). This yields a guess I* = A*/x}
of I, if one lets £(I*) = h. Then, the trial values
become I = »l%¥/u. On the same basis one finds
w? = 31”/4. For k = 1, H, ,_; = H*(sh, 0) in
(32), using (14).

For k = n, relation (34) cannot be applied. In-
stead, one can use a finite difference analog, 3H,. —
4Hp + H, ;.. = 0, of (20b).

4. Modifications for w = «

In this case, (11) is to be replaced by Eq. (19) of
reference 3:

The upper limit of the integral in (13) becomes
and, instead of (14), one has [reference 3, (18)]:

H'(z,0) = HyeV%, (2>0). (36)

Numerically, infinity is replaced by a sufficiently

WERNER LINIGER

large finite distance from £(f). That is, the right-
hand distribution is calculated for k < 7 < k + m by
formulating (32) for all these values of 7 and letting
H;... = 0forall k, according to (35). Relation (33)
must be dropped. A suitable integer m is chosen in
consideration of @ and h in such a way that H,, , =
Hoe V™ is sufficiently small. In (34), n must be
replaced by & + m. A finite transition times does
not exist in this case. Instead, the calculation is
carried out for a prescribed number of time steps.

Iv. RESULTS

The numerical method described in Sec. III, whose
main feature is the use of variable time steps, was
applied to the Stefan problem by Douglas and
Gallie.® These authors proved that, in this case, the
method is convergent and stable.

The transition problem considered here reduces
to a Stefan problem only in the limiting case o — o,
that is if the field is identically zero in the super-
conducting region. In order to test the numerical
method for finite « this method was first applied
to the problem in a half-space, that is with w = =,
and the result compared with both the expansion
for small times and the asymptotic solution for large
times given for w = ® by Cohen and Miranker.’
All calculations were done with 8 = 1 and a = 1,
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and it was assumed that 4me~ /¢ = 1 em™Zsec so
that, numerically, formula (3) becomes r, = 27,
where z, is measured in cm. From ¢ = 1 and Egs.
(4) and (5), it follows that @ = w’/d*. The computa-
tion of the complete solution of one transition
problem using n = 50 required a few minutes on the
IBM 7090. With v = 5 (defined in Sec. I11.2), the
total average number of iterations per time step
was about 10.

The agreement between the numerical solution
and the initial expansion was very good in all cases.
An example is shown in Fig. 5. The agreement with
the asymptotic expansion was good in those cases
where the numerical solution was carried out suffi-
ciently far in time (Fig. 6). There were no signs of
numerical instability.

Passing to the finite strip and finite penetration,
it is interesting to compare the numerical solution
for this general case with the numerical and analyti-
cal solutions in the half-space, carried over 0 <
z < w. The lowest-order terms of the initial ex-
pansions of the interface in the half-space and the
strip are identical, that is (27) is equivalent with
Eq. (65) of reference 3. Thus, in the beginning, the
transition is not much influenced by the width of
the superconducting specimen. The numerical solu-
tions confirm this result (Fig. 5). However, as Fig. 7
shows, the two transitions behave in an entirely
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different way later on. For not too thin strips, the
total transition time 6 is much larger than the time
required for the transition in the half-space to reach
the same distance. Thus, it is dangerous to try to
estimate @ by extrapolating the analytical solution
valid for small times and small distances as far as
z = w. If with a given external field one increases
the width of the strip, keeping all other parameters
constant, the transition time increases very rapidly
when the width reaches a certain critical range
(Fig. 8). With a stronger external field, the same
phenomenon is observed but for much wider strips

(Fig. 9).
All interface curves calculated numerically for
the strip seem to intersect the center line z = @

of the strip under a right angle. This seems to con-
firm the prediction, made under Sec. II.2., that
£(t) — « as £ —a.

LINIGER

Notice that this prediction was based upon rela-
tion (29), which in turn depends on assumption (28).
One could think that, in using (29b) to determine
L., according to Sec. IIL.3., one forces the numerical
interface curves to become flat in the last step only.
This is not the case; the numerical curves begin to
flatten out well before reaching the grid-point
(._1, t.—1), that is while the solution is still calculated
according to the general procedure described in
See. I11.2.
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