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It is shown that a real physical problem exists which, when calculated in first-quantized electro­
dynamics. possesses a convergent perturbation expansion. The result is demonstrated by proving 
the analyticity in a region of nonzero radius about the origin in the complex coupling-constant plane, 
of the transition probability for pair creation by two electromagnetic fields. Some singularities in 
the complex plane are located, which limit the radius of convergence only for a discrete set of values 
for the energies of the electromagnetic fields which define the problem. 

INTRODUCTION 

PERTURBATION theory has played a funda­
mental role in the development of quantum 

field theory. Although the existence of large coupling 
constants for the strong interactions has now led to 
the development of methods which avoid it, pertur­
bation theory is still the backbone of quantum 
electrodynamics. As such, the question of the 
convergence of perturbation theory has been the 
subject of considerable discussion (and controversy) 
in the literature. 1 

The investigation of this paper is directed towards 

* Based on portions of a thesis submitted in partial 
fulfillment of the requirements for the degree of Doctor of 
Philosophy at the University of Maryland, 1958. 

1 F. J. Dyson, Phys. Rev. 85, 631 (1952); C. A. Hurst, 
Proc. Cambridge Phil. Soc. 48, 625 (1952); W. Thirring, 
Helv. Phys. Acta 26, 33 (1953); A. Petermann, Arch. Sci. 
Phys. Nat. 6, 5 (1953); Phys. Rev. 89, 1160 (1953); R. 
Utiyama and T. Imamura, Prog. Theoret. Phys. (Kyoto) 9, 
431 (1953); M. Fierz, Proceedings of the Fifth Annual Rochester 
Conference on High-Energy Physics, (Interscience Publishers, 
Inc., New York, 1955), p. 67. D. R. Yennie and S. Garten­
haus, Proceedings of the Midwest Conference on Theoretical 
Physics, St. Louis, Missouri, 30 (1958); A. Buccafurri and 
E. R. Caianiello, Nuovo cimento 8, 170 (1958). 

the demonstration that a real problem exists which 
leads to a perturbation series that will converge 
within the framework of Dirac theory, i.e., a non­
second-quantized theory. The procedure employed 
is to use the known solution2 for the interaction 
of two plane-wave electromagnetic fields in which 
one of the fields is treated as a perturbation, but 
the other may have arbitrary strength. The analytic 
properties of the transition probability as a function 
of the field-strength parameter of this second field 
are then examined to determine the radius of con­
vergence of a power series in this parameter. This 
P9wer series is the perturbation expansion for this 
c-number theory. It is shown that, except for a 
denumerable set of values of the expansion param­
eter, the series has a nonzero radius of convergence. 

PROCEDURE 

The problem considered in ALL was the pair 
production resulting from the interaction of two 

2 H. R. Reiss, J. Math. Phys. 3, 59 (1962). Since the title 
of this paper is "Absorption of Light by Light," it will be 
referred to hereafter as ALL. 
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plane-wave electromagnetic fields propagating in 
opposite directions. Any other angle of collision of 
the two fields can be obtained by Lorentz trans­
formation, with the obvious exception of the case 
of parallel propagation, for which there is no inter­
action. The fields were taken to be plane polarized, 
and the two independent cases of parallel or per­
pendicular relative polarization of the fields were 
calculated. The results from these two cases are 
quite similar, and their analytic properties are the 
same, so only one of these cases will be treated here. 

The probability for the creation of an electron 
pair per unit volume per unit time by the head-on 
collision of a plane wave of frequency wand arbi­
trary strength, with a weak plane wave of frequency 
w, v,ith the two waves polarized perpendicular to 
each other, is2 

d/J Z Iii _ 0'/\ cos /J I~ . 1,-/2 [ ~ 2 ] 

o aA + 1 + z gw 

The convention is employed that Ii = c = 1. The 
parameter z is the perturbation expansion parameter, 
since it is z = Hae/m) 2 

; where a is the amplitude of 
the vector potential for the plane wave of arbitrary 
strength, and e and m are the electron charge and 
mass. The parameter z refers to the weak plane 
wave. The quantity w = ww/m2 is the product 
of the photon energies of the two fields, measured 
in units of electron mass, and a is an abbreviation 
for qw - 1 - z. The functions Iii and n are defined 
in terms of the family of integrals 

1
2,-

In = 0 dO(cos nO) 

but with a change of integration variables to simplify 
the type of analysis required here. The integration 
variables used in ALL were r and PI, which are 
related to A and /J by 

r = m2(aA + 1 + z) PI = m(aA)! sin /J 

A = (r/m2 
- 1 - z)/a 

/J = arcsin [(PI/ m)(rJ m2 
- 1 - zrtJ, 

with the Jacobian 

8(r, PI)/8(A, /J) = m3(a3{3)t cos /J. 

The convergence of a perturbation expansion of 
Eq. (1) is to be investigated. The expansion param­
eter is z, which is proportional to the square of the 
electron charge. In principle, a perturbation expan­
sion should be in powers of e rather than e2

; but 
examination of Eq. (1) shows that Zl

/
2 occurs only 

in b), given in Eq. (4). From a theorem proved in 
ALL, both I~ and Iii are even in bl , so that any 
expansion of W in powers of Zl

/
2 would lead to a 

series in powers of z. 
In view of the familiar Cauchy-Taylor theorem 

that the necessary and sufficient condition for a 
function to be expansible in a power series is that 
it should be analytic in a region, the analytic 
behavior of W as a function of z will be examined in 
the neighborhood of the origin in the complex z 
plane. Since it has not been found possible to locate 
the singularity closest to the origin, the technique 
employed is to show that there exists a nonzero 
radius of convergence, without establishing the 
upper bound to this radius. In Eq. (1), W is given 
as a series in the index q, which is unrelated to the 
perturbation series. It will be shown that the terms 
in the q series are analytic and that the q sum 

X exp [ig(b l sin 0 + tb2 sin 20 + O)J. 

Ii I is defined to be 

Iii = 2Ii - I~ - 1012, 

(2) converges uniformly in a certain region. It then 
follows that W is analytic in that region. The 
uniform convergence property of the q series is 

(3) demonstrated by finding a uniform bound for the 
general term in the q series such that the sum of 
the uniform bounds is convergent. so that it is not actually a square of any In integral, 

although it is a quadratic combination of them. The 
quantities in the exponential function in the In 
integrals are 

bl = 2(2ZO'A)t(aA + 1 + Z)-I sin /J 

b2 = z(aA + 1 + Z)-I. (4) 

Finally, the lower limit on the sum over g in Eq. (1) 
is qo = [(1 + z)/w], where the square bracket is 
defined to mean the smallest integer containing 
(1 + z)/w. 

Equation (1) is identical to Eq. (16) of ALL, 

SINGULARITIES 

The dependence on z of the lower limit of the q 
sum in Eq. (1) is given by 

go = [(1 + z)/wJ. 

This means that for some fixed value of w, as z is 
increased the value of (1 + z)/w must eventually 
pass through an integer value. When this happens 
a new term of nonzero value is added to W, so that 
the derivative of W with respect to z is singular at 
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such a value of z, and W is thus not an analytic 
function of z at such a point. 

When z = 0, then qo = [1/wJ. There will be no 
singularity until z increases from zero sufficiently 
that 

(1 + z)/w = [I/wj, 

or when 

z = wll/w] - 1. (5) 

Equation (5) thus represents a limit on the radius of 
convergence of a perturbation expansion. To make 
the algebraic behavior of Eq. (5) more manifest, set 

l/w = qo - 0, 

Then, from Eq. (5) 

z = o/(qo - 0), 

0::::;0<1. 

0::::;0<1. (6) 

Between consecutive discontinuities, Eq. (6) repre­
sents a hyperbola in z and 0, which rapidly 
approaches a straight line for large values of the 
parameter qo. 

The summand in q contains as a factor a l
/

2
, which 

is an irrational function of z. To see if it really 
introduces a branch point at z = qw - 1, or if the 
rest of the summand contributes a further a l

/
2 

factor, set u = a l
/

2 and examine the parity of the 
various terms in u which arise from elimination of 
z in favor of u. The bl function is odd in u, but it 
is known that I~ and I~l are even functions of bl , 

and depend otherwise only on even powers of u, 
so they are also even functions of u. The only other 
appearance of u is its direct occurrence as a factor 
in the summand. The integration operations 
indicated in the summand cannot introduce any 
additional odd factors of u, so there is a real branch 
point at u = 0, i.e., at z = qw - 1. Since this con­
dition holds for every q term, the radius in z is 
limited by z = qow - 1. This is identical with Eq. 
(5), so the branch point at a = 0 has given no 
new limitation on the region of analyticity. 

The integrations over "A and 11 and those involved 
in I~ and I~I can introduce no singularities which do 
not already exist in the integrands. This is true by the 
theorem which states that if, for any definite 
integral the integrand is a continuous function of 
z and of the integration variable over the entire 
closed interval of integration, for z within some 
closed region, and if the integrand is analytic in z 
within this region for the entire integration interval, 
then the integral is analytic in z within the entire 
region. The I~ and I~l functions have integrands 
which are exponential functions, so the continuity 
and analyticity conditions are satisfied everywhere 

except at the pole which occurs in both bl and b2 at 

z = -1 - qwAj(1 - "A). (7) 

From Eq. (7), as "A increases from 0 to 1, z moves 
along the negative real axis from -1 and approaches 
- co. This pole in the exponential function cannot 
be removed by any of the integrations or the sum­
mation, so a line of singularities exists along the 
negative real z axis from -1 to - co. It is interesting 
to compare this behavior with the results of another 
investigation3 in which the q series in Eq. (1) was 
split into a finite part consisting of all the smaller 
indices, and an infinite remainder series starting 
at a very large q value. This last part was evaluated 
using the asymptotic results valid for real z and 
very large q, and then the total result for W was 
extended into the complex z plane. This approxima­
tion for W was found to be analytic everywhere in 
the complex plane cut along the negative real 
line from -I to - co, except for the point given by 
Eq. (5). 

For fixed q, the 11 integrand is analytic in z in 
the entire finite z plane with the exception of 
negative real z less than -1, and before integration, 
the I~ and Iii integrands are continuous in 11 (and "A). 
Hence the 11 integrand is continuous in 11 (and "A) 
and the result of the 11 integration is analytic in 
the finite z plane and continuous in "A. The "A integral 
is then also analytic in the finite z plane. Therefore, 
any given term in the q sum is analytic in z except 
when z = qw - 1, or when z is real and::::; - 1. 

UNIFORM BOUNDS 

The establishment of a bound for the general 
term in the q sum hinges upon finding bounds for 
10 and II' These functions, Eq. (2) with Eq. (4), 
exhibit rapid oscillations in the integrand, partic­
ularly for large q, so that no bound (which will lead 
to a convergent q sum) is immediately evident from 
Eq. (2). If, however, the path of integration in (J 

can be deformed into the complex (J plane to 
coincide (at least in part) with the paths of steepest 
descent from the saddle points which exist there, 
then the imaginary part of the exponential function 
in the integrand of Eq. (2) is constant, and a bound 
can be found simply from the largest value of the 
real part of the exponential function on the path 
of integration, i.e., at one (or more) of the saddle 
points. 

3 H. R. Reiss, Ph.D. Thesis, University of Maryland 
(1958); NAVORD Report 6180, U. S. Naval Ordnance 
Laboratory (1958). 
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Write 10 as 

10 = Ie dO exp [qf(O)J, 

where 

f(O) = i(b l sin 0 + tb2 sin 20 + 0), (8) 

and C represents a suitable contour which will 
shortly be specified in detail, and which is obtained 
by deformation of the original path along the real 
axis from ° to 211'. f(O) has the property 

f(1I' - 0) = -f(1I' + 0) + 211'i (9) 

so that any saddle point which is found shows the 
existence of another saddle point at a location 
symmetrical with respect to inversion through the 
point 0 = 11'. The condition f'(O) = ° locates the 
saddle points at 

bl [( bl )2 (1 - b2)]t 
cos O,p = - 4b2 ± 4b

2 
- 2b

2 
' 

or, from Eq. (4) at 

cos O,p = - (aX sin2 
JI 12z)l 

this is assured by 

(13) 

For Or = arccos (-f31/4f32) the condition becomes 

t Ib~l/lb21 + Ib21 < 1. (14) 

In general, however, Ibll can be bounded in terms 
of Ib2 1, since from Eq. (4), 

b2 '\ • 2 
-1 = 8 a/\ sm JI 

b2 aX + 1 + z 

so that, for Izi < 1, 

Ib~1 < 8 Ib2 1· (15) 

Equation (15) is always true for IzJ < 1. If Eq. (13) 
is to be satisfied also, then 

Ib2 1 < 5 - 2(6)i. (16) 

If, on the other hand, Eqs. (15) and (14) are to be 
true simultaneously, then 

Ib2 1 < 1/9. 

A bound on Ib 2 1 has immediate significance for Izl, 
since it follows from Eq. (4) that 

± i[(aX cos2 
JI + 1)/2zJ~. (10) Izi < Ib2 1/(1 + Ib2 /). 

Equation (10) defines four saddle points. It will be 
proved below that Icos Ospl > 1, so none of these 
saddle points can occur on the real axis. The sym­
metry condition Eq. (9) states that two of the 
saddle points must be in the upper half-plane, and 
the other two in the lower half-plane. 

Let Or and Oi be the real and imaginary parts 
of 0. Then the real part of f(O) is, from Eq. (8), 

Re f(O) = -f3, cos Or sinh Oi - 1'1 sin Or cosh Oi 

- tf32 cos 20r sinh 20i 

- h2 sin 20r cosh 20 i - Oi, (11) 

where bl and b2 have been split into real and 
imaginary parts by 

bl = 8, + iI'" 

On the real axis, 

(ala 0;) Re f(O) = -(3, cos Br 

- f32 cos 2B r - ], Bi = 0, (12) 

which suggests that if f3, and f32 are sufficiently 
small, Re f(O) will decrease for all Br if the path of 
integration on the real axis is displaced upwards 
into the upper half-plane. The extrema of the 
right-hand side of Eq. (12) occur for 

Br = 0, 7r, arccos (-(3,/4{32)' 

It will be required that Eq. (12) must be negative 
for all these extrema. For both Or = ° and Br = 11', 

Therefore, Eq. (16) will be accepted as a restriction 
of Ib2 1, since it is the more stringent of the two 
possible bounds. Thus, only 

Izl < t - 6-! (17) 

shall be considered. 
The negative property of Eq. (12) requires that 

any path which crosses the real axis must be such 
that Re f(O) decreases as the path goes from the 
lower to the upper half-plane. In particular, any 
path of constant imaginary part which passes 
through a saddle point with Oi > 0, and which 
crosses the real axis, must be a path of steepest 
ascent from the saddle point. Therefore, any path 
of steepest descent from a saddle point with Oi > ° 
must lie wholly within the upper half-plane. From 
Eq. (11), as Bi --+ + co, 

Re t(B) --+ co, 

Re f(B) --+ - co , 

(32 cos 2B r + 1'2 sin 20 r < ° 
f32 cos 2Br + 1'2 sin 20r > 0. 

Since the trigonometric functions of argument 20 r 

possess two separated regions in an interval of 
length 211' where they take on a given sign, then these 
relations state that there will be two regions in 
Br where Re f(B) --+ co, separated by two regions 
where Re f(B) --+ - co. The curve of steepest descent 
from one of the saddle points in the upper half-plane 
must then go from one region where Re f(O) --+ - co 

at Bi --+ co, through the saddle point, to the other 
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region where Re f(O) -t - co at Oi -t co, thus en­
closing one of the regions where Ref(O) -t co. Hence, 
one branch of the path of steepest ascent from this 
same saddle point can ascend between the two 
branches of the path of steepest descent to the 
region at 0, -t co where Re f(O) -t 00 ; but the other 
branch of this path of steepest ascent is excluded 
from reaching any other such region in the upper 
half-plane, because both these regions are enclosed 
by paths of steepest descent which cannot be 
crossed. Hence, the second branch of the path of 
steepest ascent must cross the real axis into the 
lower half-plane. 

All the comments above which refer to paths of 
steepest descent (or ascent) from saddle points in 
the upper half-plane, apply as well to paths of 
steepest ascent (or descent) from saddle points 
in the lower half-plane. The geometry of these 
paths may be clarified by Fig. 1, ,,,here the partic­
ular location of the saddle points is not of signif­
icance, but the qualitative behavior of the paths 
through the saddle points is the feature of interest. 
I t can be shown that anyone complete path of 
stet-pest descent in the upper half-plane can have 
no more than two intersections with a line of con­
stant Oi' To show this, note first that the imaginary 
part of f( 0) is 

1m f(O) = (31 sin Or cosh 0; - ''YJ cos Or sinh 0; 

+ !(32 sin 20r cosh 20; - hz cos 20r sinh 20; + Or 

so that, for constant Oi, the partial derivative with 
respect to Or of 1m f(O) has the form 

(a/aO,) 1m f(O) = al sin Or + az cos Or 

+ a3 sin 20r + a4 cos 20r + a5· (I 8) 

This is equivalent to the expression 

(ajaOr) 1m t(O) = e- 2 ;6'G(e;6,); (19) 

where G(exp iO r ) is a polynomial of fourth degree 
in exp iO r • Equation (19) can vanish only when G 
does, which ,,,ill happen for at most four values in 
the interval 0 ::; Or < 27r. Thus 1m f(O) can have 
no more than four extrema as a function of Or in 
o ::; Or < 27r. Since 1m f(O) is continuous in Or, 
it can therefore take on any particular value at 
most at only four points in 0 ::; Or < 27r. For any 
constant Oi which is greater than the lowest point 
on a curve of steepest descent from a saddle point in 
the upper half-plane, the curve of steepest descent 
will cross the line of constant 0; at least twice. 
Since the curve of steepest ascent from the same 
saddle point goes from 0; = + 00 to Oi = - co, it 

FIG. 1. Geometry of the saddle points and paths of steepest 
ascent and descent from them. Small circles show the saddle­
point locations. Arrows on the curves indicate the direction 
of increasing Re f( 0). 

must cross the same line of constant 0, at least 
once. Hence, the line of constant Oi is crossed at 
least three times by curves along which 1m f( 0) has 
the same saddle point value. If, however, one of the 
lines of constant 1m f(O) should oscillate with Or, 
and loop back across the line of constant 0" then 
five crossings would occur by curves with the same 
value of 1m f(O). This is impossible, so the paths of 
steepest descent from the saddle points in the upper 
half-plane cannot oscillate, but must increase 
monotonically towards Oi -t co as Or departs from 
the location of the minimum in the steepest descent 
curve. 

It has now been shown that there are two saddle 
points in the upper half-plane; that the paths of 
steepest descent from these saddle points are wholly 
contained in the upper half plane; and that these 
paths cannot oscillate across a line of constant 0,. 
Consequently, sufficient information is at hand to 
make plausible the specific choice of a path of 
integration in the complex 0 plane. This path is 
to be such that the largest value of Re f(O) which 
occurs along it is to occur at a saddle point, and the 
total length of the path is to be finite. A path with 
these properties can be constructed from a combina­
tion of the paths of steepest descent from the saddle 
points and a line of constant Oi, which Oi is to 
coincide with the larger of the Oi coordinates of 
the two saddle points in the upper half plane. With 
reference to Fig. 2, starting at the lower-lying 
saddle point, the path of steepest descent is fol­
lowed to the point at the intersection of this path 
with the line of constant Oi, then the line of con­
stant Oi is followed to the second saddle point, the 
path of steepest descent followed to its intersection 
with the line of constant Oi, and the line of constant 
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FIG. 2. Path of integration in the complex (J plane. Circles 
labeled I and II mark the saddle point locations. Heavy 
arrowed lines show the path of integration. 

0; followed to the path of steepest descent from the 
first saddle point, which is followed to the saddle 
point itself. The language of this description takes 
tacit cognizance of the periodicity of the 10 (and 11 ) 

integrands, so that the lines 0 = 0 and 0 = 211" are 
viewed as being identical. In terms of the labeling 
of Fig. 2, the path of integration is to be I to A to 
II (or B) to C to D to I, with an obvious modification 
if the second saddle point should be at C rather 
than where shown. A link with the original path of 
integration may be established by a line from the 
origin along 0 = 0 to the new path, and another 
line along e = 211" from the new path to e. = o. 
Contributions to the integral from these additions 
to the path will cancel because of the periodicity 
of the integrand. 

To find how Re fee) varies along the path, note 
that (alaer ) Re fee) for constant ei gives an expres­
sion identical in form to Eq. (18). Hence there are 
no more than four extrema in (alae r ) Re fee) for 
constant ei . Consider ei = eim + A, where eim is 
the ei coordinate of saddle point II in Fig. 2, and 
A represents a small upward displacement. Take 
the points A through D in Fig. 2 to be at 
ei = eim + A, so that II and B are no longer coinci­
dent. There must be a maximum with respect to 
er in Ref(e) between D and A, and another between 
Band C. Because of the limitation to four extrema 
at constant ei , no more than these two maxima 
can occur. In particular, since there can be no 
maximum between A and B, the highest point in 
terms of Re fee) on the path segment AB is at 
either A or B, and this highest point is of necessity 
smaller than the larger of the two saddle-point 
values. This conclusion is true for any A > 0, 
so from the continuity of fce) it remains true when 
A ~ O. Similar considerations apply to the path 
segment CD, so it must be true that 

along the entire path, where e." denotes that saddle 
point in the upper half-plane which has the larger 
value of Re fee). 

The total path length involved can be bounded 
by observing that the paths of steepest descent 
cannot cross the real axis, and e; must therefore 
decrease by less than eim in going from e; = eim to 
the lowest point on the steepest descent curve. The 
path length would then be bounded by 211" + 4e irn 

except for one possible complication. Although it 
was shown that a path of steepest descent cannot 
oscillate across a line of constant ei , similar con­
siderations show that there can be one such oscilla­
tion across a line of constant er • Thus, to account 
for this possibility, the path length is bounded by 
611" + 4e im • 

It now remains to place a bound on Re f(e. D). 

From the definition of fee), Eq. (8), 

Ref(e. D) = -1m (b1 sin e. o) 

- 1m (tb 2 sin 2e.,,) - ei • p • 

A upper bound on this is given by 

Re fees,,) < Ib1 sin es,,1 
+ Itb2 sin 2eSD I - eiS ,,' (20) 

The first two terms in Eq. (20) are most readily 
investigated in terms of their squares. It is most 
convenient to start with the second term, and to 
regard its square as a product of Ib 2 cos2 es,,1 and 
Ib2 sin

2 
es"j. 

From Eqs. (4) and (10), it follows that 

Ib2 cos2 es,,1 ::; t la;\. + 1 + Zl-l [fa;\. cos 21' + 11 

+ 2 sin I' i(a;\.)t(a;\. cos2 I' + 1)!1]. (21) 

With the notation 

a = qw - 1 + Izl 

then lal ::; a, and 

la;\. cos 21' + 11 ::; a;\. Icos 21'1 + 1 

I(a;\.)!(a;\. cos2 I' + I)! I ::; (a;\.)'(a;\. cos2 I' + I)! 
la;\. + 1 + z 1 ~ a;\. + 1 - jz I. 

Thus Eq. (21) can be rewritten 

Ib2 cos2 es,,1 ::; tCa;\. + 1 - Izl)-l[a;\. Icos 21'1 

+ 1 + 2 sin I'(a;\.)!(a;\. cos2 I' + l)i]. (22) 

Viewed as a function of 1', the numerator on the 
right-hand side of Eq. (22) has extrema when 

I' = t11", a;\. cos 21' + 1 = ±2- t Ca;\. + 1), 

where the ambiguous sign is given by the sign of 
cos 21'. These extrema give the values 
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for the square bracket in Eq. (22). Since the last 
value is the largest of the three for all values of aA, 
it is always true that 

1 b2 cos2 OSP 1 

::; (aA + 1 - Izj)-l[l + 2- t (aA + 1)]. (23) 

Then it follows that 

I cos2 Ospl 

= (2Izlf 1 [AA* + BB* ± 2 1m (A*B)]. (30) 

From the definitions of A and B as given by Eqs. 
(29) and (10), it is readily shown that 

AA* ~ aA sin2 v 
As a function of A, Eq. (23) attains its maximum and 
value when A = O. Then BB* ~ aA cos2 

v + 1, 

(24) 

represents a bound which is a function of jzj only. 
The denominator in Eq. (24) is always positive in 
view of the restriction imposed by Eq. (17). 

Starting from 

Ib2 sin2 Ospi ::; ! laA + 1 + Zl-l [laA cos 2v 

+ 1 + 2z1 + 2 sin vl(aA)'(aA cos2 
v + l)llJ, 

It follows in the same way as above that 

Ib2 sin2 Ospl ::; (1 - Izl)-l(l + 2- l + Izi). (25) 

The first term on the right-hand side in Eq. (20) 

so that 

A A * + BB* ~ aA + 1. (31) 

To place a bound on 1m (A * B), where 

A *B = At sin v[jai A cos2 
v + a*]', (32) 

it may be observed that, in general, 

1m (u') = 2-'[lul - Re (u)]' < 2- t 11m (u)I', 

when Re (u) > O. Within the bounds already 
imposed on Izl, it is possible to make Re (A *B) > 0 
by just choosing q large enough. Thus, from Eq. (32), 

1m (A*B) < T'A'sinv 11m (z)I'. 

can be bounded in terms of Eq. (25) by use of This, in turn, may be replaced by 

Eq. (15), since then, 1m (A*B) < (A Izl/2)t. 

Ibi sin2 Ospl < 8 Ib2 sin2 o,pl. (26) 

Since the saddle points through which the path 
of integration is taken lie above the real axis, then 
the third term in Eq. (20) will subtract from the 
contribution of the first two terms, and an upper 
bound on Re f(O,p) follows from taking a lower 
bound for Oi8P' If cos 0 is written in terms of its 
real and imaginary parts, 

Re cos 0 = cos Or cosh Oi 

1m cos 0 = -sin Or sinh Oi' 

a straightforward derivation leads to 

cosh 20. = Icos 01 2 

± [Icos 01 4 
- 2 Re (cos2 0) + l]t. 

Since 

Icos2 
01 ~ IRe (cos2 

0) I, 

(27) 

When this result is combined with Eq. (31), and 
inserted into Eq. (30), then 

Icos2 O,pl > (2 Izj)-I[aA + 1 - (2A Izl)!]. (33) 

As a function of A, the right-hand side of Eq. (33) 
achieves a minimum when 

At = a- 1 (lzl/2)', 
so that 

Icos2 Ospl > (2 Izj)-I(l - IzI/2a). (34) 

With the upper bound on Izi as dictated by Eq. (17), 
Eq. (34) requires that Icos Ospl > 1, which justifies 
Eq. (28). The bound given by Eq. (34) now estab­
lishes a lower bound on Oisp from Eq. (28) as 

O;sp > ! arccosh [jZI-l - 1 - (2a)-I]. (35) 

Finally, Eq. (20) can be restated in terms of 
Izl. By combining Eqs. (24)-(26) and (35), the 

then result is obtained that 

[jcos
2 

01
2 

- 2Re (cos
2 

0) + 1]' ~ [(lcos
2 

01 - 1)2]'. Re t(O,p) < (I - Izi)-t(I + 2-! + Izj)! 

It will appear below that leos 01 ~ 1. This removes . [8' + (1 - \zl)-'(l + 2-t),] 
the sign ambiguity in Eq. (27), and gives 

cosh 20. ~ 2 Icos2 01 - 1. (28) 

To place a lower bound on Icos 01 at the saddle 
points, it is convenient to write cos O,p from Eq. 
(10) as 

cos O,p = (2z)-!( -A ± iB). (29) 

- ! arccosh (lzr1 - 1). (36) 

The (2a)-1 term in the argument of the inverse 
hyperbolic function in Eq. (35) has been omitted 
in Eq. (36) in view of its vanishing significance for 
large q. The result thus obtained is dependent on 
Izl alone. The aim of this part of the investigation 
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has been to find the conditions under which lal.. cosz vllqw ~ al.. cos2 plqw < 1, 
Re f((J.p) < O. The right-hand side of Eq. (36) is then 
equal to zero for 

the total contribution of the I; term after 
the double integration over A and v is performed, is 
bounded by 7r/2 times the square of Eq. (39). The 
IiI term in Eq. (1) occurs with the factor bz• From 
the definition of IiI given in Eq. (3), and after Iz 
has been eliminated in favor of 10 and II through 
an integration by parts, it then follows that 

Izl < 4 X 10-5 (37) 

and hence Re f((J.p) < 0 for values of Izl less than 
this limit. 

It is now possible to express the result for the 
bound on 10 , 

(38) 

where K is found from Eq. (36), and can be taken 

IbzIi11 ~ 11 - b211I~1 + Ib11 1101 /111 

+ 2 IbzllIil. (40) 
to be positive. To show that (Jim in Eq. (38) causes For the first term 
no difficulty, rewrite e-aK as 

X eJ,.1) [Re (ib1 sin (J + itbz sin 2(J) - (Ji.P]' 

Suppose that the maximum value of Re f((J.p) 
occurs for the saddle point at (Ji.p = (Jim (i.e., at 
saddle point II in Fig. 2). Then 

(Jim exp [Re (ib1 sin (J.P + itbz sin 2().p) - (Ji'p] 

where K' is known to be bounded by a finite con­
stant, and (Jime-8,m ~ lie. If the maximum value 
of Re f((Jop) occurs at the saddle point where 
(Ji8P < (Jim (i.e., at saddle point I in Fig. 2), then 
since the preceding work has shown that Re f((J.p) 
is bounded by Eq. (36) for both saddle points, the 
difference between Re f((J,p) at each of the saddle 
points is certainly bounded, and 

(Jim exp [Re (ib1 sin (J,p + itbz sin 2(),p) - (Ji'P] 

< eKeK' (Jime- 9'm. 

Since 

67re- K < 67r < eK
"-l, 

then 

II I < 5 K"-l -Ca-l)K - 5 K"+K-1 -oK 
o e e -e e, (39) 

where K is the negative of the right-hand side of 
Eq. (36), and 

K' = -K + t arccosh (lzl- 1 - 1). 

An upper bound, Eq. (38), has now been deter­
mined for 10 , This bound was established by the 
selection of a suitable contour passing through two 
of the saddle points possessed by the exponential 
function in the integrand of 10 , Now that a bound 
is known for 1101 a bound for 1111 is directly implied, 
though it is more convenient to treat II in combina­
tion with the factors with which it is associated 
in IiI' I~ occurs in Eq. (1) multiplied by a factor 
al.. cosz vlqw. Because this factor is bounded, 

11 - bzl ~ (al.. + I)/(al.. + 1 - Iz/) 

~ (1 - Izl)-I. (41) 

Since II differs from 10 only in that an additional 
cos (J term appears in the integrand, an upper 
bound for II may be arrived at by multiplying 10 
by the maximum value which cos (J can attain along 
the path of integration. Thus, the third term in 
Eq. (40) requires that a bound be placed on 
Ibz/lcos (Jl z. In general, 

Icos el ~ Icos (J, cosh e,l + Isin (Jr sinh (J,I 

< 2 cosh (Ji' 

The maximum (Ji encountered along the integration 
path is (Jim, which corresponds to one of the saddle 
points. Hence 

Icos (Jl z < 2{I + Icos (J.plz + [1 + Icos (J.plz 

- (2Re cos (J.p)Z]t} < 4(1 + Icos (Joplz). 

However, it has already been shown [Eq. (24)] that 

Ibzllcosz eopl ~ (1 - Izl)-\I + T'). 

Also, in view of Eq. (16), an upper bound 0 can be 
imposed on Ib2 1. This bound 0 must be such that 
o ~ 5 - 2 X 61

/
Z

, but 0 > Izi (1 - IZj)-l to be 
consistent with Izi < Ibzl (1 + Ibzl)-I. Hence, 

Ibzl Icos (Jl z < 4 0 + 4(1 - Izl)-l(1 + Tt). (42) 

Then an upper bound is established for the second 
term in Eq. (40), since 

Ib1 1zlcos (Jl z < 8 Ibzllcos (J12. (43) 

Finally, then, IbzIil1 is bounded in terms of II~I by 

Ib2nll < C' 11;1, (44) 

where C' is a constant resulting from the use of 
Eqs. (41)-(43) in Eq. (40), The end result of inte­
grating over A and v is to multiply Eq. (44) by 7r. 

From Eq. (1), the q sum contains a factor (aqw)l/Z 
mUltiplying the double integral over A and v. Thus, 
with 
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[a![ ::::; a1 < (qw)" 

[(aqw)![ < qw, 

if the general term of the q sum is written as F.(z), 
it has now been shown that 

1F.(z) [ < Cqe-(Q-1)2K, 

where C is a constant. The exponent K is known to 
be positive for sufficiently small [z[. Specifically, 
since the bound on [z[ given by Eq. (37) is less than 
the upper bound imposed on [z[ by Eq. (17), then 
positive real constants Z and Ko can be defined such 
that Z < 4 X 10-5 and Ko is twice the negative of 
the right-hand side of Eq. (36) with Z substituted 
for [z[, whereby 

1F.(z) [ < Cqe-(·-I)K, (45) 

for all [z[ ::::; Z. 
The total transition probability W, Eq. (1), is 

given by a constant times a sum over q. Each term 
F. (z) in the series is an analytic function of z in 
the region given in Eq. (5), excluding the negative 
real axis from -1 to - co. Since the F. (z) are 
uniformly bounded as shown in Eq. (45), and the 
sum of these uniform bounds converges, then the 
sum over q is an analytic function of z in the region 
[z[ ::::; Zo, where Zo ::::; Z and Zo < w[l/w] - 1. 

W is thus an analytic function of z in Iz[ ::::; Zo, 
and therefore possesses a convergent power series 
expansion in z in this region. 

CONCLUSIONS 

It has been demonstrated that a real physical 
problem in electrodynamics exists which has a 
convergent expansion in powers of the electro­
magnetic coupling constant. This demonstration 
is for the case of a non-second-quantized theory. 
Two limitations are imposed upon the radius of 
convergence. One limitation [Eq. (5)] is in terms 
of the energies of the two plane-wave fields in the 
problem, and goes to zero for a discrete set of values 
of the field energies. The other limitation [Eq. (37)], 
is given as a numerical upper bound on the radius 
of convergence. This upper bound, however, is not 
a least upper bound, but it depends on the details 
of the bounding procedure. The significant result is 
that there is a nonzero radius of convergence for 
the perturbation expansion. 
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An explicit form of the homogeneous Green's function for 
the multi-dimensional iterated Klein-Gordon operator is 
obtained. By a direct calculation from its Fourier repre­
sentation, the Green's function is expressed as a one-dimen­
sional, infinite integral of the Sonine type. Although this 
integral is classically divergent when the order of the operator 
is less than the number of space dimensions, it can be treated 
rigorously under these conditions using the concepts of 
distribution analysis. A generalized Sonine integral is de­
veloped and the result applied to obtaining an explicit 
expression for the Green's function, which is now to be 
regarded as a distribution in the sense of Schwartz. Using a 
distribution introduced for this purpose, the Green's function 
is written in a form which explicitly displays its singularities 
on the light cone. The well-known difference between even­
and odd-dimensional spaces is reflected in the nature of 

1. INTRODUCTION 

T HE ~roblem of Cauchy for the Klein-Gordon 
equatIOn 

(0 + /)I{J(x) = 0 (1) 

in multi-dimensional spaces has been studied 
extensively.1-4 The field is uniquely determined by 
the differential equation for all space-time if it 
is known on a space-like surface along with its 
first derivative normal to the surface. For con­
venience, we choose the space-like manifold to be 
the plane of zero time. The Cauchy initial value 
problem then consists of finding a unique solution 
l{J(x) in terms of I{J and al{J/at taken at time t = O. 

The available methods of solving the Cauchy 
problem all lead to integral representations of l{J(x) 
which must be given some generalized interpreta­
tion. Explicit expressions for the general solution 
in terms of ordinary integrals and functions are 
obtained only by means of special techniques. 
Hadamard2 for example, introduced the concept of 
"finite part" of an improper integral. In the case of 
even-dimensional spaces he obtained directly an 

* Present address: University of Michigan, Ann Arbor, 
Michigan. 

1 R. Courant and D. Hilbert, Methoden der Mathematischen 
Physik (Springer-Verlag, Berlin, Germany, 1937), Band I, II. 

2 J. Hadamard, Lectures on Canchy's Problem in Linear 
Partial Differential Equations (Yale University Press, New 
Haven, Connecticut, 1923). 

3 M. Riesz, Acta Math. 81, 1 (1949). 
4 N. E. Fremberg, Comm. Sem. Math. Univ. Lund, 7 

(1946). 

these singularities. The singularities appearing for an odd 
number of space dimensions consist of a finite linear com­
bination of derivatives of the Dirac delta function 0(S2) 
where s is the space-time distance. The highest derivative 
appearing is of order !(n - 21 - 1) with n giving the number 
of space dimensions and 21 giving the order of the operator. 
The singular part for even-dimensional spaces consists of a 
polynomial in l/s of degree n - 21 + 1. No singularities 
appear when the order of the operator is greater than the 
number of dimensions. The general solution of Cauchy'S 
problem for the iterated Klein-Gordon operator is obtained 
in convolution form. An explicit solution for the ordinary 
Klein-Gordon equation is presented in a form which exhibits 
separately the contributions due to the singular part and 
the regular part of the Green's function. 

explicit solution, while in the case of odd-dimensional 
spaces he was forced to use the more indirect 
"method of descent." 

Riesz3 has developed a theory of fractional 
integrals of functions of several variables and applied 
this theory to the solution of the Cauchy problem. 
He introduces multi-dimensional integrals of the 
Riemann-Liouville type whose kernels are modified 
elementary solutions or "Riesz potentials,,4 depend­
ing on a complex parameter. Using Green's identity, 
the soultion of the Cauchy problem is obtained by 
analytic continuation with respect to the parameter. 
The cases of even- and odd-dimensional spaces are 
treated on an equal footing, although after the 
analytic continuation is carried out, quite different 
formulas are obtained for the two cases. 

In modern field theory the method of Fourier 
integrals is widely used, chiefly because of the direct 
physical interpretation of the Fourier transform 
in momentum space. The general solution for the 
field l{J(x) can be expressed, in terms of the Cauchy 
data, as convolutions generated by the propagator 
or homogeneous Green's function Ll(x). However, 
due to the singular character of the Green's function, 
some generalized interpretation must be given to 
Ll(x). Such an interpretation is of course available 
in the theory of distributions developed by 
Schwartz. 5 

6 L. Schwartz, Theorie des distributions, (Hermann & Cie, 
Paris, France, 1950-51), Vols. I and II. 

396 
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In this paper we consider the Cauchy problem for 
the iterated Klein-Gordon equation 

is the space-time distance. The highest derivative 
appearing in the linear combination is of order 

(2) Hn - 2l - 1). The singular part for spaces with 
an even number of dimensions, on the other hand 

. ' 
in multi-dimensional spaces and its associated homo­
geneous Green's function An.l(x). The d'Alembert 
operator D is taken in the form 

(3) 

where n gives the number of space dimensions, and 1 
is to be considered a positive integer. Since the wave 
equation (2) is of order 2l, the Cauchy data now 
consist of a i cp / at i taken at zero time for all 

= 0, 1, ... , 2l - 1. 
The Green's function is determined from its 

Fourier representation. After some angular integra­
tions, An.I(X) is expressed (cf. Sec. 2) as a one­
dimensional, infinite integral of the type investigated 
by Sonine.6 Using Sonine's result, it is shown that 
this integral is divergent when the order of Eq. (2) 
is less than the number of space dimensions. It 
becomes apparent, then, that the Green's function 
cannot be considered a function in the ordinary sense 
for general values of nand l. As is well known, such 
singular functions occurring in physics can be 
treated rigorously only in connection with the 
concepts of distribution analysis. 

We therefore show (cf. Sec. 3) how the Sonine 
integral can be generalized by defining it as a dis­
tribution in the sense of Schwartz. The Green's 
function may then be evaluated directly from its 
Fourier representation and explicit expressions 
(cf. Sec. 4) obtained for general nand l. Of course 
the Green's function itself is now to be regarded 
as a (tempered) distribution. This treatment 
involves the introduction of a distribution (cf. 
Sec. 3) whose properties are particularly convenient 
when investigating the singularities of the Green's 
function. 

Various properties of the Green's function are 
presented in Sec. 4. The Green's function is written 
in a form which explicitly displays its singularities 
on the light cone. The remarkable contrast between 
spaces with an even and an odd number of dimen­
sions is reflected in the nature of these singUlarities. 
For odd-dimensional spaces the singular part 
consists of a finite linear combination of derivatives 
of the Dirac delta function 0(82

) where 

6 N. Sonine, Math. Ann. 16, 1 (1880). 

conSIsts of a polynomial in 1/8 of degree n - 2l + 1. 
In both cases, no singUlarities occur when the order 
of the differential equation is greater than the 
number of space dimensions. A number of interesting 
recurrence relations for the Green's function are 
also presented. 

A complete set of homogeneous A-function 
solutions is required for constructing the field cp(x) 
described by (2). Such a set of independent .1.­
functions evidently consists of An .,,(x) with 
p = 1, 2, ... , l. After investigating the initial 
conditions satisfied by these Green's functions 
at zero time, the general solution of the Cauchy 
problem for the iterated Klein-Gordon equation (2) 
is presented in convolution form (cf. Sec. 5). Since 
the Green's functions are distributions, this integral 
representation of cp(x) may be expressed in terms 
of ordinary integrals and functions by means of 
the calculus of distributions. Further, Schwartz6 

has shown how the notion of convolution product 
can be extended to the convolution product of two 
distributions (when at least one of them has a 
?ounded supporting set). Thus the field cp(x) is 
mterpreted as a distribution when the Cauchy data 
are themselves distributions instead of well-behaved 
functions. 

It is interesting to carry out the convolution 
operation directly to obtain the explicit solution 
of the Cauchy problem for the Klein-Gordon 
equation (1). This is done in Sec. 6 where the general 
solution is obtained in a form which exhibits the 
contributions due to the singular part and the 
regular part of the Green's function. The explicit 
solution for the d' Alembert equation Dcp = ° is 
also given. Many of the expressions appearing here 
may be found scattered throughout the literature 
with varying degrees of generality. 

2. THE GREEN'S FUNCTION 

The Fourier representation of the homogeneous 
Green's function may clearly be written in the form 

(4) 

where 

dk = dko dk1 •• , dkn = dko dk, 

kx = kot - k1xl - ... - k"x" = kot - k·x. 
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'The integration in the ko plane is defined in the 
usual way7: It is to be carried out over a closed 
path C encircling both poles ko = ± (k2 + //) 1/2 

in a clockwise direction. The variables kl' ... , kn 

are then integrated from - co to + co. The inhomo­
geneous Green's function An,/(x) is obtained by 
taking the principal part of the ko integration over 
the singularities instead of integrating along the 
path C. The relation between the two Green's 
functions is given by the well-known formula 

(5) 

where e(t) = sign (t). From now on we will consider 
only the homogeneous Green's function since the 
inhomogeneous Green's function is easily obtained 
by means of (5). 

The result of the ko integration over the path C 
in (4) is 

1- f £ik,t d~il _ _ ( )!(J.-)H JI_!(wt) (6) 
211" c (w2 

- k~)l - 11" 2w r(l) , 

where w = (k2 + //) 1/2 and J is the Bessel function 
of the first kind [cf. Eq. (40)]. Introducing n­
dimensional spherical coordinates in k space, we have 

where Un represents the surface area of the n­
dimensional unit sphere, 

211"n/2 
Un = r(n/2)' (8) 

The integral over 6 in (7) has the value8 

thus An ,I may be written in the form 

The e(l) appears because Eq. (6) represents a series 
of odd powers in time [cf. Eq. (64)]. 

The integral in (9) has the form of a Sonine 

7 W. E. Thirring, Principles of Quantum Electrodynamics 
(Academic Press Inc., New York, 1958), 

8 H. Bateman, Higher Transcendental Functions (McGraw­
Hill Book Company, Inc., New York, 1953), Vol. I, II. 

integral,8 namely, 

(" Jibt) J,[a(t
2 + l)!] a't"+1 dt 

10 b" (t2 + l)'12 

= {a, a < b (10) 

[(a2 
- b2)!jz],-"-lJ'_H[z(a2 

- b2)!] , a > b, 

where a and b are positive real numbers. To secure 
convergence, the restriction Re II > Re JL > -1 is 
placed upon JL and II. Using this result, one obtains 
(compare with Riesz3 and Schwartz5

) 

An.l = (
l)(n-IJ/2 e(t)h(i) (~)/-(n+I)/2 
211" 2/r(l) JL 

X J /_ (n+l)I2(JLS) , (11) 

where s = (t 2 
- r2) 1/2 is the space-time distance 

and h(a) is the Heaviside unit function: h(a) = 1 
for a > ° and h(a) = 0 for a < 0. The restriction for 
convergence becomes 2l > n - 1. When this restric­
tion is not obeyed, that is, when 2l < n (remembering 
that nand l are integers), the Sonine integral in 
Eq. (9) is divergent. It is clear, then, that the Green's 
function cannot be considered a function in the 
ordinary sense when the order of the differential 
equation is less than the number of space dimensions. 
For unrestricted values of the integers nand l the 
Fourier representation (4) must be given an extended 
interpretation. A natural interpretation from the 
standpoint of physics is provided by the theory of 
distributions. 

3. SPECIAL DISTRIBUTIONS AND THE SONINE 
INTEGRAL 

At first we summarize the basic definitions 
involved in distribution analysis; a detailed exposi­
tion is given by Schwartz. 5 

Briefly, distributions are continuous linear func­
tionals on an appropriate topological vector space. 
Following Schwartz, we denote various spaces as 
follows: 

(i) The space (;0) consists of all (em) functions 
on Rn with compact support. 

(ii) The space of distributions (;0') is the dual 
of (;0). 

(iii) The space (s) consists of all (cm) functions 
on Rn that "decay rapidly at infinity." 

(iv) The space of tempered distributions (S') is 
the dual of (S). 

(v) The space (;0_) is the space of all (em) 
functions on R with support bounded on the 
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right, i.e., with support contained is some 
half-line (- 00, C). 

(vi) The space of distributions with support 
bounded on the left (~:) is the dual of (~_). 

A distribution X is defined as a continuous linear 
functional X{<t>l on (~). However, such a functional 
representation can be avioded9 and it is sometimes 
convenient to omit the symbol <t>. Every summable 
point function ~(x) can be associated with the 
distribution X {<t> I given by 

X{<t>1 = Loooo ~(x)<t>(x) dx. (12) 

In practice, the usefulness of distributions is often 
enhanced by associating a "generalized" function 
with each distribution; Eq. (12) is then interpreted 
symbolically. (For other definitions of distributions 
and generalized functions see Korevaar, '0 Temple," 
and Lighthill.'2) Distributions can be differentiated 
without restriction. In (~') derivatives are defined 
by 

definition (16) is equivalent to taking Hadamard's2 
"finite part" of the integral in (15). When {3 is zero, 
the Dirac distribution 

~o{<t>l = &{<t>l = <t>(0) (17) 

is obtained. Since derivatives are given by 

~~n) = ~~-n, (18) 

we also have, in terms of the Dirac distribution, 

~-n{<t>l = &(n){<t>l = (-r<t>(n)(o). (19) 

The set of elements ~il constitutes the group of 
the Riemann-Liouville integral with 

(20) 

the * indicating convolution product. Equation (18) 
may easily be extended to include fractional 
deri va ti ves. 

The product Xn~il for n = 0, 1, 2, is defined 
by the formula 

(21) 

(13) where 

so that every derivative of a distribution is again 
a distribution. In (S') the Fourier transformation can 
be defined by means of Parseval's formula, and 
the Fourier transform of each tempered distribution 
is again a tempered distribution.5 The Laplace 
transformation'3 is defined for distributions in (~:). 

The present investigation is based on a distribu­
tion obtained from the expression5 

Sj~(x) = h(x)x~-' /r«(3) , (14) 

where (3 is a complex parameter. The functional 
associated with Sj~(x), namely, 

~~ {<t>} = r~(3) 10
00 

x~-'<t>(x) dx, (15) 

makes sense (classically) only for Re (3 > o. How­
ever, the definition of ~il can be extended to the 
entire finite (3 plane by setting 

~~{<t>} == (-r~il+n{<t>(n)l, (16) 

where n is an integer such that Re {3 + n > o. 
When (3 is neither zero nor a negative integer, the 

9 H. Kronig, Math. Nachr. 9, 129 (1953), 
10 J. Korevaar, Ned. Akad. Wetensch. Proc. AS8 (1955) 

(4 papers). 
11 G. Temple, Proc. Roy. Soc. (London) A228, 175 (1955). 
12 M. J. Lighthill, An Introduction to Fourier Analysis and 

Generalized Functions (Cambridge University Press, New 
York, 1958). 

'3 J. Lavoine, Calcul symbolique (Centre National de la 
Recherche Scientifique, Paris, France, 1959). 

«(3)n = (3({3 + 1) ... «(3 + n - 1), «(3)0 = 1. (22) 

Making use of this product, we introduce the dis­
tribution O/l(a; i\) as 

0il(a; i\) 

= ,F2 (1; a + 1, (3 + 1; AX) '~il+,/r(a + 1), (23) 

where a, (3, and i\ are complex parameters. Extensive 
use will be made of O/l(a; i\). 

The hypergeometric series ,F 2 is given by 

( . . _ ~ (C)mz''' 
,F2 c,a, b,z) - £...., '() (b) . 

111.-0 m. am m 
(24) 

Except for certain integer values of the parameters 
for which the series terminates or fails to make 
sense, ,F2 converges for all finite z. Using (21) and 
(24) we have immediately the expansion 

0il(a. A) = i:: A m ~~+m+l 
, m~O rea + m + 1) 

(25) 

and in view of (16) we may write 

O~{ct>l == (- rOil+n{ct>(n) l, (26) 

where n is an integer such that Re (3 + n + 1 > O. 
Clearly this distribution is well defined for all 
complex a, (3, and A. 

Derivatives of Oil are given by 

(27) 
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which of course may be extended to fractional 
derivatives. Further, Let ,,~b be an operator defined 
by 

We obtain, as easy consequences of (25), 

,,~bnOp(a; X) = O~_n(a - n; X), (29) 

00 An-m-l~ 

0p-n(a - n; X) = XnOp(a; X) + L: r( _ p-)' (30) 
m-O a m 

where n is a positive integer. Equation (30) leads 
to the differential equation of second order 

("pb - X) Op(a; X) = ~p/r(a), (31) 

from which the homogeneous equation of third order 

(x d/dx + 1 - iJ)(,,~b - X)Oia; X) = 0 (32) 

is evident. 
T:sing the Laplace transform13 of ~p, 

£l~p} = ~~Ie-'Z} = z-~, (33) 

the Laplace transform of O~(a; X) is obtained: 

"" Xmz-~-m-l 

£{Op(a; X)} = ~ rea + m + 1) 

_ "(a; Vz)e~/z 

- r(a)X"l-a+l , 
(34) 

where "( is the incomplete gamma function. s Equa­
tion (34) reduces to 

(35) 

when a = O. 

The boldface H is standard notation for the Struve 
function and should not be confused with the bold­
face type for distributions. 

One of the chief services to mathematical physics 
rendered by the theory of distributions is the pro­
vision of a precise analytical method for removing 
the troublesome restrictions which abound in 
classical analysis. Ordinary functions are given 
extended ranges of validity and difficulties with 
regard to convergence of integrals disappear. We 
turn our attention in particular to an integral which 
is essentially the Sonine integral with a convenient 
change of integration variable. Once the So nine 
integral is interpreted as a distribution, explicit 
expressions for the Green's function .:1n ,I are easily 
obtained. 

In the notation of generalized functions we write 

3 = fo"" Q~(O; x - a: u)Q.(O; X - u: a) du, (42) 

where the real parameter a is taken to be positive. 
Using the inverse Laplace transform [ef. (35)] in 
place of the second function under the integral sign, 
we have 

1 f"" Ie+;"" 3 = -2 . Qp(O; X - a: U)Z-·-l 
1T't 0 c-ioo 

(
X - u) X exp za + -z- dz du (43) 

with c > O. Upon interchanging the order of integra­
tion, one recognizes the integral over u as the 
Laplace transform (35) with z replaced by liz, 
that is, 

It will often be convenient to speak in terms of the 
generalized function Qp(a; X: x) generating the dis- fo"" Q~(O; x - a: u)e-u

/
z du = l+lez(z-a). (44) 

tribution 0,8(0'; X). In this regard, several particular 
cases will be of importance and we list them here: What remains is 

Qp(O; -X: x) = h(x)(x/xl/2J p(2X!x!), 

Qo(iJ; -X: x) = h(x)(XX)-P/2Jp(2X!i), 

X!Qp+!(t; -X: x) = h(x)(x/xl/2H p(2Xi xi ), 

X!Qt(iJ + t; -X: x) = h(x)(XX)-P/2Hp(2X!xl ). 

In these formulas, J p is the Bessel functionS 

"" ( _ )m(z/2)2m+P 
Jp(z) = ~ m! rem + iJ + 1) , 

and Hp is the Struve functionS 

"" (_ )m(z/2)2m+P+l 
Hp(z) = ]; rem + ~)r(m + iJ + ~). 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

1 jC+i"" (X) 3 = -2' . l-' exp zx + - dz 
7r2 C-1CO Z 

= Q.-P-l(O; X: x); 

thus, with iJ and p unrestricted, 

fo"" Qp(O; x - a: u)Q.(O; X - u: a) du 

= Q.-P-l(O; X: x). 

(45) 

(46) 

The classical condition for convergence is Re p > 
Re iJ > -1; however, within the framework of 
distribution theory, (46) is valid for all iJ and P, and 
the integral is to be regarded as a distribution. The 
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connection with the Sonine integral (10) is easily 
seen with the aid of (36). 

4. DISCUSSION OF THE GREEN'S DISTRIBUTION 

Making use of (36), we may write Eq. (9) in 
the form 

E(t) 1'" 2 An.z = 2n'/l'(n-l)72r(l) 0 rln/ 2 - 1(0; -r /4: u) 

X rlz-t\O; -/ - u: f/4) du, (47) 

which becomes, according to (46), 

A () _ E(t)rl z-(n+1)/2(0; _J.L2: s2/4). 
n.Z X - 2n'/l'(n l}/2r (l) (48) 

The last expression is equivalent to (11) except the 
restriction on n and has now been removed. 

The corresponding result for the iterated 
d' Alembert equation 

DZ ",(x) = 0 (49) 

is obtained by letting J.L --t 0 in (48). The homo­
geneous Green's function Dn .! for (49) is thus 

D () _ e(t).s;,(l-nl/2+z(i /4). 
n.! X - 2n'/l'(n-l}/2r(l) (50) 

The Green's functions An. Z and Dn. Z are now regarded 
as tempered distributions. 

Several recurrence relations for An.l are easily 
obtained. Recalling (27) we have immediately 

where m is an integer. Further, by means of the 
equation 

one obtains 

A straightforward calculation (cf. Appendix) shows 
that 

which is an expression of Hadamard's2 "method of 
descent." These recurrence formulas indicate that 
all of the Green's functions .:In.Z are derivable from 
.:lO.l as expected. 

From (50) it is evident that .:In.! has no singu­
larities on the light cone when (1 -:- n)/2 + l 2:: 1. 
Remembering that land n are integers, one may 
write this condition in the form 21 > n to infer that 
no singularities appear on the light cone when the 
order of the differential equation is greater than the 
number of space dimensions. 

When the order is less than, or equal to, the 
number of dimensions, Eq. (30) can be applied to 
express .:In.! in a form which displays its singularities 
on the light cone explicitly. The profound difference 
that exists between spaces with an even number of 
dimensions and spaces with an odd number of 
dimensions is of course reflected in the nature of 
these singularities. When 2l ::::; n, the singularities 
appear as follows: 

E(f)( _J.L2)".-Z+1 { 2 2 
.:l2m+l.Z = 22m+''/I'm1'(l) rlO(m - 1 + 1; -J.L : s /4) 

m-Z .s;,_q(i/4) } 
+ L: (_ 2)"+1( _ l _ ) , ' 

q~O J.L m q . 
(57) 

E(t)( _J.L2)m-Z+1 { 2 2 
.:l2m.Z = 22m'/l'm ir(l) rl!(m - l + 1; -J.L :s /4) 

m-Z .s;,t-q(i /4) } (;::8) 
+ ~(_J.L2)q+l(m -l- q)!' v 

Using Eqs. (37) and (39) along with Eq. (19) we 
write the above equations in the form 

(59) 

(60) 

where J is the Bessel function and H is the Struve 
function. 

In each of these equations, the first term con­
tains no singularities and represents a finite jump 
discontinuity across the light cone. The contrast 
between even- and odd-dimensional spaces is made 
evident in the second term. For spaces with an 
odd number of dimensions, the singular part of .:In.l 
consists of a finite linear combination of derivatives 
of the Dirac delta function 0(S2), the highest deriva­
tive being of order !en - 2l - O. On the other hand, 
the singular part of .:In. Z for spaces with an even 
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number or dimensions consists of a polynomial in 
l/s of degree n - 2l + 1. 

5. GENERAL SOLUTION OF THE CAUCHY PROBLEM 

In terms of the Green's function .1n • 1 = .1n the 
solution of the initial value problem for the ordinary 
Klein-Gordon equation (1) is given by the weII­
known equation 7 

1p(X) = J dx'[.1n(x - x') a~1p(x') 
- 1p(x') a~ .1n(x - X')]/'-O (61) 

where ao == a/at. That this is the solution follows 
from the initial conditions 

.1n(X,O) = 0, 

ao .1n(x, 0) = ° (x) , 

a~ .1n(x, 0) = 0. 

(62) 

The corresponding solution for the iterated 
Klein-Gordon equation (2) requires all the independ­
ent .1-function solutions .1n ." with P = 1, 2, ... , l. 
The initial conditions satisfied by these Green's 
functions may be obtained from 

where 

G (k t) = f (_w
2
)m(P)m t21!+2m-1 

P' m-O m! r(2p + 2m) 

represents Eq. (6). Simple calculation gives 

J ° for j = 0, 1, "', (2p - 2); 

a! .1n .,,(x, 0) = lOex) for j = 2p - 1; 

° for all even j. 

(63) 

(64) 

(65) 

In addition, one obtains the important relation 

a~P+2a-l .1n ,p(x, 0) = (:~. (yr2 - /). o(x) (66) 

where q is any non-negative integer. In view of these 
initial conditions, we may construct the field 1p(x) 
described by (2) as follows: 

The general solution is written in the form 

1p(x) = J dx' }; P-tl Amp 

X [a~p-2m-1 .1n •p(X - X') a~2m\O(x')J/'_0 

+ J dx' % ,,-tl Amp 

X [a~p-2m-2 Lln.p(x - X') a~2m+I1p(X')],'_o. (67) 

For each m = 0, 1, ... , (l - 1), the 1 - m con­
stants Amp are to be determined from the 1 - m 
equations 

I 

"A a2p
+

2
;-1 A (x 0) = ~( ) • £...oJ mp 0 .u.n .p , uX UO;, (68) 

where j = 0, 1, '" , (l - m - 1) and 00; is the 
Kronecker delta, that is, 00; = 1 for j = ° and 
00; = ° for j ~ 0. By virtue of (66), these equations 
for the constants become . 

! 

L Amp(P); = 00;, (69) 
p=m+l 

where (p); is given by (22). 
The solution of Eq. (69) is 

(70) 

with (~) representing the binomial coefficient. To 
prove this, we substitute (70) into (69) with the 
result 

~ _ II (m + 1); 
"-~l Amp(P); - r(l - m)(m + 1)! 

2Fl(m-l+1,m+j+1;m+2;1), (71) 

where 2F1 is Gauss' hypergeometric series. Using 
the identity8 

, .. _ r(c)r(c - a - b) 
2ft l(a, b, c, 1) - r(c _ a)r(c _ b) , (72) 

which is valid provided c ~ 0, -1, - 2, 
Re (c - a - b) > 0, we have 

± Amp(P); = r(Z - m - D(m + 1); = 00; 
p-m+1 r(Z - m)r(l - j) 

sincej = 0,1, .. , , Z - m - 1. 

and 

(73) 

To show that Eq. (67) represents the solution to 
Cauchy's problem we note that 

X [a~p+2(M-m)-1 .1n •p(x - x') a~2m1p(x')]/'_0 (74) 
1-0 

where the upper limit to the sum over m is obtained 
using (65). The second integral in (67) makes no 
contribution because of (65). By virtue of (68) we 
obtain the required result. 

[a~M1p(x)]/_o = J dx' ~ OmM o(x - x') 

(75) 
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An exactly analogous proof is obtained for 
[a~1>f+lip(x)l,_o, except in this case the first integral 
in (67) contributes nothing and the second integral 
gives the required result. 

6. EXPLICIT SOLUTIONS FOR THE KLEIN-GORDON 
EQUATION 

The general solution of the initial value problem 
for the Klein-Gordon equation will now be calculated 
explicitly by carrying out the integral operation 
indicated in Eq. (61), which is equivalent to Eq. 
(67) when l = 1. Noting that ~n(X, t) = ~n( -x, t), 
the solution may be written in the form 

ip(x) = J ~n(x' - x, t) a~ip(x', 0) dx' 

+ J ao ~n(x' - x, t)ip(x', 0) dx'. (76) 

Changing the variable of integration to R = x' - x 
and introducing n-dimensional spherical coordinates 
in R space, we note that the integral over the angles 
gives the arithmetic average cP(x; R) of the initial 
field on a sphere of radius R centered about the 
fixed position x. That is, 

cP(x; R) == U;;-I J ip(x + R, 0) dUn, (77) 

where Un is the solid angle given by (8). Finally, 
using aO~n = 21rt~+2' we may write (76) as 

ip(x) = Un L" ~n(R, t)ip,,(x;R)Rn
-

1 dR 

+ 21rtun f' ~n+2(R, t)cP(x; R)Rn-1 dR. (78) 

It is at this stage of the analysis that the difference 
between an even and an odd number of space 
dimensions becomes significant. In order to obtain 
ip(x) in an explicit form one must distinguish between 
n even and n odd because the singularities of ~n 
are so different in the two cases. 

Odd Number of Dimensions, n = 2m + 1 

In this case we use Eq. (59) with l = 1 in Eq. (78) 
to obtain 

_ (1r)t f(t) ",-I (_//4)m-0-1 (..1:._)0 
ip(x) - rem + !) 2 ~ rem - q) dt2 

X {cP.t(x; Itl) ItI2m
-

l
} 

(1r)t It I '" (_//4)"'-0 (..1:._)0 
+ rem + !) ~ rem - q + 1) dt2 

X {cP(x; I ti) It 12m
-

I
} 

(ll-)!f(t) (-/.L)m 11
'1 R2m dR 

+ rem +!) 2 0 (t2 - R2)m12 

X J m [/.L(t2 
- W)!];:(x;R) 

+ 2(1r)1 It I (-JJ.)m+ll ltl R2m dR 
rem +!) 2 0 (t2 - R2t n+1)/2 

X J m +I [/.L(t2 - R2)!]cP(x;R). (79) 

Even Number of Dimensions, n = 2m 

We use Eq. (60) in Eq. (78), calculating the con­
tribution from the singular part of ~n by means 
of Eq. (16). The result is 

, _ ~ m-I (-/.L2/4)"'-a-J 11'1 RdR 
ip(X) - rem) ~ rem - q) 0 (t2 _ R2)! 

X (~2Y {;:(X; R)R2m-2} 

21tl m (_/.L2/4)m-0 1111 RdR 
+ rem) ~ rem - q + 1) 0 (t2 

- RZ)i 

X C~2r {cP(x;R)R
2m

-
2
} 

(_)m(1r)!f(t) (l!:.)m-! lit I R2m
-

1 dR 
+ rem) 2 0 (t2 - w)<m i)/2 

X Hm _ t [/.L(t2 - R2)!];:(X; R) 

(_)",+12(1r)1 It I (i!:.)m+t 11'1 R2m
-

1 dR 
+ rem) 2 0 (t2 _ R2)<m+!)/2 

X Hm +![/.L(t2 - R2)1]cP(X; R). (80) 

The corresponding results for the d' Alem bert 
equation 

o ip(x) = 0 (81) 

are of course obtained in the limit as J.I. goes to zero. 
The solution of the Cauchy problem for the wave 
equation (81) is thus (compare with Courant and 
Hilbert!): 

(1r)!E(t) (d ) <n-3)/2 - n-2 
ip(x) = 2r(n/2) dt2 {ip,,(x; Iti) It I } 

~ ( d )<n-I)/2 
+ ;(n/2) dt2 {cP(X; Iti) 1tJ"-2} (82) 

for odd n ~ 3, and 

E(t) 11' I R dR (d )<n-2)/2 

ip(X) = r(n/2) 0 (t2 - W)! dR2 

X {;-:(X; R)Rn-ZI + r~n~~) 

11' I R dR (d )n/2 _ n-2 
X 0 cj> _ wy dRZ {ip(X; R)R } (83) 

for even n 2:: 2. 
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As is well known, Huygen's principle for the 
d'Alembert equation holds only for spaces with an 
odd number of dimensions, while the effect of dif­
fusion takes place in even-dimensional spaces. 2 

Equation (50) indicates that the Green's function 
for the iterated d'Alembert operator has a a-function 
type of singularity only when n is odd and 2l < n. 
Thus Huygen's principle for Eq. (49) holds only 
when the order of the equation is less than the 
number of space dimensions and when the number 
of space dimensions is odd. Huygen's principle for 
Eq. (2) does not hold. 

APPENDIX. THE METHOD OF DESCENT 

We want to evaluate 

I = L~ Lin,1 dX l .,. dX"" (AI) 

where m~ ::; n. Introducing spherical coordinates for 
the ~volume element 

dX
1 

•• , dx", = pm-l dp dUm 

and ~using Eq. (9) for Lin, I we obtain 

( 
1 ) ('1-1)/2

1
'" 

I = U m 21f 0 G(t)k
nI2 

dk 

X 1'" JnI2-1(kr) m-l d 
n/2-1 P p, 

o r 
(A2) 

where 

(A3) 

The integral over p in Eq. (A2) has the form of 
another Sonine integral when we set r2 = / + R2, 
namely, 14 

1'" J.[a(t2 + l)l] t2"+1 dt 
o (t2 + l)·/2 

Remembering Eq. (8) for Urn we finally ha\'e 

I = (1-)(n-m-l)/2 
21f 

X 1'" J(n-m)/2-1C~R) G(t)k(n-m)/2 dk (A5) 
o R (n-m-2)/2 , 

which is equivalent to Lin- m.1 as seen from Eq. (9). 
We thus have 

Lin-m,1 = r~ Lin • l dX1 '" dX m (A6) 

giving the method of descent. 

N ate added in proof. Equation (70) permits one to 
write the general solution (67) in the form 

ip(X) = L-o dx' Lin.l(x - x')X'ip(x') 

where the differential operator X is defined by 

X == (a: - ~) ± (l)CD + /)/-P(at _ ~)P-l, 
v-I P 

the arrows indicating the directions in which the 
differentiations are to be carried out. We observe 
that X may be written 

~ +-- ~ +--
(a~ - a~)x = (ao - ao) 

+-- ~ +-- f-

X [CO + J/ + a~ - a~)l - (0 + J/)/]. 

The invariant form of the general solution is 

where U is an arbitrary spacelike surface and 

~ +-- ~ +--~ -
2

p
r(,u + 1) (A4) (0 - O)X~ = (a~ - a~)[cO + /)1 - (0 + ,t?)l]. 

= "+1 .-#-1 J._ p _ 1(az) , 
a Z These results may be extended to include arbitrary 

for a > O. This result is obtained from the Sonine polynomials in 0; such a generalization will be 
formula in Eq. (10) by letting b ~ O. The integral published in a future paper. 
over p thus has the value 

2",/2-1 r( m/2) 
km/~(n-m-2)/2 J(n-m)/2-1(kR). 

14 G. N. Watson, A Treatise on the Theory of Bessel Func­
tions (Cambridge University Press, New York, 1922). 
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A realization of the infinitesimal generators for the mass-zero case of the proper orthochronous 
inhomogeneous Lorentz group is given explicitly for both continuous and discrete spin cases in terms of 
a uniform notation. The realization for the discrete spin case is unitarily equivalent to that given 
by Shirokov. 

For the sake of completeness the infinitesimal generators for the case of nonzero mass, derived 
by Foldy, are also given. Hence the present paper contains realizations for all irreducible unitary 
representations of the inhomogeneous Lorentz group of physical interest. 

Since the irreducible representations of the two-dimensional Euclidean group play an important role 
in the massless case, simple realizations of the irreducible representations of the generators of this 
group are also given. 

1. COMMUTATION RULES FOR THE INFINITESI­
MAL GENERATORS. INVARIANTS CHARAC-

TERIZING THE REPRESENTATION 

THE first to find and classify all physically in­
teresting unitary ray representations of the 

proper orthochronous inhomogeneous Lorentz group 
was Wigner. 1 His approach was global in character 
and his treatment was a generalization of that used 
for finding representations of finite groups. 

Bargmann and Wigner2 gave explicit realizations 
for all physically interesting, Hermitian, irreducible 
representations of the infinitesimal generators of 
the group. For the discrete-spin representations of 
both nonzero and zero mass, the realizations were 
given in terms of Dirac-like wave equations. The 
realizations of the massless, so-called "continuous­
spin" representations were given in terms of more 
complicated systems of equations. 

Foldl gave particularly simple realizations of 
the generators for the case of finite mass. The ob­
jective of the present paper is to present analogous 
realizations for all zero-mass representations.4

•
5 

* The work of H. E. Moses was supported by the Office 
of Naval Research. Contract No. Nonr 839(30), Project 
No. NR-013-106. It was performed while he was at the 
Polytechnic Institute of Brooklyn. 

1 E. P. Wigner, Ann. Math. 40, 149 (1939). 
2 V. Bargmann and E. P. Wigner, Proc. Nat!. Acad. Sci. 

U. S. 34, 211 (1948). 
S L. L. Foldy, Phys. ~ev. 102, 568-581. (1~56).. .. 
• For the discrete spm case, our reahzatlOn 1S umtanly 

equivalent to the realization of Shirokov.· The advantage 
of our realization is that it has a similar structure to the 
realizations of the other massless cases and, for that matter, 
of the case of finite mass. 

• Iu. M. Shirokov, Soviet Physics-JETP 6, 919 (1958). 

For the sake of completeness we shall also present 
Foldy's realizations for the case of finite mass. 
Hence the present paper will contain simple realiza­
tions for all cases of current physical interest. 

Since the two-dimensional Euclidean group plays 
a particularly important role in the massless case, 
we shall give all irreducible representations of this 
group as well. 

There are 10 infinitesimal generators of the proper, 
orthochronous Lorentz group. Those which corre­
spond to time and space translations are the Hamil­
tonian and momentum operators, respectively, which 
we denote by Hand P,. The operators which corre­
spond to rotations about the space axes are denoted 
by J ,. Rotations involving one-space axis and the 
time axis are denoted by 61,. The subscript i takes 
on the values 1, 2, 3 corresponding to the three-
space axes. 

The commutation rules satisfied by the generators 
are 

[H,P,] = 0 

[P" Pi] = 0 

[J" PiJ = 0 

[J" HJ = 0 

[J"gji] = 0 

[gj" H] = iP, 

[61" Pi] = i Oij 

[J1 , J 2 ] = iJa 

(1.1) 

(1.2) 

(1.3) 

405 
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[J2, Ja] = iJl 

[Ja, J l] = iJ2 

(I.4) form 

Uh, gj2] -iJ3 

Ccfh, gj3] -iJl (1.5) 

[.~a, gjl] -iJ2 

[J1, P2] [PI, J 2] = iPa 

[J2 , Pa] [P2, J a] = iPl (I.6) 

[Ja, PI] CPa, J l] = iP2 

[J l , gj2] L~h, J 2] = ig)3 

[J2,gja] [g)2, Ja] = ig)l (1.7) 

[Ja, ~1t] [gja, J l] = ig)2' 

It can be shown that any operator which com­
mutes with each operator of an irreducible set of 
Hermitian operators must be a scalar operator. In 
the present case the generators are to form such an 
irreducible set. Four operators which commute with 
this set and hence are scalar operators are par­
ticularly important. They label completely all cases 
of possible physical interest, except the mass-zero, 
discrete-spin case. These four operators, which are 
called invariants or Casimir operators are defined 
as follows: 

Co = HI/H/ 
a 

C 1 = L P: - H2 = p. P - H2 

a 

C2 = 2: W: - L (PJ;)2 
i=l (1.8) 

= W'w - (p.])2, 

where 

w = -[H] + (Pxg)] 

where here g) is the 3-vector C~hg)2gja). 
The invariant Co, which gives the sign of the 

spectrum of the Hamiltonian, can take on the value 
+ 1 or -1. In what follows we shall consider repre­
sentations only for the case of positive energy 
spectrum because for free particles the energy must 
be positive. 

The invariant Cl = _m2 gives the negative of 
the square of the mass of the particle. The mass m 
is taken to positive or zero to be of physical interest. 

The range of values of the invariant C 2 depends 
upon CI , that is, upon whether m is zero or not. 
If m is not zero, C2 will always have the following 

(I.9) 

where s is any non-negative integer or half-integer 
and corresponds to the spin. 

If m = 0, then C2 can have the value zero or 
any positive value. We write 

( 1.l0) 

In the case C2 = 0, which is called the mass­
zero, discrete-spin case, there is another scalar 
operator (p. ])1 H = S. The real scalar S can take 
on any positive or negative integer or half-integer 
value. 

The invariant C3 can have only the values + 1 
or -1. If the value is + 1, the representation is 
said to be single valued; if the value is -1, the 
representation is called double valued. In the non­
zero mass case the value of Ca is determined by C2 

or equivalently 8. If 8 is an integer, the representation 
is single valued; if 8 is a half integer, the representa­
tion is double valued. In the zero-mass case the 
value of C3 (that is, the single or double valuedness 
of the representation) must be prescribed. 

2. THE GENERATORS AND REPRESENTATIONS OF 
THE EUCLIDEAN GROUP 

The Euclidean group has three generators which 
we shall denote by T2 , Ta, and S. They satisfy the 
commutation rules 

['1'2, S] = - i'l'a 

[T3, S] = i1\ 

['1'2' '1'3] = O. 

(2.1) 

The invariants which completely specify the repre­
sentation are 

(2.2) 

where!/J is any real number and r is any non-negative 
number. The case for r > 0 and r = 0 lead to dif­
ferent irreducible representations. 

a. The Case r > 0 

In this case the scalar !/J can take on any value 
o ~ !/J < 1 for inequivalent representations. The 
generators are represented by infinite Hermitian 
matrices which we shall denote by the same letters 
as the abstract generators. 
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if;(p, n) which are twice-differentiable with respect 
to the variables Pi and which vanish identically 

T2 = (T2n .n·) 

Ta = (Tan .n·) 

S = (Sn.n') 

n, n' = any integer, 

(2.3) when p lies in a volume consisting of a right circular 
cylinder about the negative PI axis and a sphere 
about the origin. This volume may be arbitrarily 
small. 

where the matrix elements are The operators PI' P 2 , Pa acting on functions of 
this subspace consist of multiplication by Ph P2, Pa, 
respectively. The operator H consists of multi­

(2.4) plication by p. 

The carrier space is the infinite dimensional 
vector space, i.e., each vector A in the space is 
represented by a column vector (an) where n assumes 
all integral values from - co to + co. The square 
of the vector A is 

n=-CO 

h. The Case r = 0 

In this case the matrices representing T2 and Ta 
are zero. The matrix representing S is one dimen­
sional, i.e., S is any real scalar. The carrier space 
is one dimensional with the one-dimensional Her­
mitian inner product \a\2. 

3. REPRESENTATIONS OF THE INHOMOGENEOUS 
LORENTZ GROUP FOR THE MASSLESS CASE 

Throughout this paper we take the positive energy 
representation. Hence, 

Co = 1 

G't = o. 
a. The Case for which C2 = :a: > 0 

The carrier space is a complex separable Hilbert 
space which we proceed to describe. 

It consists of complex functions if;(p, n) where 
the vector p denotes collectively three variables 
PI, P2, Pa· The variable n is an integer which takes 
on all positive and negative values. The square of 
the length of the vector is given by 

where 

p = jpj. 

The form of the inner product assures us that the 
generators given below are Hermitian. 

The generators are defined on a dense subspace 
of the Hilbert space which consists of functions 

The Hermitian operators J. and 8. are described 
in the following way: 

J l = -i(p X "\1)1 + S 

J 2 = -i(px"\1h + ~+2 S 
P PI 

J a = -i(p)( "\1)a + +Pa S 
P PI 

- . "" - ~ S + P2Pa T 
8a - tp v a + 2( + ) 2 P PI P P PI 

(3.1) 

In Eqs. (3.1) and (3.2) the gradient operator is the 
gradient with respect to p. The operators S, T 2 , 

and T3 are the matrices which are the irreducible 
representations of the two-dimensional Euclidean 
group given by (2.3) and (2.4) (with r = VE) 
and act on the variable n of the functions in the 
carrier space. However, in the present case the 
number cf> is determined by the invariant Ca, i.e., 
by the single or double valuedness of the representa­
tion. If the representation is single valued, Ca = 1 
and we must take cf> = O. If the representation is 
double-valued, Ca = -1 and cf> = t. 

These representations are called "continuous­
spin" representations for the massless case. 

h. The Case for Which C2 = 0 

In the case C2 = 0, the representation has the same 
form as for the previous case. The functions which 
comprise the Hilbert space, however, do not depend 
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on the variable n and there is no summation over 
this variable in the definition of inner product. 
Furthermore, the matrices T2 = Ta = O. The 
matrix S is replaced by a positive or negative integer 
for the single-valued representations and is replaced 
by a positive or negative half-integer for the double­
valued representations. Each choice of S leads to a 
different representation. These representations are 
called discrete-spin representations of the massless 
case. 

4. REPRESENTATIONS FOR THE CASE OF 
PARTICLES OF FINITE MASS6 

The carrier space is a space consisting of functions 
1/;(p, i) where i is a discrete variable which takes 
on 28 + 1 values running from i = - 8 to i = 8 

in steps of 1. (The quantity 8 is the spin described 
in part 1.) The square of the length of the vector is 
defined by 

6 These generators were given in the x representation 
in reference 3 and in the momentum representation in 
reference 4. The latter is the one used above. 

it. f 1f!*(p, i)1f!(p, i) w~~) 
where 

(4.1) 

The operators Pi! P 2 , Pa consist of multiplication 
by PI, P2, Pa, respectively. The operator H consists 
of multiplication by w(p). 

The operators J i and ai are given by 

J i = -i(px'V), + Si 
(4.2) 

ai = iw(p)\l i + (p X S)j[w(p) + m] . 

The operators Si are just the irreducible Her­
mitian spin matrices corresponding to the spin 8 

and operate on the discrete variable i of the func­
tions in the Hilbert space. 

It should be mentioned that Chang7 has given 
another form for the infinitesimal generators for 
the present case, which is based on the representa­
tions of the group given in reference 1. 

7 T. S. Chang, Acta. Math. Sinica, 3, 59 (1953). 
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The angular momentum operators define a set of irreducible tensors which are unique except for a 
normalization constant. The normalization is conveniently defined in terms of statistical tensors 
which describe oriented states. The properties of the tensors discussed here include: (1) the trace 
of products of components of such tensors, (2) symmetry properties of the traces, and (3) the expansion 
of products of components of these tensors into a sum of irreducible tensors. The corresponding 
expansion of commutators and anticommutators of these components is also discussed briefly. 

I. INTRODUCTION wherein p is the density matrix given III terms of 

I N many problems of solid-state physics, for the spin Hamiltonian H by 
example, paramagnetic resonance or nuclear 

orientation, the irreducible tensors in the space of P = exp (-H/kT)/Tr exp (-H/kT). 

the angular momentum operators play a central Then, as has been shown elsewhere,S 
role. If we consider a physical system for which the 
angular momentum is well defined then the tensors (4) 

in question depend only on the angular momentum with 
operators i" i., j •. The statement that the tensors 
are irreducible means that, to within a normaliza­
tion constant, the tensors are uniquely defined by 
the tensor rank L and the projection quantum 
number M. The tensor of rank L, by definition 
transforms under the 2L + 1 dimensional repre­
sentation of the rotation group when a 3-space 
rotation of the coordinate axes is carried out. Thus, 
if R is the rotation operatorl 

RTilfR- l - "" DL T iIf ' L - £.....- iIf'iIf L I (1) 
M' 

where the arguments of the D matrices are the Euler 
angles. 

(4a) 

and cy2(r) is the axially symmetric solid harmonic 
of degree L. It follows at once that 

(4b) 

Obviously, the vector r is, in a sense, a dummy 
symbol since, with the V operator in r space, the 
T:; does not depend on these variables. Equation 
(4b) is thereby a convenient representation of the 
T:; from which these operators can readily be written 
in terms of the components of j. The form (4b) also 
makes it obvious that T:; is an irreducible tensor 
component for rank L. 

It is convenient to define the normalization of 
the T:; in terms of the statistical tensors introduced 
by Fano.2 For this purpose it is sufficient to consider 
the axially symmetric case wherein the statistical 
tensor G L for a state with angular momentum j is 

In (2) Pm is the population (diagonal element of the 
density matrix) for the substate m, and the C coeffi­
cient is a vector addition coefficient.l Then T 2 is 
fixed by 

We proceed to discuss some of the properties of 
the tensors T:; with the end in view of providing 
a better understanding of them and of facilitating 

(2) calculations in which they are involved. We mention 
that a table of the T:; for L :::; 4 has been given in 
the literature.' 

II. TRACE OF PRODUCTS OF IRREDUCIBLE TENSOR 
COMPONENTS 

G l ' TO (3) The evaluation of the partition function and L = I' LP 

* Work partially 
Commission. 

supported by U. S. Atomic Energy derived quantities, including the statistical tensors, 

1 M. E. Rose, Elementary Theory of Angular Momentum, 
(John Wiley & Sons, Inc., New York 1957). 

2 U. Fano, National Bureau of Standards 
1214 (unpublished). 

3 M. E. Rose, Phys. Rev. 108,362 (1957). 
4 E. Ambler, J. C. Eisenstein, and J. F. Schooley, J. Math. 

Report No. Phys. (to be published). See also, G. F. Koster and H. Statz, 
Phys. Rev. 113,445 (1959). 
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FIG. 1. Tetrahedron for n = 3. The unlabeled (dotted) lines 
are j in each case. 

can be done in a practical manner whenever an 
expansion of the density matrix p in inverse powers 
of kT is justified. Since the spin Hamiltonian H can 
always be written in terms of contractions of various 
T"f: with tensors of corresponding rank in the space 
of other variables (for example, magnetic field, 
electric field gradient, spin of interacting systems) 
one is led to the evaluation of traces of products of 
T"f:/. The evaluation of these traces when the tensors 
are expressed in Cartesian form has been discussed 
by Ambler et al.4 The methods given here extend 
and supplement their results. 

We define 

Zn = Tr T"f::T:,~~: ... T"f::. (5) 

From the Wigner-Eckart theorem 1 

(j'm' IT~I jm) = C(jLj'; mM)(j' I!TLII J) 

and m' = M + m. From the fact that the com­
mutator (t, T"f:) = 0, we see that j = j' and from 
(4) it is seen that the reduced matrix element is3 

(j IITLII J) == aL(j) = [(2L + 1)/(2j + 1)]1. 

Thus, 

T"f:I/;~ = aL(})C(jLj; mM)1/;7+ M. (6) 

Using this result we find 
n 

Zn = II adj)S, 
1 

where 

S = E C(jLlj; mMI)C(jL2j; m + JJ.I, M 2) 

and 
k 

JJ.k = EM •. 
I 

The sum over m in (7a) can always be effected by 
n - 2 Racah recouplings. In all cases it should be 
emphasized that the trace of any T~ vanishes except 
when L = 0 and Tg = ao(j) = (2j + 1)-1. 

For n = 1, 2 the results are trivial. Specific 
results follow: 

ZI = (2j + 1)1 OL,O OM,Q (8a) 

Z2 = (- )M' OL,L. op,o' (8b) 

For n = 3 one Racah recoupling gives 

Z3 = [(2LI + 1)(2L2 + 1)]!( - )M'C(LIL2La; M IM 2) 

X W(jLl jL2; j£a) 0",0' (8c) 

A recurrence formula for Za(MIM 2) is
1 

[L3(La + 1) - £I(LI + 1) 

- L 2 (L2 + 1) - 2M1M 2]Z3(MIM 2) 

= [(LI - MI + 1)(LI + M I)(L2 + M2 + 1) 

X (L2 - lVI2)]!Za(MI - 1, M2 + 1) 

+ [(L I + Ml + 1)(LI - M I)(L2 - M2 + 1) 

X (L2 + M2)]tZa(Ml + 1, M2 - 1), 

where ZaCMI M 2 ) = Za as given in (8c). 
For n = 4 two Racah recouplings give 

Z4 = [(2L1 + 1)(2L2 + 1)(2La + 1)(2L4 + 1)]1 

X (- )M.+M. L C(LIL2s; M 1M 2)C(LaL4s; MaM 4) . 
X W(jLl jL2; js)W(jLajL4; js) 0",0' 

The limits on s are 

max (IL) - L21, ILa - L41) ~ 8 

(8d) 

~ min (2j, LI + L2, La + L4)' 

No further simplification can be made in this result 
and evaluation of Z4 can be effected by use of 
numerical tables. 5 Clearly the Zn cannot be ex­
pressed solely in terms of 3n-j symbols because the 
latter are invariants independent of magnetic 
quantum numbers. However, it would be desirable 
to effect the summation in (8d). That this cannot 
be done in terms of familiar constructs is apparent 
from an examination of the topological diagrams 
corresponding to the various Z". Thus, for n = 3, 
to consider a simple example first, there is a tri­
angular relation between the three L., symbolized 
by l!.(LIL2L a) , and also between each L, and 2 
vectors each equal to j. This gives the familiar 
tetrahedron characteristic of the Racah coefficient 
in (8c), see Fig. 1. While this case is fairly trivial 
the n = 4 problem is not. For n = 4 the triangular 

~ Rotenberg, Bivins, Metropolis, and Worten, Table of 
Sj and 6j Symbols, (MIT Press, Cambridge, Massachusetts, 
1959). 
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relations are I1(L\L28) , 11 (L3L48) which show that 
LIt L2, La, and L4 form a closed 4-sided figure as 
must be true. Also, 11 (jjLi) applied for each Li 
and l1(jj8) appears as well. The diagram for n = 4, 
shown in Fig. 2, is two tetrahedra with a common 
edge 8. Since the common edge is not one of the 
vectors in the originally defined vector addition,6 
it is clear that a summation over the auxiliary 
angular momentum vector 8 must appear in the 
result. 

For larger values of n the results follow an easily 
discernible pattern although the expressions for Zn 
become more and more complicated as n increases. 
Thus, 

Z5 = [(2L\ + 1)(2L2 + 1)(2L3 + 1)(2L4 + l)]t 

X (- )M. L l(28\ + 1)(282 + I)]! 

X C(L 1L281 ; ivlllVI2)C(L3L482; M 3M 4 ) 

X C(8\82L5; MI + M 2 , M3 + M 4 ) 

X W(jLdL2; j81) W(jL3jL4; j82) 

X W(j8\j82 ; jL5) 0.,0' (8e) 

The n = 5 diagram consists of 3 tetrahedra with 2 
common edges, 8 1 and 8 2 , constructed so that the five 
L, form a pentagon as required. One form of this 
is shown in Fig. 3. In general, the diagram for Zn 
consists of n - 2 tetrahedra with n - 3 common 
edges with the n vectors Li forming a polygon of 
n sides. The number of summations appearing in 
the expression for Zn is always n - 3, it being under­
stood that n 2': 3. These summations are over the 
auxiliary angular momenta which always appear 
in the topological figures as inside, and hence com­
mon, edges. The topological diagrams for any case 
are readily constructed from these rules. It is now 
seen that for n > 3 the Zn are not familiar recoupling 
coefficients. 

Since the quantities occurring in Zn, for n 2': 4, 

FIG. 2. Two tetrahedra with common edge describing 
n = 4. See also caption to Fig. 1. The labeling of the L values 
can be changed by cyclic permutation. 

6 These are the Li and j. 

FIG. 3. Three tetrahedra with two common edges, 81 and 
82, describing n = 5. See also caption to Fig. 1. The labeling 
of the L values can be changed by cyclic permutation. 

constitute new constructs in the field of Racah 
algebra they should be interesting to study in their 
own right. Some of their properties emerge from a 
study of the symmetries of Zn. 

The most obvious symmetry property is that Zn 
is unchanged by any cyclic permutation of the 
indices 1 to n.7 Another symmetry property follows 
from consideration of the trace of the Hermitian 
conjugate operators. Thus, from the fact that j. V 
is Hermitian8 it follows that 

Tt!· = (- )MT;,l<f . (9) 

We make the notation more specific by writing 
Zn(M,) for Zn. Then 

Zn(M.)* = (-)""Zn(-M,) , (10) 

where the tilde means that the index order n, 
n - 1, ... 1 is to be changed into 1, 2, .. , n. 
The asterisk on Zn means complex conjugate. From 
(7a) it is seen that 

Zn(-M.) = (-)~L'Zn(M,). (11) 

The sum in the exponent is over all L •. Also, the 
Zn are manifestly real. Hence, 

(12) 

That is, reversing the order of the indices (in both 
Land M) multiplies Zn by a phase ± 1. Other 
symmetry rules are obviously obtained by com­
bining this result with the invariance of the trace 
under cyclic permutations. Simultaneous inversion 
of the index order and changing the sign of all the 
M. leaves Zn unchanged. Ko other nontrivial sym­
metry relations exist unless it is assumed that some 
or all of the T~: commute or anticommute. In this 
connection it may be remembered that two tensor 
components commute if for both of them 111. i = O. 

7 The lack of symmetry in (Se) is only apparent as may 
be seen by applying the Biedenharn-Elliott sum rule after 
performing a Racah recoupling to eliminate 81 of 82, see 
reference 1, Eq. (6.15). 

8 The operators j and V operate in different spaces. We 
are concerned here only with the space in which j operates. 
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If all M; = 0 it follows from (11) that L: L; is 
even or that Zn = O. Obviously, Zn is then invariant 
under all permutations of the L i • 

As an application of the foregoing consider a 
spin j coupled to a spin s by the invariant interaction 

H = K L: (-)MTf(j)T'LM(S) 
M 

where K is a constant, T~I (s) is constructed in exactly 
the same way as Tf (j). The eval ua tion of a trace 
of an operator in j space, say, Till' (j), will involve 
evaluation of a sum of terms of the form 

For simplicity we have assumed that the total 
Hamiltonian contains terms which commute with 
H. The trace operation will now involve a sum­
mation over all states of the compound system of 
the two angular momenta, j and s. For example, 
if j and s represent nuclear and electronic spins 
the trace involves summation over nuclear and 
electronic states. The terms with n = 0 and 1 vanish. 
Therefore, we consider 

r2 = K2 Tr L: T~'(j)( - )M,+M'TX'(j)TX'(j) 
M1M2 

x T'LM'(s)T'LM,(s). 

The trace in s space gives (_)M, DMdM.,O so that 
the preceding expression reduces to 

r2 = K2 Tr L: T~'( - )M'TX'T'LM, 
Ml 

and the argument j has been dropped. This trace 
vanishes unless M' = 0 and in that case (8c) gives 
the result 

for it. The term we have evaluated contributes to 
the I/T2 part of the nuclear polarization induced 
by the interaction H. It is interesting that this 
result is independent of L. 

III. EXPANSION OF PRODUCTS OF IRREDUCIBLE 
TENSORS COMPONENTS 

It is clear that the product of two irreducible 
tensors T1f: and T1f: can be expanded into irreducible 
tensors T~, with M = Ml + M 2 • The value of Z2 
is clearly related to the coefficient of T~ in this 
expansion. Similarly, Zn is related to the coefficient 
of T~ in the expansion of the product of the n 
tensor components appearing in (5). In particular, if 

where the product on the left is ordered as in (5), 
then 

Zn = COZ 1 = Co(2j + l)t. (13) 

It is of interest to determine the complete ex­
pansion of a product of two tensors components 
since from this the expansion of a product of an 
arbitrary number of tensors components can be 
obtained by a step-wise procedure.9 The expansion 
of the product of the components of two tensors 
can be written in the form 

T1f:T1f: = L: C(L1L2"Xj MIM2)b),(LIL2)T~', (14) 
), 

where the bx serve to adjust the normalization. It 
is these quantities we wish to determine. To do this 
we first give boo This is obtained from Z2, and from 
(8b) it follows that10 

bo(L1L2) = [(2L1 + 1)/(2j + 1)]'( - )L, h,L.' (15) 

To evaluate b), we use Za and carry out the expansion 
of the ordered product of the three tensor com­
ponents T1f:, i = 1, 2, 3. Thus, 

T~i:T~i:T"t = L: C(L1L2"Xj M 1M 2)b),(L1L 2) 
), 

X L: C("XLa"X'j J.l2M a) X b),,("XLa)n:. 
)" 

Taking the trace we have Za on the left and on the 
right "X' = J.la = O. Using 

C("XLaOj J.l2Ma) = (2L3 + l)-!( - »,-P, Du. Dp,o, 

and (15) we find 

b),(L1L2) = [(2L 1 + 1)(2L2 + 1)]!W(jLdL2 j j"X). (16) 

This result could also be derived by evaluating the 
nondiagonal matrix element of (14) using (6). If 
(16) is substituted in the ensuing equation the 
standard formula of the Racah recoupling emerges. l 

From the symmetry properties of the Racah 
coefficient it follows from (16) that 

b),(L1L 2) = b),(L2Ll) ' 

even though T:!: and T:!:, in general, will not 
commute. Then it is seen that 

T:!:Tf: ± T:!:Tf: 

= L C(L1L2"Xj MlM2)b),(LIL2)E),T~', (17) 
), 

9 The range of A values is, of course, 
min ~, 6;L, :S A ::; ~i L" 

where Oi = ±1 incoherently. 
10 From (15) we obtain the useful result that the scalar 
~M (- )MTLMTL-M = [aL(j)]2 = (2L + 1)/(2j + 1). 
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where 
€). = 1 ± (_)L.+L,+).. (17') 

It follows then that the commutator contains only 
those A for which Ll + L2 + A is odd and the 
anticommutator contains only those A for which 
Ll + L2 + A is even. A trivial example is T:;' "" 
il "" (iz + ii.) and T:;: ,......, i. = io. Then Ll = L2' = 1 
and M2 = 1, Ml = O. The commutator Mo - ioil 
is known1 to be proportional to it. Hence, only 
A = 1, JJ.2 = 1 appears in (17) with the lower sign, 
which agrees with the rule given. Again, the anti­
commutator Mo + ioit is proportional to T;. Thus, 
only A = 2, JJ.2 = 1 appears in (17) in this case. The 
fact that A = 0 does not occur in the anticommutator 
is trivial since in the example considered JJ.2 rf O. 
If JJ.2 = 0, as in the case id-t + i-dt = i! _ j2, 

the trace does not vanish. In general, 

Tr (T~:, TftJ,:)+ = 2(- )M. o~,o OL,L" (18) 

which is obvious from (8b). 
The rule given above is also consistent with the 

fact that the trace of a commutator is always zero. 
Hence, A = 0 cannot occur in (17) with the lower 
sign even when Ll = L2. The relations (17) are 
generalizations of the commutation rules for the 
angular momentum operators; for L t = L2 = 1 
the commutator in (17) involves A = 1 only and 
we obtain 

(ill" iM.)- = V2 C(1Il; M 1M 2)jM,+M, (19) 

which are the well-known commutators! of the 
spherical components of j. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 3 ~IAY-JUNE, 1962 

The Quantum-Mechanical Scattering Problem*t 

THOMAS F. JORDAN 

Department of Physics and Astronomy, University of Rochester, Rochester, New York 
(Received November 10, 1961) 

The purpose of this paper is threefold: to provide a mathematically rigorous formulation of the 
quantum-mechanical scattering problem from the time-independent point of view as has been done 
by Jauch from the time-dependent point of view, to establish a union between the two formulations 
and to investigate the necessity of the asymptotic condition which occurs as a postulate in the time~ 
dependent formulation. The formulation of the problem depends only on the "total" and "free" 
Hamiltonian operators. Under the conditions necessary for the time-dependent formulation, the 
wave operators defined by the asymptotic limits provide a unique solution of this problem. The 
possi?ility that solutions can e~ist when the asymptotic conditions are not valid is investigated by 
defin.mg wave ?perators by an mtegral representation. The conditions sufficient for these to provide 
a umque solu~lOn !1re shown to be possibly weaker than the asymptotic conditions; there may be a 
class of HamIltonIan operators for which such solutions exist but for which the asymptotic limits 
do nO.t. An explicit characterization of such a set of Hamiltonian operators is not achieved, but this 
questIOn of the necessity of the asymptotic condition has been reduced to a specific mathematical 
problem. It is hoped that this paper will find a reader who is able to carry the mathematical in­
vestigation further. 

I. INTRODUCTION 

development of descriptions of scattering T HE 
by quantum-mechanical theories has been 

marked by a shift from a time-independent to a 
time-dependent point of view as these theories have 
evolved from elementary wave mechanics to quan­
tum field theory. In wave mechanics one solves the 
Schrodinger equation to find the wave functions 
which represent the stationary state of the Hamil­
tonian which describes the interacting system. The 
boundary conditions corresponding, for example, to 
an incident beam and outgoing scattered particles 
are readily applied, and the flux of particle proba­
bility current calculated from the resulting solution 
yields the scattering cross section. But the formula­
tion of such boundary conditions becomes increas­
ingly more difficult as the problems considered 
become more complicated than those involving the 
scattering of a fixed number of particles by poten­
tials which are functions of their positions. Hence 
it has been advantageous to adopt a time-dependent 
formalism in which one considers time-dependent 
state vectors. Taking the limit of these (in the 
interaction picture) for infinitely positive and nega­
tive times serves as a substitute for applying the 
boundary conditions of incoming and outgoing 
scattered waves. This formalism has been an im­
portant factor in the development of the present 

form of quantum field theory in which the descrip­
tion of scattering depends on an asymptotic condi­
tion requiring the existence of limits of the field 
operators for infinitely past and future times. One 
would like to know to what extent such an asymp­
totic condition postulate is necessary, if it could be 
replaced by a weaker condition which is physically 
understandable but still gives the correct descrip­
tion of scattering, and if such a postulate could be 
understood just as well within the stationary state 
picture of scattering as within the time-dependent 
picture. 

In this paper we will study the relation between 
the time-dependent and time-independent formal­
isms of scattering and the necessity of the asymp­
totic condition for a quantum mechanical system 
described by the "total" and "free" Hamiltonian 
operators. The asymptotic condition to which we 
refer is that of strong convergence as a parameter 
becomes infinite. This is considerably simpler than 
the asymptotic condition used in quantum field 
theory both from a physical and mathematical point 
of view. In general, our treatment will correspond 
to the usual formulation of nonrelativistic quantum 
mechanics. By thus limiting our study to a relatively 
simple mathematical structure we will be able to 
maintain complete mathematical rigor; we can use 
the mathematics of functional analysis to ensure 
that all the quantities we use are well defined and 

* ;.4l1pported in part by the Atomic Energy Commision. that our results are rigorously derived. We will not, 
t The contents of this paper are contained in a thesis f I 

submitted by the author to the University of Rochester in or examp e, use such nonexisting quantities as 
partial fulfillment of the requirements for the Ph.D. degree. eigenvectors of operators which have a purely con-
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THE QUANTUM-MECHANICAL SCATTERING PROBLEM 415 

tinuous spectrum. But before we begin the rigorous 
treatment it will be helpful to consider a brief non­
rigorous outline of the two types of scattering 
formalism. 

According to the time-independent approach1
,2 

one finds the eigenstates ift of the total Hamiltonian, 
H = Ho + V, with eigenvalues E in the continuous 
spectrum, by considering the interaction V as a 
perturbation with eigenstates ¢ of the "free" 
Hamiltonian H 0 with identical eigenvalues E as the 
unperturbed states. From 

(Ho + V)ift = Eift, Ho¢ = E¢ 

we get 

The two solutions of this equation 

or, after iteration, 

(=) + I' 1 T,' ift = ¢ 1m E H ± . r¢ 
f-+O+ .f - 0 1.E 

of the system is not to be considered: The system is 
described as being in a stationary state of the total 
Hamiltonian which differs from a stationary state 
of the unperturbed Hamiltonian only by the presence 
of "outgoing" scattered "waves." The scattering 
amplitude gives the probability for observing a 
stationary state of the total Hamiltonian which 
differs from a stationary state of the "free" Hamil­
tonian only by the presence of "incoming" scat­
tered waves. We note here that the eigenstates of 
the unperturbed Hamiltonian need not in general 
describe free particles. Indeed it is common practice 
to use Coulomb wave functions, for example, to 
describe the unperturbed states.3 

The central position of the time-dependent ap­
proach in the formalism of field theory4 has resulted 
in much attention (see Sec. 2) being given to this 
method of describing scattering.5

-
s The system is 

described by a time-dependent state vector in the 
interaction representation. If these vectors at dif­
ferent times t, to are related by the unitary trans­
formation U(t, to) then it follows from the Schr6-
dinger equation that 

i(ajat)u(t, to) V(t)U(t, to), (1.6) 
+ lim F ~ . V lim E ~ . V¢ + 

.~o+ - - 0 ± u ,~o+ - 0 ± U where 
(1.2) 

are identified as containing the "plane-wave" state 
¢ plus "outgoing" and "incoming" scattered waves, 
respectively. 

The scattering amplitude is then constructed as 
follows: If ift~+) is a certain "outgoing wave" solution 
which reduces to the "free" state ¢n as the inter­
action vanishes, we want to known the probability 
amplitude (ift~-), ift~+)) for observing, in this state, 
scattered particles as they would be measured in 
the "incoming-wave" state ift~-) which reduces to 
the "free" solution ¢mo If ,ve define wave operators 
fL by 

ift(=) = Q±¢ 

and a scattering operator S by 

S = Q~Q+, 

then the scattering amplitude has the form 

(l.3) 

(1.4) 

(ift~,-), ift~+)) = (Q-¢m, Q+¢n) = (¢m, S¢n). (1.5) 

From this point of view the time development 

1 P. A. M. Dirac, Principles of Quantum Mechanics 
(Clarendon Press, Oxford, England, 1958), Chap. 8, Fourth 
Ed. 

2 C. M¢ller, Kg!. Danske Videnskab Selskab, l.\Iat.-fys. 
~ledd. 23, No.1 (1945). 

v(t) = e;H"Ve- iH,' 

with the boundary conditions 

and 

An explicit form for this operator is 

In the distant past the scattering system is thought 
to consist of ,videly separated parts so that the 
interaction potential V is ineffective and the system 
can be represented by an eigenstate, say, ¢n, of the 
free Hamiltonian H o. During the time interval 

3 For a more complete review of the time-independent 
method and its relation to the time-dependent approach 
see S. T. Ma, Phys. Rev. 87, 652 (1952). 

1 F. J. Dyson, Phys. Rev. 75, 486 (1949). 
• B. Lippman and J. Schwinger, Phys. Rev. 79, 469 (1950). 
6 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 

398 (1953). 
7 H. S. Snyder, Phys, Rev. 83, 1154 (1951). 
8 J. M. Jauch and F. Rohrlich, Theory of Photons and 

Electrons, (Addison Wesley Publishing Company, Reading, 
Massachusetts, 1955), Chap. 7, provides a review of both the 
time-dependent and time-independent methods. 
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- 00 < t < 00 the interaction causes the state of 
the system to change according to the transforma­
tion U. In the remote future the system separates 
again into noninteracting parts so that its state 
vector approaches an eigenstate of the free Hamil­
tonian. The scattering amplitude is taken to be 
the probability amplitude for observing, as t ~ + 00 , 
the eigenstate I/>m of H o, for the case that the system 
was initially (as t ~ - 00) described by the eigen­
state I/>n. If we let 

S = lim U(t, to) (1.8) 

then the scattering amplitude is 

The limits in Eq. (1.8) playa critical role in this 
formulation. Suppose that If; represents the state 
of the scattering system at t = 0. Then at any other 
time the state of the system is represented by C-iH'If;. 

Now we have stated that as t ~ ± 00 we wish this 
to behave as if the interaction were ineffective. 
That is we require the existence of vectors I/>in and 
<Pout such that 

(1.9) 

This is equivalent t09 

(1.10) 

But any eigenstate of the free Hamiltonian with 
the eigenvalue belonging to the continuum is 
elegible to be an initial (in) or final (out) state. 
So if we assume, as is usually done, that Ho has no 
bound states, then the "in" and "out" vectors span 
the whole space and the 

exists, and so does the scattering operator 

s = U( 00, - 00 ) U(oo, O)U(O, - 00) 

U+(O, oo)U(O, -00). 

(1.11) 

(1.12) 

Comparing the above with Eqs. (1.3) and (1.4) and 
the preceding discussion shows that the connection 
between the two methods can be established by the 
identification 

Q. = U(O, =t= 00). (1.13) 

9 The convergence in (1.9) and (1.10) is strong convergence; 
hence 
limt_.", Ilexp (-iHt)t/; - exp (-iHot)<t>11 

= lit/; - exp (iHt) exp (-iHot)<t>11 
establishes the equivalence of (1.9) and (1.10). 

The importance and validity of the asymptotic 
condition, Eq. (1.9) or (1.11), have been given much 
consideration. 10 .1l Various devices such as an ex­
ponential cutoff of the interaction in time5 or the 
averaging of the preparation of the initial state6 

have been used to ensure the existence of the limits. 
We only wish to note that the latter method leads 
to the formulas 

U(O, - 00) = lim fO ec"eiH'c-iHot dt 
E-O+ -!Xl (1.14) 

U(O, + 00) 

It has been observed3.5.6.1o.12 that the time-de­
pendent formulation, even with these methods of 
forcing the asymptotic condition, should give the 
same results as the time-independent formulation, 
as indicated by Eq. (1.13). 

In the next section we will continue the review 
of the time-dependent formulation of scattering by 
outlining the mathematically rigorous treatment 
given by Jauch,13 and the mathematical investi­
gations of the conditions under which the asymptotic 
limits exist and render this treatment applicable. 

It is to be emphasized that while much attention 
has been given to the rigorous formulation of the 
problem from the time-dependent point of view, 
there has been no mathematically satisfactory for­
mulation of scattering theory according to the 
stationary-state approach. In Sec. 3 we will give a 
treatment of the problem which reflects the time­
independent point of view, setting up a rigorous 
mathematical problem whose solutions define the 
wave operators of Eq. (1.3). This formulation is 
not limited by any dependence on configuration 
space methods. 

In the following section we show how this problem 
is closely related to the time-dependent treatment 
given by Jauch and that, under the asymptotic 
conditions required in this treatment, the wave 
operators given by Jauch also provide a unique 
solution of the stationary state problem. 

Since the asymptotic conditions do not enter the 
stationary-state problem, there is the possibility 
that solutions may be found even when the asymp­
totic limits do not exist. In Sec. 5 we explore this 
possibility by developing an integral representation 

10 M. N. Hack, Phys. Rev. 96, 196 (1954). 
11 H. E. Moses, Nuovo cimento 1, 103 (1955). 
12 F. Coester, M. Hammernesh, and K. Tanaka, Phys. 

Rev. 96, 1142 (1954). 
13 J. M. Jauch, Helv. Phys. Acta 31, 127 (1958). 
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for the wave operators which, in the case that the 
asymptotic limits exist, have been shown by Jauch 
to equal the wave operators of the time-dependent 
formulation. We show that these wave operators 
provide a unique solution to the stationary-state 
problem whenever they exist and are partially iso­
metric operators connecting the continuum sub­
spaces of the free and total Hamiltonians. 

In the following section we investigate the condi­
tions under which these wave operators (when they 
exist) have the partially isometric property neces­
sary and sufficient for a solution of the scattering 
problem. No necessary and sufficient conditions are 
given. We do show in a direct way how the conditions 
which have most often been used to prove the exist­
ence of the asymptotic limits can be used to prove 
the isometric property of these wave operators. 
We also show that the requirements that these 
wave operators have the isometric property are not 
stronger, and possibly weaker, than the asymptotic 
conditions necessary for the time-dependent formula­
tion. Consequently there may be a class of Hamil­
tonians for which a solution of the scattering problem 
exists, but for which the asymptotic conditions are 
not valid. We have not been able to find any explicit 
characterization of such a set of Hamiltonian 
operators. But this question of the necessity of the 
asymptotic condition has been reduced to a specific 
mathematical problem. It is hoped that this paper 
will find a reader who is able to carry the mathe­
matical investigation further. 

2. TIME-DEPENDENT FORMULATION OF 
SCATTERING 

We consider the description of a quantum­
mechanical system in terms of operators on a 
(separable) Hilbert space JC. In particular the "free" 
and "total" Hamiltonians are represented by linear, 
self-adjoint operators Ho and H, respectively. Let 
Xo and X be the subspaces of JC spanned by the 
eigenvectors of Ho and H, respectively, and let 
;)Tl:o = XO.L and ;m = X.L be their orthogonal com­
plements or the continuum subspaces14 of H 0 and 
H, respectively. Let Po and P be the projections 
on ;mo and ;m, respectively. 

In order to define the operators necessary for a 
description of scattering, Jauch13 imposed the fol­
lowing two conditions on the Hamiltonians (we 
gh'e these as slightly generalized by Kuroda15

). 

14 See, e.g., M. H. Stone, "Linear Transformations in 
Hilbert Space," American Math. Soc. Colloquium Publ. 15, 
Theorem 5.13. 

1, S. T. Kurtoda, ~uovo cimento 12, 431 (1959). 

For any tjJ E JC the strong limits 

lim eiH'e-iH"Pot/! = fl..t/! (I) 
t_""co 

exist. This defines the wave operators fl. ... Let (fl. 

be the ranges of the wave operators. The second 
requirement is that 

(II) 

The first requirement is the asymptotic condition. 
The second is characteristic of single-channel scat­
tering; it ensures that the continuum states of H 
are the possible states of the scattering system at 
t = 0 and the continuum states of Ho are the "in" 
and "out" states. The scattering operator may then 
be defined by 

(2.1) 

It has then been shown13
•
15 that these operators 

have all the properties needed for the description of 
scattering. It will be useful to state some of these 
here: The wave operators are partially isometric 
operators16 mapping ;mo to ;m. That is, 

fl. .. ;mo = ;m: 

II fl.:tjJ II = IltjJ II for tjJ E ;mo 

fl.:tjJ = 0 for tjJ E Xo = ;mt 
or equivalently, 

fl.:fl.", = Po 

fl..fl.: = P. 

(2.2) 

(2.3) 

If ;mo = JC (Ho has no bound states) then fl.. are 
isometric; fl.:fl.~ = 1. If also ;m = JC (H has no 
bound states) then fl. .. are unitary; fl.~fl.: = 1 also. 
The scattering operator S is a partially isometric 
operator which is unitary in ;mo 

S+S=SS+=Po 

and commutes with the part of Ho in ;mo 

SHoPo = HoPoS. 

(2.4) 

(2.5) 

The wave operators have the intertwining property 

eiH'fl.", = fl. .. e- iH" for all real t, (2.6) 

and the part of H in ;m is unitarily equivalent to the 
part of H 0 in ;mo 

HPfl.. = fl..BoPo 

fl:HP = HoPofl.:. 
(2.7) 

16 F. J. Murray and J. von Neumann, Ann. Math. 37, 
116 (1936), Sec. 4.3. 
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The wave operators have the integral representations has shown that it is necessary and sufficient that 

..... l' fO ,t iHt -iHotp dt ."+ = 1m Ee e e 0 
E-tO+ -co 

..... + l' fO "p iHot -iHt dt H+ = 1m Ee oe e 
E-O+ -co 

(2.8) 

We can form the operators 

Q",,(t) = e iHol Q""e- iHot • 

By Eqs. (2.6), (I), (2.1), and (2.2) these have the 
properties that 

t-HpOO 

lim Q+(t) = S, 
,~OO 

which, comparing with the discussion of Eqs. (1.6)­
(1.8) allows us to make the identification 

Q.(t) = U(t, =F 00) 

the (strong) limits 

(2.10) 

also exist. Sufficient conditions for the existence of 
these limits have been found. 22 They provide a 
generalization of earlier investigated sufficient con­
ditions23

•
24 which required the trace of IVI to be 

finite. We note that under these conditions Kuroda 
also proves the (strong) continuity of the wave 
operators and the scattering operator with respect 
to V (or with respect to H). 

3. FORMULATION OF THE SCATTERING PROBLEM 

We now want to provide a rigorous formulation 
of the scattering problem from the stationary-state 
point of view. Let, H, Ho, P, Po be defined as in 
the previous section on the separable Hilbert space 
JC with the subspaces ~, ~o, etc. We want linear 
operators Q. [see Eq. (1.3)] which map the continuum 
states cf> E ~o of the "free" Hamiltonian to con­
tinuum states 1/;<"") E ~ of the total Hamiltonian. 
That is, we require for the solution of the scattering 
problem two linear operators Q"" defined everywhere 
on ~o such that if we let 

(3.1) 

in agreement with Eqs. (1.11), (1.12), and (1.13). then 
.1.(*) E em' These considerations provide a rigorous mathe- 'Y v'C 

matical treatment of the scattering problem, from or 
the time-dependent approach, whenever conditions Q",,~o E ~m:. 

(I) and (II) are valid. There have been several Furthermore we want to be able to obtain all the 
investigations15.I7-2I which provide conditions under "stationary states" 1/;("") of the scattering system 
which the asymptotic limits (I) exist. These have, by this operator (this means, as in the time-de­
for the most part, used the common result that pendent case, that we have "single-channel" scat­
when we can define V = H - Ho with a domain tering), and we want any continuum state of the 
:D(V) dense in ~o, and when there is a subset:o total Hamiltonian to be such a state. Therefore we 
of ~o such that the linear manifold determined by:o require that Q. provide a one-to-one mapping of 
is dense in ~o and e-iHo':o C :o(V), it is sufficient ~o onto ~ (one-to-one correspondence between the 
for the existence of the limits (I) that for any cf> E:D perturbed and unperturbed states) 

L~ I lVe-iHotcf> I I dt < 00. (2.9) 

Roughly speaking, it has been shown that for inte­
gral operators V this is true if V falls off at infinity 
faster than r- 1

• 

In order that condition (II) be valid, Kuroda15 

17 J. M. Cook, J. Math. and Phys. 36, 82 (1957). 
18 M. N. Hack, Nuovo cimento 9, 731 (1958). 
19 J. M. Jauch and I. I. Zinnes, Nuovo cimento 11, 553 

(1959). 
20 T. A. Green and O. E. Lanford, III, J. Math. Phys. 

1, 139 (1960). 
21 T. Ikeba, Arch. Ratt. Mech. Anal. 5, 1 (1960). 

(3.2) 

since we are not interested in the eigenstates (bound 
states) of Ho, it is convenient to let Q. map these 
to zero, Q.Xo = 0; then 

(3.3) 

If cf> E ~o is normalized then we want 1/;("") E m to 

22 S. T. Kuroda, J. Math. Soc. Japan (a) 11, 247 (1959); 
(b) 12, 243 (1960). 

23 M. Rosenblum, Pacific J. Math. 7, 997 (1957). 
24 T. Kato, J. Math. Soc. Japan, 9, 239 (1957); Proc. 

Japan Acad. 33, 260 (1957). 
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also be normalized. Hence we require 

II n~q,11 = I/q,1/ for q, E mIo. (3.4) 

Therefore n. must be partially isometric operatorsl
6 

from mIo to mI, or equivalently they must satisfy 
the equations 

(3.5) 
n=n: = P. 

(Then n: will be a partially isometric operator 
from mI to mIo.) 

Kow we require that 

Hn=po = n=Hopo• 

Since n=q, = 0 for q, E mIO.L and mIo reduces HO,14 

this is equivalent to 

Hn .. = n=Ho. (3.6) 

By taking the adjoint of this, it follows that 

(3.7) 

Now we can observe, if we allow ourselves the luxury 
of using (nonexisting) eigenvectors of Ho and H 
with eigenvalues in the continuous spectrum, that 
the requirement (3.6) is equivalent to the require­
ment of the nonrigorous formulation that: q, is an 
eigenvector of H 0 with eigenvalue E in the continuous 
spectrum if and only if V,y·) = n.q, are eigenvectors 
of H with the same eigenvalue. Let (3.6) be valid. 
Then if H oq, = Eq, we have 

Hy/") = Hn .. q, = n .. Hoq, = n .. Eq, = Eif/") 

and if Hif/'") = Eif/*), then 

i.e., they are stationary states and since they have 
the same energy eigenvalue they have the same time 
dependence. But even in the rigorous case where 
the states are not represented by eigenvectors we 
have that 
If<'')(t) = e-iH'lf<=) = e-iHtn=q, 

n=e-iH,'q, = n .. ep(t) 

so that the perturbed and unperturbed states have 
essenentially the same time dependence. 

Here we have used the fact that (3.6) is equiva­
lent to 

(3.8) 

for all real t. This can be proved as follows. We 
introduce the two families of projection operators 
FA, E A, - (X) < A < (X) which provide a spectral 
representation of the operators Hand Ho, respec­
tively. That is, if q" If E JC we have that 

(q"Hlf) = L:Ad(q"Fxlf) 

and 

(q" Holf) = L: A deep, Exlf). 

Let Hn. = n .. Ho. This means that if q, belongs to 
the domain of Ho, then n=q, belongs to the domain 
of Hand 

H n=q, = n .. H 04> 

and conversely, if n .. q, belongs to the domain of H, 
then q, belongs to the domain of Ho and the above 
equality is valid. By induction we can prove that 

Hnn. = n .. H~ 

Conversely if Hoq, Eq, and Hn .. cp = En .. q" then for any positive integer n. For if this is true, we 
have that q, belongs to the domain of H~ if and only 

Hn .. q, = En=q, = n .. Eq, = n .. Hoq,. if q, belongs to the domain of Hnn .. , in which case 

But since such eigenvectors q, span mIo this implies 
(3.6). 

N ow if we are going to be mathematically rigorous 
we can not use eigenstates corresponding to eigen­
values in continuous spectrum of the Hamiltonian. 
But we can retain some of their fundamental 
physical interpretations. In particular if q, and 
If<'') = n .. q, are eigenvectors with eigenvalue E of 
Ho and H, respectively, which represent, at t = 0, 
the states of physical systems described by these 
Hamiltonians, then at any time t these states will 
be represented by 

q,(t) = e-m.,q, = e-iEtcp 

and 

Hnn.q, = n*H~q,. 

If, in addition, Hnn.q, belongs to the domain of H, 
or equivalently if q, belongs to the domain of Hn

+
1n .. , 

then n=H~q, belongs to the domain of Hand 

H n+1 n=q, = Hn .. H~q,. 

But if n .. H~q, belongs to the domain of H, then 
H~q, belongs to the domain of Ho, or equivalently, 
q, belongs to the domain of H~+ 1, and 

Hn+ln=q, = HfJ .. H~q, = n .. H~+lq,. 

By reversing the argument, one can show that if q, 
belongs to the domain of H~+l, then n .. q, belongs 
to the domain of H n

+
1 with the above equality 

again being valid. Hence 
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which completes the proof of the induction pro­
cedure. From this we obtain that 

P(H) Q. = Q.P(H 0) 

Thl
.s where J.lk are the eigenvalues of A. Then 

where P(x) is any polynomial in x. can be 
extended to obtain25 IIA~W = (A~, A~) 

ex(H) Q", = Q.ex(H 0) for all real X, 

where e,(x) = 1 for x ::::::; X, and e,(x) = 0 for x > X: 
or equivalently we have that 

F,Q. = Q.E,. 

For any ¢, ~ belonging to X it follows that 

i: e-;x, d(~, FxQ.¢) = i: e-;x, d(~, Q.Ex¢) 

for all real t, which is the precise statement of the 
desired result that 

for all real t. Conversely, if the above equality is 
valid for all real t, the uniqueness of the Fourier 
transform implies that for any ~, ¢ belonging to X 

(~, FxQ.¢) = (~, Q.Ex¢) 

If ~ has unit norm, we have 

so that 

Now in our approximation of H by H - A we can 
choose A so that Lk J.li is arbitrarily small.26 Since 
the limit points of the spectra of Hand H - A are 
the same, given any point in the continuous spec­
trum of H, there is a point E arbitrarily close to 
it which is an eigenvalue of H - A. Thus there 
exists a vector ¢ with unit norm such that 

(H - A)¢ = E¢ 

for all real X. From this it follows that ¢ belongs to or 
the domain of Ho if and only if Q~¢ belong to the 
domain of H, in which case 

(H - E)¢ = A¢. 

(~, HQ.¢) = i: X d(~, FxQ.¢) 

= i: X d(~, Q.Ex¢) = (~, Q.Hor/», 

or equivalently 

Hn. = Q.Ho. 

While we can not have states with an exact 
value of the energy in the continuous spectrum, we 
can have states with an arbitrarily small spread in 
the energy about some mean value E. An example 
of such states can be constructed as follows. If H 
is a self-adjoint operator, it can be approximated 
by H - A, where A is completely continuous and 
symmetric, such that H - A has a pure point 
spectrum but the limit points of the spectrum of H 
and of the spectrum of H - A are the same.26 

Since A is completely continuous there exists a 
set of basis vectors ¢k in X such that for any ~ E X 

25 J. von Neumann, Mathematical Foundations of Quantum 
Mechanics (Princeton University Press, Princeton, New 
Jersey, 1955), pp. 141-145. 

26 Riesz and Sz. Nagy, Functional Analysis (Ungar 
Publishing Company, New York, 1955), p. 367. 

Such state vectors can be seen to have arbitrarily 
small dispersion of the energy. For 

(¢, (H - E)2¢) = ((H - E)¢, (H - E)¢) 

= (A¢, A¢) = IIA¢W 
::::::; LJ.l! 

k 

can be chosen to be arbitrarily small. 
The time dependence of these states can be made 

to approximate, over some finite interval, that of 
a stationary state. The mean value and second 
moment of the energy will be preserved in time and 
they will be the same for the perturbed and un­
perturbed states 

(~(*), H~(·» = (Q.¢, HQ.¢) 

(Q.¢, Q.Ho¢) = (¢, Ho¢) 

(~(*), H2~(.» = (HQ.¢, HQ.¢) = (Q.Ho¢, Q.Ho¢) 

= (Ho¢, Ho¢) = (¢, H~¢). 

Another requirement which is a standard part 
of perturbation theory is that the perturbed states 
reduce to the unperturbed states, ~(.J ~ ¢, as the 
interaction vanishes, H ~ H o. We could require 
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that n. be strongly continuous27 as a function of and Rohrlich8 that 
H and of H o, and that 

(3.9) 

In the particular case that the common domain 
'JJ(H) (\ 'JJ(H 0) of Hand H 0 is dense in X and 
the operator V defined by H = Ho + g V is bounded 
this would imply that n. are strongly continuou~ 
functions of g and n. ~ Po as g ~ O. However, we 
will see that the wave operators can be uniquely 
determined without their satisfying this condition. 
It may even be desirable for some problems that 
they do not.28 Hence we will not include this con­
dition in our formulation. 

Finally we need a condition which ensures us 
that n",cf! correspond to the solutions with purely 
"outgoing" or "incoming" scattered "waves". Now 
Coester, Hammermesh, and Tanka12 have shown 
that if we find the wave operators using perturba­
tion theory with eigenfunctions of the Hamiltonian 
[Eqs. (1.1) and (1.3)] then fL. are equal to the 
operators U(O, =r 00) as given by Gell-Mann and 
Goldberger6 [Eqs. (1.4)]. In other words, by (3.6) 
we have that 

(3.10) 

Since we have required that Q. satisfy Eqs. (3.15), 
we will select the solutions with "outgoing" and 
"incoming" scattered waves by imposing the con­
ditions that 

(3.11) 

These are a weakening of the conditions of Jauch 

27 By a strongly continuous function f(A) of an operator A 
we mean a function which is continuous from the strong 
operator topology to the strong operator topology, i.e., if 
An -> A strongly, then f(An) -> f(A) strongly (see Riesz 
and Sz. Nagy, reference 26, pp. 150, 298). 

28 ~hat Bo~utions which are not continuous functions 
of the mteractIOn may be important in theories of elementary 
particles has be~n pointed out by R. E. Marshak and S. 
Okubo, Nuovo Clmento 19, 1226 (1961). 

(3.12) 

(Not~ ~hat this would imply asymptotic conditions.) 
Co~dltlOns (3.11) can be obtained from (3.12) by 
notmg that whenever the limits exist the integrals 
also exist and are equal to the limits. There are 
surely other conditions, possibly weaker, which give 
unique solutions n., but Eqs. (3.11) will be con­
venient for our purposes. We can now summarize 
the conditions of Eqs. (3.5), (3.6), and (3.11) in the 
form of a definition of the scattering problem. 

Definition: Linear operators Q ... on X are solutions 
of the scattering problem associated with the self­
adjoint operators Ho and H if they satisfy the 
following conditions: 
(a) Q. are partially isometric operators from mIo 

to mI, that is 

({3) e-iHtQ. = Q.e- iHot for all real t (or equivalently 
HQ. = Q.Ho). 

('Y) 

o 
lim f ee'tPoeiHotQ+e-iHot dt = Po 
E-O+ -a) 

lim 1'" e-·tp iHot n -iHot dt - P e oe .Le - Q. 

E-O+ 0 

The scattering operator is then defined by S = Q~Q+ 
and the scattering amplitude found as in Eq. (1.5). 
[See discussion preceding and following Eq. (1.5)]. 

In this form the scattering problem does not 
depend in any way on a configuration space repre­
sentation of the Hilbert space and hence its ap­
plicability is not limited to situations where con­
figuration space methods are useful. It is obvious 
from conditions (a) and ({3) that a necessarv con­
dition in order that a solution of the scattering 
problem exist is that the continuum parts of Hand 
Ho be unitarily equivalent. 

4. ASYMPTOTIC LIMITS AS A SOLUTION 

We now turn our attention to finding solutions 
of the problem formulated in the preceding section. 
We first notice that whenever the asymptotic con­
ditions of the time-dependent formulation are valid 
the solutions obtained from this treatment are also 
solutions of the time-independent problem. 

Theorem 1: If conditions (I) and (II) of the time­
dependent treatment of scattering are valid, the 
operators Q. defined by the limits (I) provide a 
unique solution of the scattering problem. 
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Proof: The Eqs. (2.2) and (2.3) are equivalent to 
condition (a), and Eqs. (2.6) and (2.7) are equivalent 
to condition ({3). We can use the integral representa­
tions of Eq. (2.8) for the wave operators !L. In 
the next section (see proof of Theorem 3) we will 
prove that if these satisfy (a) and «(3) then they 
also satisfy ("Y). We will also show there that this 
solution is unique. Thus we have dispensed with 
the proof of Theorem 1. 

Note that if we consider Q= as a solution of the 
time-independent problem, the parameter t used in 
defining the limits (I) need not be interpreted as 
a time variable. 

A result of Theorem 1 is that all the investigations 
which have provided sufficient conditions for the 
validity of conditions (I) and (II) also provide 
sufficient conditions for the existence of a solution 
of the time-independent problem. 

5. INTEGRAL REPRESENTATIONS AS A SOLUTION 

Since the asymptotic condition does not appear 
in our formulation of the scattering problem, we 
are led to consider the possibility that solutions of 
this problem exist even when the asymptotic limits 
fail to exist. As a means of pursuing this possibility 
we will develop in this section a solution which 
consists of wave operators in the integral form 
[Eq. (2.8)] which we have already used. To this 
end we first prove the following: 

Theorem 2: Let Ho and H be self-adjoint operators 
on X and let cJ>, I/; E X. In the equations 

o 
Q+cJ> = lim J ~e"eiHte-iH"pocJ> dt 

E-+O+ -co 

n A, l' 1'" -,I iHI -iHolp A, dt ."-,/, = 1m ~e e e o,/" 

1:-0+ 0 

(5.1) 

(5.2) 

The integrals exist as Bochner integrals29 and when 
the limits exist they define linear operators Q=. The 
adjoints of these operators are equal to the limits 
of the (Bochner) integrals 

o 
n:cJ> = lim r ~e"PoeiH"e-iHlcJ> dt (5.3) 

£-0+ L -co 

n~cJ> = lim 1'" ~e-"PoeiH"le-iHlcJ> dt 
£-0+ 0 

(5.4) 

whenever the limits exist. The integrals in these 
equations also always exist. The operators n= are 
bounded by unity, 

29 For the theory of Bochner integrals as used here see, 
e.g., E. Hille, "Functional Analysis and Semi-groups," 
American Math. Soc., Colloquium Pub!. 31, (1948), pp. 40-48. 

//n=cJ>I/ ~ /1cJ>II 

for all cJ> E X, and they have the intertwining 
property that 

(5.5) 

for all real t, or equivalently that 

Hn= = n.Bo. 

In the case that the conditions (I) and (II) of the 
time-dependent formulation are valid, the limits of 
the integrals in (5.1) and (5.2) exist and define 
operators identical to those defined by the asymp­
totic limits of (I). 

Proof: Since the function 

is strongly measurable, and 

fa'" /I~e-"eiHte-iH"PocJ>II dt = fa'" ~e-·t dt /IPocJ>/1 

= /IPocJ>/1 < co , 

the integral 

exists as a Bochner integral for any cJ> E X.29 In 
a similar manner one can show the existence of 
the integrals in (5.1), (5.3), and (5.4). Since both 
integration and passage to the limit are linear 
operations, the operators n .. defined by the limits 
are linear. When all the limits exist we have that, 
for any 1/;, cJ> E X, 

(I/;, Q-cJ» = lim 1'" ~e-"(I/;, eiH'e-iH"pocJ» dt 
£--.0+ 0 

which establishes the validity of Eq. (5.4). A similar 
argument establishes Eq. (5.3). To obtain the 
boundedness of these operators we write 

l/n-cJ>11 ~ fa'" te-" /le iH1e-· H''PocJ>/1 dt 
(5.6) 

= 1'" te-" dt l/PocJ>/1 = / /PocJ>/1 ~ /IcJ>/1 

since this is independent of E. A similar inequality 
proves the boundedness of n+. Jauch13 (see first 
theorem of Sec. 5) has proved Eq. (5.5) so we will 
not repeat the proof here. Also Jauch has proved 
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that in the case that conditions (I) and (II) of the 
time-dependent formulation are valid the wave 
operators defined by the limits (I) have the integral 
representations of Eqs. (5.1) and (5.2). Hence the 
proof of Theorem 2 is complete. 

We can now see that, when the limits exist to 
define the wave operators and their adjoints by 
Eqs. (5.1)-(5.4) of the proceeding theorem, these 
operators have most of the properties necessary and 
sufficient for a unique solution of the scattering 
problem. 

Theorem 3: Let the limits of the integrals of Eqs. 
(5.1)-(5.4) exist and let Q .. be the operators defined 
by these equations. If they are partially isometric 
from mIo to mI, that is, if 

(5.7) 

then the wave operators Q .. provide a unique solu­
tion of the scattering problem. 

Proof: Equation (5.7) is condition (a). From Theorem 
2 we have that condition ({3) is satisfied. To prove 
('Y) we use Eqs. (5.7), (5.3), (5.4), and (5.5) to write 

P n+n l' fO 'Ip iHoi -iIlt dtn 
o = .'+ .'+ = 1m fe De e H+ 

f--+O+ -co 

1· fO "p iHoin -iHot dt 1m fe De H+e 
f--->O+ -co 

Finally we must show that the solution is unique. 
Let w .. satisfy conditions (a), ((3), and ('Y). Using 
h) then ((3) we get that 

1· fO "p iHol -iHI dt n+ 1m fe De e w+ = ,"+w+ 
f-O+ -00 

Po = lim fOO fe-'IPoeiHotw_e-iHoi dt 
(-~O + 0 

1· foo -'Ip iHol -iHI dt n+ 1m fe De e w_ = ,,-w_. 
1:-0+ 0 

Taking the adjoints of these equations gives 

But because of (a), w.. are partially isometric 
operators from mID to mI. Hence'6 w: = Q: or 

w .. = Q .. which shows that Q .. are the unique solu­
tions and completes the proof of Theorem 3. 

From the above theorems we can see that the 
three conditions contained in our formulation of 
the scattering problem are sufficient to determine 
a unique solution. We also see that such unique 
solutions exist if either the asymptotic conditions 
of the time-dependent formulation are valid, or if 
the limits of the integrals in Eqs. (5.1)-(5.4) exist 
and define operators satisfying Eqs. (5.7). But from 
the point of view of perturbation theory, we might 
want the wave operators to be continuous functions 
of the Hamiltonian operators, as was mentioned in 
the preceding section. Therefore, it is interesting 
to inquire as to what further conditions might be 
needed if this is to be the case. The integral repre­
sentation form of the wave operators gives us a 
method of investigating this problem. 

Stated more precisely, the problem is this: Given 
any "free" Hamiltonian operator Ho there is a set 
of Hamiltonian operators H such that the wave 
operators exist as the limits of the integrals of 
Eqs. (5.1) and (5.2) and their adjoints are the limits 
of the integrals of Eqs. (5.3) and (5.4) and these 
operators satisfy Eqs. (5.7) and hence provide a 
unique solution of the scattering problem. In 
particular this is true when the asymptotic con­
ditions (I) and (II) are valid. We want to know 
if there are further conditions satisfied by a sub­
set of these operators H which ensures that the 
corresponding wave operators are continuous func­
tions of the operators H of this subset. A similar 
problem can be stated by interchanging the roles of 
H 0 and H. A partial answer to this question is 
given by the following: 

Lemma: If for a set of Hamiltonian operators the 
limits of the integrals of Eqs. (5.1)-(5.4) exist and 
define wave operators satisfying Eqs. (5.7), a suf­
ficient condition on this set of Hamiltonian operators 
in order that the wave operators be strongly con­
tinuous27 functions of the Hamiltonian operators is 
that the limits of the integrals in equations (5.1) and 
(5.2) exist uniformly with respect to the Hamiltonian 
operators. This is true for the case that the asymp­
totic limits (I) exist uniformly with respect to the 
Hamiltonian operators. 

Proof: Let H and H' be two Hamiltonian operators 
belonging to the set under consideration, and let 
Q .. and Qi be the respective wave operators defined 
by Eqs. (5.1) and (5.2). For any a > 0 and any cp 
we need to show that 
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when H' is sufficiently close to H III the strong 
operator topology. Since the wave operators are 
uniformly bounded, we need only to show that 
this is true for a dense set of vectors cpo We first 
note that 

II~t~<p - !L<p11 ~ 1I12~<p - 10'" ee-"eiH"e-iH"po</> dtll 

+ Iii'" ee-eteiH"e-iH,'po<p dt 

- fa'" ee-"eiH'e-iH,'Po<p dtll 

~ ['" ee-" dt I lPo<p1 I 

= e-· n I iPo<p11 
which is independent of H so that also 

Iii'" (x'(t) - x~Ct» dtll ~ e- on IIPo<plI, 

so if we pick n such that 

e-'" IIPo<p11 ~ a/9, 

we need only show that 

12-<pII· II i'" x~(t) dt - i'" xn(t) dtl i 

Since the convergence of the integral in Eq. (5.2) 
is assumed to be uniform in the Hamiltonian opera­
tors, we can find an e > 0 such that the first and 
last terms on the right-hand side of the above 
inequality are less than or equal to a/3. Therefore 
we need only to show that for this E the middle 
term is also less than or equal to a/3 for H' suffi­
ciently near to H. In other words, we need only to 
establish the continuity of 

as a function of H. Let 

x(t) = ee-"eiH'e-iH,'po<p 

xn(t) = xCt) if t ~ n 

x .. (t) = 0 if t > n; 

let x'(t), x~(t) be defined similarly with H replaced 
by H'. We wish to show that 

Iii'" x'(t) dt - i'" x(t) dtll ~ ~ 
Now 

Iii'" x'(t) dt - i'" x(t) dtll 

and 

~ Iii'" (x'Ct) - x~(t» dtll 

+ Iii'" x~(t) dt - i'" xnCt) dtll 

+ Iii'" (x(t) - Xn(t») dtll 

= Ili n 

ee-EteiH"e-iH,'po<p dt 

- in ee-·'eiH'e-iH·,po<p dtll 

~ a/9; 

that is, we need only establish the continuity of 

in H. But this follows (see Hille29 Theorem 3.6.6) 
if ee-·'eiH'e-iH·,po<p is a strongly continuous func­
tion of H, since it is bounded uniformly in Hand 
in t E (0, n), 

Ilee-EteiH"e-iH"Po<p1 i = ee-" IIPocpl1 
= Ilee-"eiH'e-iH"Po<p1I ~ e IIPo<plI. 

A similar argument follows for the case of 12+. 
We can establish the strong continuity of 

ee··'eiH'e-iH·'po<p as a function of H if we can 
show that eiH' is a strongly continuous function of 
the self-adjoint operator H. We can do this as fol­
lows: Let H .. , n = 1, 2, 3, ... , be a sequence of 
self-adjoint operators converging strongly to H. 
This means that the domain ~ of H is within the 
domain of each H n and for any vector <p belonging 
to ~ 

as n ~ 00. It can be shown that eiHn ' converges 
strongly to eiH' for all real t if the resolvent opera­
tors (H .. - Z)-l converge strongly to the resolvent 
operator (H - Z)-l for all nonreal Z.30 Now these 

30 See Kuroda, reference 22(a), proof of Eq. (4.4). 
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resolvent operators are bounded uniformly in H" 
and H by 11m zl-l (see Riesz and Nagy26, p. 321) 
so they will converge to the desired limit whenever 

il(Hn - Z)-lrp - (H - z)-lrpll--> 0 

for a dense set of vectors rp. But 

II(H .. - Z)-lrp - (H - z)-lrpll 

= II(Hn - z)-l(H - z)(H - Z)-lrp 

- (Hn - z)-\H" - z)(H - z)-lrpll 

= II(Hn - z)-\H - H,,)(H - z)-lrpll 

::; 11m zl-l !I(H - Hn)(H - zflrpll --> 0 

for all rp such that (H - Z)-lrp belongs to :D. 
But such vectors rp form a dense set since in fact 
(H - Z)-lX = :D. 

A similar argument establishes the continuity of 
Q. as functions of Ho. This completes the proof of 
the first statement of the lemma. 

From the proof given by Jauch13 of the con­
vergence of the integral representation of the wave 
operators in the case that conditions (I) and (II) 
are valid, one can easily see that the limits of the 
integrals of Eqs. (5.1) and (5.2) exist uniformly with 
respect to the Hamiltonian operators whenever 
the asymptotic limits of condition (I) exist uni­
formly with respect to the Hamiltonian operators. 
This proves the second statement of the lemma. 

6. CONDITIONS SUFFICIENT FOR A SOLUTION 

As we have seen in the preceding section, suffi­
cient conditions for the existence of a unique solution 
of the scattering problem are that the limits of the 
integrals of Eqs. (5.1)-(5.4) exist and that they 
define wave operators which satisfy Eqs. (5.7) [which 
are equivalent to condition (a) of the scattering 
problem]. In particular, this is true whenever con­
ditions (I) and (II) of the time-dependent formula­
tion are valid. But the problem of greatest interest 
would be to find if there exists a set of Hamiltonian 
operators for which conditions (I) and (II) are not 
valid, while the conditions sufficient for the existence 
of the integral representation solution are still 
satisfied. This would permit solutions which could 
not be treated from the time-dependent point of 
view, and would carry the mathematical analysis 
of the conditions sufficient for a solution beyond 
the problem of the existence of the asymptotic limits. 
Weare unable to present any explicit characteriza­
tion of such a set of Hamiltonian operators or show 
that such a set exists. But we can make some re-

marks which will clarify the problem, and we can 
make an argument which makes it appear quite 
plausible that such a set of Hamiltonian operators 
does exist. 

First we show that if the limits of the integrals 
of Eqs. (5.1)-(5.4) exist and define wave operators 
which satisfy the first of Eqs. (5.7), 

(6.1) 

then these wave operators are partially isometric 
with the initial set :mo. This follows from the 
boundedness property of the wave operators and 
their adjoints that 

I ! Q=rp II ::; Ilrp II 
i I n~rp! I ::; Ilrp i 1 

for any rp E X. Let rp E :mo. Then 

n~n~rp = Porp = rp 

and 

which implies that 

II n.rp II = Ilrp II· 
If rp E :mO.l. then P orp = 0, and 

n .. rp = o. 

Hence n. are partially isometric with the domain :mo. 
The conditions sufficient for a unique solution 

of the scattering problem by the integral representa­
tion wave operators have thus been reduced to: 
the limits of the integrals in Eqs. (5.1)-(5.4) exist; 
the wave operators thus defined satisfy the first 
of Eqs. (5.7); the ranges of the wave operators 
coincide with :m. 

It is easy to show directly that the wave operators 
satisfy the first of Eqs. (5.7) under the conditions 
which have been used15.17.19.21 most often to prove 
the existence of the asymptotic limits (I) of the 
time-dependent formulation. 

Theorem 4: Let Hand Ho be self-adjoint operators 
with V = H - Ho defined in the common domain 
:D(V) = :D(H) (\ :D(H 0) of Hand H o. Let the limits 
of the integrals in Eqs. (5.1)-(5.4) exist and define 
the wave operators n=. A sufficient condition for 

n:n .. = Po 

is that there exist a set :Do dense in :mo such that 
for any rp E :Do (\ :mo 

e-iH"rp E :D(V) 
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for every real t, and 

[This statement corresponds to the sufficiency of 
these conditions for the existence of the asymptotic 
limits (I) of the time-dependent formulation.] 

Proot: Let e/> E ~o n ~o. Then 

Q~rLe/> = lim 100 

ee-" dt lim 
E-O+ 0 ~-o+ 

~ u 
Ifwe substitute (see Rosenblum, Theorem 3.3) 

which is possible because 

e-iH,Ze-iH"Poe/> E ~(V), 
we get that 

Q~rLe/> = Poe/> + i lim 100 

ee-" dt lim 100 

"IIe-"' ds 
E-O+ 0 ~-o+ 0 

But the norm of the second term is less than or 
equal to 

X f- t 

dx II Ve-iH.(x+IlPoe/>il 

::; lim 100 

ee-" dt lim 100 

"IIe-"S ds 
l-O+ 0 ,,-... 0+ 0 

x r dy i [Ve-ill,vcf> Ii 

= lim 1'" ee-" dt fO dy I [Ve-iH'"e/> I I 
t_O+ 0 t 

whenever the limits exist. The limits clearly will 
exist when 

Hence Q~Q-e/> = Poe/> if e/> E ~o n ~o· Since ~o is 
dense in ~o and Q~Q_ is a bounded operator, this 
can be extended to any e/> E ~o. A similar argument 
shows that Q:Q+ = Po and completes the proof of 
the theorem. 

As we have already mentioned, our main interest 
is in comparing the conditions sufficient for a unique 
solution by the integral representation wave opera­
tors with the conditions (I) and (II) of the time­
dependent formulation. For this purposes we recall 
[see Eq. (2.10)] that the latter conditions are equiva­
lent to the existence of the limits 

(I) 

and 

(II') 

for all e/> E x.. K ow we know that whenever the limits 
(I) and (II') exist the limits of the integrals of 
Eqs. (5.1)-(5.4) exist and are equal to the respective 
limits (I) and (II'). But it may be possible for the 
limits of the integrals of Eqs. (5.1)-(5.4) to exist 
when (I) and (II') do not. Consider the analogous 
problem where instead of vector-valued functions 
of t we work with complex-valued functions of t. 
In this case we can make the following statements: 
If t(t) is a complex-valued function of the real 
variable t, if 11(t) I is bounded uniformly in t, and 
if e-·'t(t) is integrable for any E > 0, then if 

lim t(t) (6.2) 

exists, the limit 

(6.3) 

also exists and the limits (6.2) and (6.3) are identical. 
However, if we add to such a function another 
function which oscillates as t ~ ex> , the limit (6.3) 
remains unchanged but the limit (6.2) does not 
exist. K ow it could be possible that the analogous 
statements are valid for the vector valued functions 
occurring in the Eqs. (5.1)-(5.4) and in the limits 
(I) and (II') and that the integral representations 
exist when the asymptotic limits do not. 

Similarly there is a possibility that the other 
conditions on the integral representation wave 
operators, which are needed to insure that they 
provide a unique solution, can be satisfied when 
the limits (I) and (II') do not exist. Consider the 
Eq. (6.1). We write this in the form that 

(1/;, (Q:Q~ - Po)e/» = 0 

for any 1/;, e/> E x.. For the case of !L we can write 
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this out explicitly as 

lim 1'" fe- O
' dt lim 1'" 7}e-"' ds(Pol/;, 

f~O+ 0 ~-o+ 0 

the reduction of H 0 by its continuum subspace 
allows us to consider only the continuum part of 
this operator. Hence the condition that the ranges 
of rl .. coincide with ~ reduces to the requirement 

(6.4) that for any I/> E ~ 

which could possibly be satisfied when the limits 
(I) and (II') do not exist. In fact when the limits 
(I) do exist we have that 

i_CO 8_00 

t-HX) .'1_00 

- lim (eiH'e-iHofPol/;, eilI'e-iHofPol/» = 0 (6.5) 
,-'" 

which is apparently stronger than Eq. (6.4) in that 
limits of the form (6.2) have replaced limits of the 
form (6.3). The validity of Eq. (6.5) is a consequence 
of the following properties of strongly converging 
sequences of vectors in a Hilbert space: Let in be 
a sequence of vectors converging strongly to the 
vector i, and let gn be a sequence of vectors con­
verging strongly to the vector g. Let the norm of 
each in equal the norm of i and let the norm of 
each g" equal the norm of g. Then 

We can prove this by writing that 

!(fn, gm) - (f, g) I ::; l(fn - j, g) I + IUn, g - gm) I 

::; I ifn - fll IIgll + Ilfll IIg - gmll 

which goes to zero as n, m ----7 co, and by writing out 
a similar inequality with gm replaced by g" and 
letting n ----7 co. 

The remaining condition on the integral repre­
sentation wave operators in order that they provide 
a unique solution is that their ranges coincide with 
the continuum subspace ~ of the total Hamiltonian 
operator. For any vector I/> E ~.l. we must have that 

rl:1/> = O. 

For the case of rl_ this has the explicit form 

I· 1'" -"p iH., -iH,A, dt - 0 1m fe oe e 'f'-. 
E-O+ 0 

(6.6) 

(6.7) 

Jauch13 has shown that Eq. (6.7) and the similar 
equation for rl+ are valid for the case that the 
operator H 0 has a purely continuous spectrum. One 
can easily see that Jauch's proof is also good for 
the case where H 0 also has a point spectrum since 

(6.8) 

For the case of [L this will have the form of Eq. 
(6.7) with the equals sign replaced by a not-equal 
sign. It could be possible for this to be valid when 
the limits (I) and (II') do not exist. When the 
latter limits do exist, Eq. (6.8) will be true with 
the limits of the form (6.3) as in Eq. (6.7) replaced 
by limits of the form (6.2), resulting in an apparently 
stronger condition. 

By way of summary we can make the following 
statements; 

The conditions sufficient for the integral repre­
sentation wave operators to be a unique solution 
of the scattering problem are that: the limits of 
the integrals of Eqs. (5.1)-(5.4) exist; the wave 
operators thus defined satisfy the first of Eqs. (5.7) 
[Eq. (6.1)]; the ranges of these wave operators 
coincide with ~. 

These conditions are satisfied in the case where 
the conditions (I) and (II) of the time-dependent 
formulation are valid. Then the wave operators 
defined by the asymptotic limits are identical to 
those defined by the integral representation. Hence 
we have a new physical interpretation of the asymp­
totic limits as a solution of the stationary-state 
scattering problem. There is no need to interpret 
the parameter t occurring in these limits as having 
anything to do with time. 

It appears to be possible, because of the possibility 
that limits of the form (6.3) can exist when limits 
of the form (6.2) do not, that the conditions sufficient 
for a solution are weaker than the asymptotic con­
ditions (I) and (II). The settlement of this question 
has been reduced to a definite mathematical problem. 
One should be able either to find Hamiltonian 
operators for which the conditions (I) and (II) are 
not valid while the conditions sufficient for the 
integral representation solution are valid, or to 
prove that the former conditions are implied by 
the latter. 

We have not been able to do either of these and 
hence the questions as to whether such a set of 
Hamiltonian operators exists as well as whether it 
contains any Hamiltonians of physical interest re­
main as unsolved problems. 

'Ve can make some observations to roughly de­
termine what the properties of such Hamiltonian 
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operators would be if they exist. If we can define a fl:':fl+Aoutfl:fl_ fl:':A~L 
self-adjoint potential operator V = H - H o, then 
there is a nesting set of classes, defined by in- or 
creasingly restrictive conditions, to which such an SAoutS+ = AiD' 
operator can belong: the class of all bounded self-
adjoint operators (finite norm of the operator); If the set of operators A is such that the set of 
the subclass of the latter of completely continuous operators A in and the set of operators A.ut each 
operators (spectrum consists of discrete points of generate an irreducible operator ring in ;mo, then 
finite multiplicity, except possibly for the point the latter equation determines S up to a phase 
zero); the subclass of the latter of operators with factor. In this case, the operators AiD and A.ut can 
finite Schmidt norm (finite sum of squares of eigen- be used to provide an alternative specification of 
values); the subclass of the latter of operators with the scattering operator. In the case that the wave 
finite-trace norm (finite trace of absolute value or operators are defined by asymptotic limits, Jauch 
finite sum of absolute values of eigenvalues). Now in has shown that the operators AiD and A.ut are the 
order to have a solution of the scattering problem weak limits of 
the continuum part of Ho must be unitarily equiva- e-iHoteiH! Ae-iHteiHot 

lent to the continuum part of H, which means that 
these operators must have the same continuous as t ~ =F ro, respectively. But our definition is more 
spectrum. But there are potential operators V having general than this and does not depend on the exist­
finite Schmidt norm such that Ho has a purely con- ence of the weak limit since the wave operators may 
tinuous spectrum while H has a pure point spec- be defined, for example, by the integral representa­
trum.26 On the other hand, the existence of the tion. When these limits do exist, the parameter t 
asymptotic limits has been established for potential need not be interpreted as a time variable. An 
operators which form a slightly more general class example of an "asymptotic" operator is the con­
than those having finite trace norms.22 Hence we tinuum part of the "free" Hamiltonian operator. 
should expect that the class of Hamiltonians which From the equation 
we are looking for would, if they exist, roughly cor-
respond to potential operators forming a class inter- fl.Ho = Hfla 
mediate between those having finite Schmidt norms we get that 
and those having finite trace norms. 

7. ASYMPTOTIC OPERATORS 

If we have wave operators which provide a 
solution to a scattering problem we can use them 
to define "asymptotic" operators as follows. Let 
A be one of a set of operators defined on the con­
tinuum subspace of H. Let 

AiD = fl:':Afl_ 

These will have their range and domain in the 
continuum subspace ;mo of Ho. By multiplying the 
second equation on the left by fl+ and on the right 
by fl:, and then multiplying on the left by fl:': and 
on the right by fL, we get that 

n+Aoutfl: = PAP 

so that 

which is consistent with the commutability of 
Sand Ho. 
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The study reported in an earlier paper of the single channel scattering problem is extended to 
include the multi-channel case. 

1. INTRODUCTION 

I N an earlier paper l we were concerned with a 
mathematically rigorous formulation of the 

single-channel scattering problem. This essentially 
time-independent method was compared with the 
rigorous time-dependent formulation of scattering 
which had been given by Jauch2 and it was shown 
that, under the conditions which are necessary for 
the time-dependent formulation, the wave oper­
ators that are defined by the asymptotic limits 
provide a unique solution of the problem. The defini­
tion of wave operators by an integral representation 
provided a method for investigating the possibility 
that solutions can exist even when the asymptotic 
conditions are not valid, and indeed it was shown 
that the conditions sufficient for such solutions are 
possibly weaker than the asymptotic conditions. 
In the present paper these considerations will be 
extended to the multi-channel scattering problem. 

The distinguishing feature of the single-channel 
scattering problem is that every state of the scat­
tering system can be related to a stationary state 
of a single "free" Hamiltonian. The latter state 
is considered either as an asymptotic limit of the 
state of the system in the distant past or remote 
future or as an unperturbed state, depending on 
whether one views the situation from the time­
dependent or time-independent point of view. In 
either case the continuum states of the "free" 
Hamiltonian correspond to the possible measure­
ments which can be made on the system. In the 
time-dependent formalism they provide the initial 
conditions at t = - 00 and a basis with respect to 
which the final state is analyzed at t = + 00. In 

* Supported in part by the Atomic Energy Commission. 
t The contents of this paper are contained in a thesis 

submitted by the author to the University of Rochester in 
partial fulfillment of the requirements for the Ph.D. degree. 

1 T. F. Jordan, (preceding paper) J. Math. Phys. 3, 414 
(1962). A more detailed discussion of some topics mentioned 
in the present paper as well as references to the literature of 
single channel scattering can be found in this reference. 

2 J. M. Jauch, Helv. Phys. Acta 31, 127 (1958). 

the stationary state formalism they form the "free" 
stationary states from which the interacting sta­
tionary states containing either "outgoing" or 
"incoming" scattered "waves" are obtained by 
perturbation. 

A description of multi-channel scattering demands 
a generalization due to the fact that the "free" 
states to which the scattering states are made to 
correspond, either as asymptotic limits or as un­
perturbed states, can not be thought of as stationary 
states of a single "free" Hamiltonian. One can 
produce and measure states of the scattering system 
corresponding to several different configurations of 
the system which in the absence of interaction would 
have dynamical properties described by several 
different "free" Hamiltonians. This type of situation 
has been described by Ekstein3 and by Jauch.4 

Each dynamically different "free" configuration 
defines a different channel of the scattering system. 
The "free" states of a configuration are represented 
by the continuum eigenvectors of a "free" Hamil­
tonian operator which is characteristic of that 
channel and which we call the channel Hamiltonian. 
Since we are not interested in distinguishing between 
channels which differ only in properties which have 
no effect on the dynamics of the scattering process, 
two channels are considered to be different if and 
only if they have different channel Hamiltonian 
operators. 

Examples of dynamically different channels are 
those whose "free" configurations contain different 
numbers or kinds of particles.3

•
4 We do not distin­

guish between elementary and composite particles. 
Each configuration containing bound states or com­
posite fragments composed of any number of parti­
cles simply represents a different channel for each 
?ifferent binding energy or mass of the fragment, 
Just as does each configuration of "free" "ele­
mentary" particles. 

3 H. Ekstein, Phys. Rev. 101,880 (1956). 
4 J. M. Jauch, Helv. Phys. Acta 31, 661 (1958). 
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Let H a be the channel Hamiltonian for channel 
a, H the Hamiltonian of the interacting scattering 
system, and define Va by H = H a + Va. According 
to the time-independent point of view we wish to 
find eigenstates if; of H with eigenvalue E in the 
continuous spectrum by considering Va as a pertur­
bation with the eigenstates cf>a of H a with the same 
eigenvalue E as the unperturbed states. The two 
solutions 

(=) + l' 1 TT .1,(=) 
if;a = cf>a 1m E H ±' 'a'1'a 

E-O+ - f] 't€ 
(1.1) 

are identified as the stationary states of the scatter­
ing system which contain "outgoing" or "incoming" 
scattered waves, respectively, and reduce to the 
unperturbed states cf>a as the interaction vanishes. 
The cross section for scattering from channel a to 
channel b is obtained from the probability amplitude5 

(if;i-), if;~+»). 

If for each channel we define wave operators by 

the scattering amplitude has the form 

(if;i->, if;~+» = (cf>b, n~+n:cf>a) = (cf>b, Sbacf>a) 

with 

(1.2) 

We note that the scattering amplitude is a matrix 
element of an operator which is dependent in an 
essential manner on the channels involved. As 
has been emphasized by Ekstein,3 it is not in general 
possible to define a single scattering operator S 
such that the scattering amplitude for any process, 
say for scattering from channel a to channel b, 
is given by the matrix element (cf>b, Scf>a) of that 
operator. Such an operator could be defined by 
S = Lab n:+n~ if it were true that n:cf>a = 0 for 
a ~ b, but Ekstein3 has shown that in general this 
will not be the case. Therefore, we are content to 
describe the scattering by a family of wave operators, 
two for each channel. 

The time-dependent formulation of multi-channel 
scattering must be approached in a manner that 
is somewhat different from that which is customary 
for single-channel scattering. This is because the 
use of the interaction representation is made 
impossible by the nonexistence of a single "free" 
Hamiltonian of which all the asymptotic states 

• See the discussion for the single-channel case in refer­
ence 1. 

are eigenstates. However Ekstein3 has shown how 
these difficulties can be avoided and the scattering 
amplitude defined in terms of the asymptotic 
states. 

In the distant past the system is thought of as 
existing in one of its possible "free" configurations, 
say in a state cf>a which is a stationary state of the 
"free" Hamiltonian Ha of channel a. In other words, 
as t ~ - OJ the channel interaction Va = H - Ha 
becomes ineffective. After evolving during the 
infinite time interval - OJ < t < OJ under the 
influence of the Hamiltonian H, the state of the 
system approaches, as t ~ + OJ, one of the possible 
"free" configurations. One can then compute the 
cross section from the probability amplitude for 
measuring, as t ~ + OJ, a state cf>b which is an 
eigenstate of the "free" Hamiltonian H b of channel b. 

Just as in the single channel case, the asymptotic 
limits play a central role in the time-dependent 
description of multi-channel scattering. If if; repre­
sents the state of the system at t = 0, then 

represents the state of the system at time t. If this 
state is one which, as t ~ - OJ, approaches a "free" 
configuration of channel a, then its time dependence 
should approach that of an eigenstate of the channel 
Hamiltonian H a' In other words, there must exist 
a continuum eigenstate cf>7n of H a such that 

This is equivalent to 

Hence for a set of continuum eigenstates cf>a of the 
channel Hamiltonian H a the limits 

lim eiH'e-iHatcf>a = n:cf>" (1.3) 

exist and define the linear isometric operator n:. 
Similarly if 

is a state which, as t ~ + OJ, approaches a "free" 
state of channel b, its time dependence must ap­
proach that of an eigenstate of the channel Hamil­
tonian H b , so there must exist a continuum state 
cf>!ut of Hb such that 

or 
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Hence for a set of continuum states rjJb of H b, the 
limit 

lim e;H'e-iH"rjJb = n~rjJb (1.4) 
t_+OJ 

exists and defines the linear isometric operator n~. 
Suppose that the system is initially, as t ~ - ex) , 

in the state 

Then at t = 0 it is in the state 

The state which at t = 0 is 

if;tJ = n~rjJb 

approaches, as t ~ + ex) , the final "free" state 

Hence the scattering amplitude for scattering from 
the initial state rjJG of channel a to the final state rjJb 
of channel b is 

(if;i-l, if;~+J) = (rjJb, n~+ n:rjJG) 

which is to be compared with Eq. (1.2) of the 
stationary-state formalism. 

Just as in the time-independent formulation, the 
scattering amplitude is a matrix element of an 
operator which is different for different channels, 
and it is in general impossible to define a single 
scattertng operator as in the single-channel case. 
According to the time-dependent interpretation 
this means that there is no operator which takes 
each initial state to a final state in the interaction 
picture. In both the time-dependent and stationary­
state formulations the most immediate description 
of scattertng is provided by the two families of 
wave operators n: which map the "free" stationary 
states rjJa of the channel Hamiltonian Ha onto 
the scattering states if;~"J. In terms of these, we 
can make some remarks which are of importance 
from either point of view. 

Any continuum eigenstate if; of the Hamiltonian 
H should describe a possible state of the interacting 
system, say at t = O. If this state is the result of a 
mapping by a wave operator from a "free" state 
of some specific channel, then it should be orthogonal 
to all states similarly obtained from "free" states of 
other channels, 

(if;i+l, if;~+J) = (n~rjJb, n:rjJa) = 0 

(if;t J, if;~-J) = (n~cf/, rt'_rjJa) = 0 for a r£ b. (1.5) 

In other words, any state of the interacting system 
should be decomposable into states which, from the 
time-dependent point of view, approach as 
t ~ - ex) (t ~ + ex) asymptotic states of the 
different channels, or, from the stationary-state 
point of view reduce, with the switching off of the 
channel interaction and the resulting removal of 
"outgoing scattered waves" ("incoming scattered 
waves"), to unperturbed states of the different 
channels. But we should not in general expect that 
(if;t J, if;~+» vanishes for a r£ b because this would 
mean that there is no scattering between different 
channels. 

A simple example might help to clarify the basic 
ideas of this approach to the scattering problem. 
Suppose we have a system on which we can make 
measurements corresponding to just one of two 
configurations: In configuration (1.) there are three 
different free particles, n, p, and 11"; in configuration 
(2.) there are two particles, 11" and d, the latter 
being considered as a bound state of nand p. Let 
HI be the Hamiltonian operator describing the 
system (1.) of three free particles. The continuum 
eigenstates of HI (products of three plane-wave 
functions) span the whole Hilbert space and so we 
have a free Hamiltonian and a complete set of free 
states. If we know the Hamiltonian of the inter­
acting system, we can calculate the scattering from 
a three-particle state to a three-particle state. In 
other words, these are sufficient for a description 
of scattering from channel (1.) to channel (1.). 
But in order to describe scattering processes involv­
ing channel (2.) we need states of two free particles, 
11" and d, the d being a bound state and having a 
mass corresponding to the binding energy of nand p. 
The free Hamiltonian H 2 describing this system 
of two free particles is not the same as HI (see Jauch, 4 

Sec. 3) and the free 11" - d states are not in general 
eigenstates of HI (see Ekstein/ Sec. VII). Thus, 
while the introduction of a second free Hamiltonian 
H2 is not necessary to generate a complete set of 
free states, it is necessary to define what we mean 
by a measurement of a state of the system corre­
sponding to the free 11" - d configuration. 

In the next section we outline the mathematical 
structure of the multi-channel scattering problem 
which is contained in the properties of the Hamil­
tonian operators. The form of the following sections 
is similar to that of the discussion of the single­
channel case. In Sec. 3 we briefly review the rigorous 
time-dependent formulation of multi-channel scat­
tering which was given by Jauch. 4 In Sec. 4 we give 
a rigorous formulation of the scattering problem 
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which reflects the stationary state point of view. 
This will be entirely analogous to that given for 
the single channel case. In Sec. 5 we show that the 
wave operators defined by the asymptotic limits 
provide a solution of this problem whenever the 
conditions necessary for the time-dependent formu­
lation are valid. The possibility that a solution can 
exist when the asymptotic conditions are not valid 
is investigated in the following two sections. Wave 
operators are defined by an integral representation 
just as in the single-channel case and the conditions 
sufficient for these to be a solution of the scattering 
problem are shown to be possibly weaker than the 
conditions necessary for the time-dependent formu­
lation. Hence in general there may be a class of 
Hamiltonians for which a solution exists but for 
which the asymptotic conditions are not valid. 
However, just as in the single-channel case we do 
not present any explicit demonstration of such a 
set of Hamiltonian operators. The mathematical 
problems involved are completely similar to those 
encountered in the single-channel case. In the final 
section we make some remarks about the form of the 
Hamiltonian operators in nonrelativistic and rela­
tivistic theories. 

2. STRUCTURE OF THE PROBLEM-HAMILTONIAN 
OPERATORS 

The structure of the mathematical description of 
single-channel scattering is determined by two 
self-adjoint linear operators, Hand Ho, on a 
separable Hilbert space X. The scattering problem 
can be formulated without imposing any further 
restrictions on these operators, but the existence of 
a solution depends on their satisfying certain con­
ditions. In particular, a necessary condition for a 
solution to exist is that the continuum parts of 
these two operators be unitarily equivalent. 

In the multi-channel case the structure of the 
problem is determined by a self-adjoint operator H 
representing the Hamiltonian of the interacting 
system and a family of self-adjoint operators Ha 
representing the channel Hamiltonians. These are 
assumed to be defined on a separable Hilbert space 
X. While we are able to formulate the scattering 
problem without imposing any further restrictions 
on these operators, as in the single channel case, 
the ex[stence of solutions depends on their satisfying 
certain conditions which are rather characteristic 
of the problem. It is perhaps helpful then to state 
these at the outset. 

First it is convenient to introduce notation which 
is used in all of the following sections: Let X be the 

subspace of JC spanned by the eigenvectors of H, 
mI = X.L the continuum subspace of H or the 
orthogonal complement of X, and P the projection 
operator whose range is mI, Similarly let Xa be the 
subspace spanned by the eigenvectors of H a, 
mIa = Xa.L the continuum subspace of H a or the 
orthogonal complement of X a, and P a the projection 
operator whose range is mIa' 

We will find that the following is a necessary 
condition for the existence of any solution of the 
scattering problem: mI can be decomposed in two 
ways into a direct sum of a finite or countably 
infinite number of subspaces, one corresponding to 
each channel and each reducing H. The part of H 
in a subspace corresponding to channel a is unitarily 
equivalent to the part of Ha in a subspace of mIa 
which reduces H a' 

We have already indicated in the preceding 
section that we consider channel a to be identical 
with channel b if and only if H a = H b' According 
to Stone's theorem the latter is equivalent to 

for all real t. In addition, Jauch4 assumed for the 
time-dependent formulation that 

e-iHa'cp = e-iHb'cp for all real t, 

implies that cp = 0 unless a = b. It was also assumed 
that all of the channel Hamiltonian operators 
commute 

for all a, b, t, s. Although these seem to be stronger 
than is necessary, we have been unable to sub­
stitute a simple weaker set of conditions on the 
Hamiltonian operators sufficient for the existence 
of a solution of the scattertng problem. 

3. TIME-DEPENDENT FORMULATION 

The theory of multi-channel, as well as single­
channel scattering, has been formulated in a mathe­
matically rigorous way by Jauch4 from the time­
dependent point of view. We briefly review some 
of the essential features of this formulation. Our 
discussion is slightly generalized to include channel 
Hamiltonians which may have bound states. 

In order to provide a rigorous time-dependent 
description of scattering for a system described by 
the Hamiltonian operator H and the family of 
channel Hamiltonian operators H a , Jauch requires 
that these operators satisfy the following conditions: 
All of the channel Hamiltonian operators commute, 

(3.1) 
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for all a, b and real 8, t, and 

(3.2) 

for all real t implies cP = 0 unless a b. For each 
channel a there exists a subspace ;Da of :ma such 
that, if Ea is the projection with range ;D., the limits 

lim eiH'e-iH·'EaCP = n:cp (3.3) 

exist for any cP E X.6 This defines the linear operators 
n: which are partially isometric with the initial 
set ;Do. Let <R~~) be the subspaces which are the 
ranges of n;, let <R+ be the subspace spanned by 
all subspaces <R~ +), and let <R_ the subspace spanned 
by all the subspaces <R~-). Then it is further required 
that 

(3.4) 

Under these conditions one can show that the 
operators n,;: have all of the properties needed for 
a description of scattering. Each n; is a partially 
isometric operator from ;Da to <R~~). Let F; be 
the projection operators with ranges <R~~). Then 
we have 

(3.5) 

By using the conditions (3.1) and (3.2) one can 
show that the ranges are orthogonal for different 
channels, or 

(3.6) 

for a r= b. This and the separability of X requires 
that the number of channels be finite or countably 
infinite. It also follows from Eqs. (3.6) and (3.4) that 

P = LaF: = LaF~, 

and from equations (3.6) and (3.5) that 

(3.7) 

n:+n: = n~+n~ = Ea Oob' (3.8) 

One can also prove that the wave operators have 
the intertwining property 

n";.Ba (3.9) 

or more precisely/ 

6 Actually Jauch showed that if lim,_.o> eiH' e- iH., rf> exists 
for some q, E ;Do, then there exists an infinite-dimensional 
subspace :ma such that the limits (3.3) exist. We take 5)a 
to be the largest subspace of:ma with this property. One can 
easily see that Jauch's proof extends to the case where Ho 
has bound states; since we assume that 5)a C :ma we need 
only consider the continuum part of H a. 

7 See Sec. 3 of reference 1. A more direct logical procedure 
is to consider the equation e iH ' o.a = O.a e iHa ' to be the 
statement of the intertwining property and the equation 
HOsa = o~a H. to be implied by it, as was shown by 
Hack in Sec. 3 of reference 9. 

for all real t, from which it follows that each sub­
space <R~=) reduces H and each subspace ;Da reduces 
Ha. 

The conditions (3.1) and (3.2) are needed only 
for the proof of the orthogonality condition (3.6) 
and are stronger than is necessary. In fact Zinnes8 

has shown that for a special class of channel Hamil­
tonian operators, the orthogonality property (3.6) 
can still be proved if the condition (3.2) is replaced 
by the weaker one that Ha r= Hb for a r= b. However 
the conditions (3.3) and (3.4) are quite essential for 
the time-dependent formulation. The former is the 
asymptotic condition that the states of the scattering 
system approach asymptotic "free" states in the 
distant past and remote future, and the latter is 
the requirement that any state of the scattering 
system be obtainable as a sum of states originating 
(or terminating) in the different channels. The 
mathematical investigation of the class of Hamil­
tonian operators for which these two conditions are 
satisfied has not been as extensive as for the corre­
sponding single-channel problem, although many 
of the results of the latter can be made applicable 
here. 

One can show that a necessary requirement for 
validity of all of these conditions is that the Hamil­
tonian operators have the structure described in 
the preceding section9

: :m is decomposable into a 
direct sum of the subspaces <R~+) and into the sub­
spaces <R~-) each of which reduces H. The part of 
H in <R~~) is unitarily equivalent to the part of Ha 
in the subspace ;Da of :m. which reduces H a' 

4. FORMULATION OF THE SCATTERING PROBLEM 

We now develop a formulation of the multi­
channel scattering problem which reflects the 
stationary-state point of view. A solution of the 
scattering problem consists of two families of wave 
operators n.: which map sets of "unperturbed" 
states CPa belonging to the continuum subspaces of 
the channel Hamiltonians H a onto the scattering 
states 

(4.1) 

The latter states belong to the continuum subspace 
of H and satisfy conditions which select the solutions 
containing "outgoing" or "incoming" scattered 
"waves," respectively. 

For any channel a the set of "unperturbed" 

81.1. Zinnes, Nuovo cimento Supp!. 12, 87 (1959). 
9 M. N. Hack, Nuovo cimento 13, 231 (1959). 
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states <Pa should form a subspace 5)a of mla which 
reduces H a' This has the physical interpretation 
that this set of states is invariant under the 
dynamical transformations generated by the "free" 
Hamiltonian Ha. In general we need not require that 

5). = mla, (4.2) 

but in many problems it may be desirable for the 
physical interpretation to do so. Every vector of 
the continuum subspace ml of H should represent 
a possible state of the scattering system and it 
should be decomposable into vectors of the different 
channels. If ffi~:) are the ranges of n: this means 
that ml must be the direct sum of subspaces ffi~+) 
and also the direct sum of the subspaces ffi~-). In 
order that the mapping (4.1) from "unperturbed" 
to interacting states preserves the normalization we 
must require that each n:: be a partially isometric 
operator from 5)a to ffi~*). 

If Ea is the projection operator with range 5)., 
and F:: are the projection operators with ranges 
ffi,;±), the above conditions can be summarized in 
the form of the equations 

n':+n': = Ea 

n':n':+ = F': 

We also rf'quire that 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

for all real t. By an argument identical in form to 
the discussion of the single-channel case one can 
show that this condition is the rigorous statement 
of the requirement that <Pa is an eigenvector of H" 
with eigenvalue E in the continuous spectrum if 
and only if if;~.) = n:<Pa are eigenvectors of H with 
the same eigenvalue also in the continuous spectrum 
of H. Also this means that the scattering and 
"unperturbed" states have essentially the same time 
dependence as well as the same mean value and 
second moment of the energy. 

Also we could require that n:: be strongly con­
tinuous as functions of H and of H a and that 
n; = Ea if H = H •. This would be a rigorous state­
ment of the continuous reduction of the scattering 
states to the "unperturbed" states as the interaction 
vanishes. But we do not need this condition to 
specify a unique set of wave operators and it is 
not necessarily desirable that it be satisfied for 
every problem. Hence we do not include it in our 
formulation. 

Finally we need a condition which selects the 

scattering solutions corresponding to "outgoing" 
and "incoming" scattered waves. It is advan­
tageous to use a condition which is slightly dif­
ferent than that used for the single-channel case. 
Namely, we require that 

1· 1° .1 iHalna+ -iHalE dt - E 1m fe e "'+ e "a - a 
f-O+ -co (4.7) 

lim 100 

fe-·teiHat n~+ e-iHalEa dt = Ea. 

E-IO+ 0 

This condition can be motivated by an argument 
which is entirely analogous to that used to arrive at 
the condition used in the single channel case [see 
the discussion preceding and following Eq. (3.10) 
of reference 1]. We could have used a condition of 
the form (4.7) to provide an alternative formulation 
of the single-channel problem. In fact such a formu­
lation might provide a slight generalization. That 
this condition is needed for the multi-channel 
problem is due to the fact that in general we can 
not establish the existence of integral representations 
for the adjoints of the wave operators even in the 
case that the conditions of the time-dependent 
formulation are valid. As a result it is easier to work 
with the Eqs. (4.7) which already contain the 
adjoint operators, as becomes clearer in the fol­
lowing sections. 

We can summarize all of the conditions of the 
scattering problem in the following: 

Definition: A family of linear operators n: on 
3C are solutions of the scattering problem defined 
by the self-adjoint operator H and family of self­
adjoint operators Ha if they satisfy the following 
conditions: 

(a) Each n: is a partially isometric operator from 
5)a C mla to ffi~±) C ml. The subspace ml is 
the direct sum of the subspaces ffi~ +) and is 
also the direct sum of the subspaces ffi!-). 

(j3) e
iHI n: = n: e

iHat for all real t. 

I · 1° ., iHal n a + -iHalE dt = E 1m Ee e w"+ e a a 
E-O+ _00 (-y) 

I · 100 -.f iH.tna+ -iHatE dt = E 1m Ee e w'_ e a a' 
E-IO+ 0 

Just as in the single-channel case, this formulation 
of the scattering problem does not depend on a con­
figuration space representation of the Hilbert space 
and hence its applicability is not limited to situa­
tions where configuration space methods are useful. 

From condition (j3) it follows that 
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for any ¢ E X and any real t, which implies that ffi~=) 
reduces H. It also follows that 

for any ¢ E X, which implies that :Da reduces Xa. 
The part of H in ffi~=) is clearly unitarily equivalent 
to the part of H a in :Da. Hence a necessary condition 
for the existence of a solution of the scattering 
problem is that the Hamiltonian operators have the 
structure mentioned in Sec. 2, namely: ;m; is the 
direct sum of the ffi~ +) or of the ffi~ -), each of which 
reduces H, and the part of H in ffi~=) is unitarily 
equivalent to the part of H a in a subspace :Da of ;m;a 
which reduces H a. 

It should be observed that when the number of 
channels is set equal to one, this formulation of the 
multi~channel scatteri'ng problem does not reduce 
to the formulation of the single-channel scattering 
problem which was given in reference 1. In the first 
place we have chosen a different form for condition 
(')'), and secondly we have not assumed that the 
domain of the wave operators is the whole of the 
continuum subspace of the "free" Hamiltonian. It 
may even be that the multi-channel formulation 
provides, for the case of one channel, a nontrivial 
generalization of the single-channel formulation; 
there may be Hamiltonian operators for which the 
former allows solutions but the latter does not. If 
this is the case we would want to adopt the more 
general formualtion since the single-channel formu­
lation \vas adopted for convenience in comparison 
with other treatments and not out of necessity. 

5. ASYMPTOTIC LIMITS AS A SOLUTION 

In investigating possible solutions of the scattering 
problem as formulated in the preceding section, 
we first observe that a solution exists whenever the 
conditions necessary for the time-dependent formu­
lation are valid. Specifically if the limits (3.3) exist 
such that (3.4) is valid, and if Eq. (3.6) is satisfied 
[in particular the orthogonality condition is satisfied 
whenever the channel Hamiltonian operators 
satisfy (3.1) and (3.2)], then the wave operators 
defined by the limits (3.3) provide a solution of 
the scattering problem which is unique in the sense 
that there is no other solution with the same set 
of domains:Da and ranges ffi~=) of the wave operators. 

The necessary properties of the n: have essentially 
already been proved. Equations (3.4)-(3.7) show 
that condition (a) is satisfied and Eq. (3.9) is 
identical to condition «(3). Just as in the single­
channel case (reference 1, Sec. 4) we can introduce 
the integral representations 

n:¢ = lim fO Ee"eiH'e-iHa'Ea¢ dt 
1:-+0+ -00 

which have been shown by Jauch2 to exist when the 
asymptotic limits exist. In the next section we see 
that these operators satisfy condition (')') and 
provide a unique solution of the scattering problem. 
This is completely analogous to the single-channel 
case except for the changes introduced by the modi­
fied form of condition (')'). Just as in the single-chan­
nel case one need not interpret the parameter t occur­
ring in the asymptotic limits as having anything to do 
with time. We may simply regard the resulting 
wave operators as being a solution of the stationary 
state problem. 

6. INTEGRAL REPRESENTATIONS AS A SOLUTION 

Just as in the single-channel case, no asymptotic 
condition appears in our formulation of the scat­
tering problem and there is a possibility that a 
solution exists in cases where the asymptotic limits 
fail to exist. A means of investigating this pos­
sibility is provided by the integral representation 
definition of the wave operators 

n:¢ = lim fO Ee"eiH'e-iHa'Ea¢ dt (6.1) 
1:-0+ -00 

n"..¢ = lim 1'" Ee-"eiH'e-iHa'Ea¢ dt. (6.2) 
E-+O+ 0 

The integrals in these equations will always exist 
as Bochner integrals and whenever the limits of 
the integrals exist they will define the linear wave 
operators n:. These operators will then be bounded 
by unity, 

for any ¢ E X, and will have the intertwining 
property that 

for all real t. In the case that the asymptotic limits 
(3.3) of the time-dependent formulation exist, the 
limits of the integrals in (6.1) and (6.2) will also 
exist and the wave operators defined by the two sets 
of limits will be identical if the domains :Da are 
taken to be the same in each case. These statements 
can be proved as in the proof of Theorem 2 of 
reference 1. 

The lemma of reference 1 also applies to the 
multi-channel case. The wave operators will be 
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strongly continuous functions of a set of Hamiltonian 
operators if they are defined by limits of the integrals 
of Eqs. (6.1) and (6.2) which converge uniformly 
with respect to the set of Hamiltonian operators. 
This will be true in particular when the wave 
operators are defined by asymptotic limits which 
converge uniformly with respect to the Hamiltonian 
operators. 

Whenever the wave operators defined by Eqs. 
(6.1) and (6.2) exist and satisfy condition (ex), they 
provide a solution of the scattering problem which 
is unique in the sense that there is no other solution 
having the same domain 5). and ranges CR~2) of the 
wave operators. The proof of this is similar to that 
of Theorem 3 of reference 1. The only differences 
are introduced by the different form of condition (')'). 
We have postulated that condition (ex) holds, and 
we know that condition (/3) also holds. To prove 
condition (')') we write 

Ea = n~+ n~ = n~+ lim fO te·'eiH'e-iH·'E. dt 
f-O+ -co 

1· fO ., iH., n a+ -ill·'E dt 1m te e ~'+ e • 
f-O+ -OJ 

n':.+ lim 1'" te-·'eiH'e-iH·'Ea dt 
f-O+ 0 

lim 1'" te-·'e,H.' n':.+ e-iH·'E. dt. 
1:-0+ 0 

Let w. be operators satisfying conditions (ex), (13), 
and (')'). Then 

E 1· fO ., iH.I + -iH·'E' dt • = 1m te e w+e • 
e--+O+ -OJ 

+ l' fO "iHI -iH·'E dt + n· = w+ 1m te e e • = w+ ~'+ 
f--+O+ -co 

so that the uniqueness of the operators which 
satisfy both the above equations and condition (ex) 
implies that 

or 

+ w. = 

w. = n:. 
This proves that the wave operators n,:: defined by 
Eqs. (6.1) and (6.2) are unique solutions when they 
exist and satisfy condition (ex). 

Note that we have been able to develop a solution 
in terms of the integral representation wave opera-

tors without glVlllg an integral representation for 
their adjoints. It was to this end that we modified 
the condition (')'). For in general we can not expect 
to be able to establish such a representation for the 
adjoints as we did in the single-channel case. 

In the time-dependent formulation, the domain 
5). is determined to be the largest subspace of ~. 
for which the limits (3.3) exist. Then of course the 
ranges CR~=) are determined as the images of 5). 

under the mappings n:. But in the definition of 
the wave operators by the integral representations 
(6.1) and (6.2) the domains 5). are not specified. It 
is to be expected that the specification of 5). will 
be a critical factor in establishing the validity of 
condition (ex) for these wave operators. That is 5). 

must be chosen in such a way that equations (4.3), 
(4.4), and (4.5) can be valid. Because of condition 
(13) it is necessary, as we have seen, that 5). reduce 
H •. Of course it is also necessary that the subspaces 
5). be such that the limits of the integrals of Eqs. 
(6.1) and (6.2) exist. 

7. CONDITIONS SUFFICIENT FOR A SOLUTION 

As we have seen in the preceding section, sufficient 
conditions for the existence of a unique solution of 
the scattering problem are that the limits of the 
integrals of Eqs. (6.1) and (6.2) exist and that they 
define wave operators which satisfy condition (ex). 
In particular this is true whenever the conditions 
necessary for the time-dependent formulation are 
valid. But the problem of greatest interest would 
be to find if there exists a set of Hamiltonian opera­
tors for which the conditions of the time-dependent 
formulation are not valid while the conditions 
sufficient for the existence of the integral representa­
tion solution are still satisfied. This would permit 
solutions which could not be treated from the 
time-dependent point of view and would carry 
the mathematical analysis of the conditions suffi­
cient for a solution beyond the problem of the 
existence of the asymptotic limits. We are unable 
to present any explicit characterization of such a set 
of Hamiltonian operators or show that such a set 
exists. But we can make some remarks which will 
clarify the problem, and we can make an argument 
which makes it appear quite plausible that such a 
set of Hamiltonian operators does exist. This is 
identical to the situation of the single-channel case. 

Condition (ex) can be written in the form of 
Eqs. (4.3), (4.4), and (4.5). The Eqs. (4.3) and (4.4), 
which state that n,:: must be partially isometric 
operators from 5)a to CR~·), together with the require­
ment that the two sets of ranges CR~m) must each span 
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:ill are analogous to condition (a) of the single­
channel problem. But Eq. (4.5) implies the ortho­
gonality condition 

(7.1) 

for a ;C b which is characteristic of the multi-channel 
problem only. 

One can show that if the limits of the integrals 
of Eqs. (6.1) and (6.2) exist, and if they define wave 
operators which satisfy Eqs. (4.3), then these wave 
operators are partially isometric with the initial 
set :Da. This follows from the boundedness property 
of the wave operators just as in the single-channel 
case. Hence if we let CR~*) be the ranges of the wave 
operators n.: and if we let F': be the projections onto 
these subspaces, we have that Eqs. (4.4) are valid. 
In other words Eqs. (4.4) are a consequence of 
Eqs. (4.3) for the integral-representation wave 
operators. 

The conditions sufficient for a unique solution of 
the scattering problem by the integral representation 
wave operators have thus been reduced to (1) The 
limits of the integrals in Eqs. (6.1) and (6.2) exist; 
(2) the wave operators thus defined satisfy Eqs. 
(4.3); and (3) the continuum subspace :ill of H is 
the direct sum of the ranges CR~+) of the n: and is 
also the direct sum of the ranges CR~-) of the n~. 
The last condition implies the orthogonality property 
of the ranges and also implies that the two sets of 
ranges each span :ill. 

The sufficient conditions for the existence of the 
asymptotic limits of the time-dependent formulation 
which have been developed for the single-channel 
case can in general be made to apply to the multi­
channel case with only minor modifications. Simi­
larly, in complete analogy to the single channel case, 
one can prove the following statement10

: If 
Va = H - H a is defined in the common domain 
:D(Va) = :D(H) (\ :D(Ha) of Hand H a , a sufficient 
condition in order that 

is that there exists a subset ea of :Da dense in :D. 
such that, for any I/! E ea, 

e-ma'l/! E :DeVa) 

for any real t, and 

(7.2) 

is comparing the conditions sufficient for a unique 
solution by the integral-representation wave opera­
tors with the conditions necessary for the time­
dependent formulation. We know that when the 
asymptotic limits (3.3) exist the limits of the 
integrals of Eqs. (6.1) and (6.2) also exist and the 
two kinds of limits define identical wave operators 
as long as the domains :Da are taken to be identical. 
Just as in the single-channel case one can argue that 
it may be possible for the limits of the integrals of 
Eqs. (6.1) and (6.2) to exist in cases where the 
asymptotic limits (3.3) do not exist analogously to 
the fact that limits of the form 

(7.3) 

can exist for functions for which the limits 

lim t(t) (7.4) 

do not exist. 
In a manner completely analogous to that of the 

single channel case, we can write our Eqs. (4.3) in 
an explicit form for the integral representation wave 
operators. In this form it appears to be possible for 
these equations to be valid when the asymptotic 
limits (3.3) do not exist. In fact we can show, just 
as in the single-channel case, that the existence of 
the latter limits implies an apparently stronger 
equation [see Eqs. (6.4) and (6.5) and the accom­
panying discussion of reference 1]. 

The remaining condition on the integral-repre­
sentation wave operators in order that they provide 
a unique solution is that :ill must be the direct sum 
of the ranges CR~+) of n: and also the direct sum of 
the ranges CR~-) of n~. This condition contains three 
parts: All of the ranges CR~±) are contained in :ill; 
the set of ranges CR~+) and the set of ranges CR~-) 
each span :ill; the ranges have the orthogonality 
property that CR~+) is orthogonal to CRi+) and CR~-) 

is orthogonal to CRi-) for a ;C b. 
The first part of this condition is always true for 

the integral-representation wave operators. One can 
prove this as follows: The adjoints of the wave 
operators have the integral representation 

(")a+,/., l' fO dE iH.t -iHt,/., dt 
u+ 'f' = 1m te ae e 'f' 

E-O+ -co 

n~+1/! = lim fro te-·tEaeiH·'e-iH'1/! dt 
E-O+ 0 

As we have already mentioned, our main interest whenever the limits of the integrals exist. This can 
be proved just as in Theorem 2 of reference 1. But 

10 The proof is identical to that of Theorem 4, reference 1. Jauch2 [see discussion following Eq. (6.7) of reference 
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1] has shown that these limits do exist and are equal 
to zero when cp is an eigenvector of H. Hence we 
have that 12:+ cp = 0 for all cp belonging to the orthog­
onal complement of the subspace ~. This implies 
that the ranges ell;*) of the 12: are subspaces of ~. 

The condition that the two sets of ranges each span 
~ can be stated as follows: For any if; E ~ there 
exists a channel a such that 

and a channel b such that 

rl+ if; ;:C 0; 

or for any if; E ~ there exists a channel a and a 
cp E :D. such that 

(7.5) 

and there exists a channel b and a cf>b E :Db such that 

(7.6) 

For the integral-representation definition of the 
wave operators, (7.6) has the explicit form 

lim fa> fe-"(if;, eiHte-;nb'Ebcf>b) dt ;:C 0, (7.7) 
E---JO+ 0 

and (7.5) for 12+ has a similar form. If the wave 
operators are defined by the asymptotic limits, 
then (7.6) has a form identical to (7.7) except that 
the limits of the form (7.3) are replaced by limits 
of the form (7.4) resulting in an apparently stronger 
condition. It appears to be possible for (7.5) and 
(7.6) to be valid when the asymptotic limits do 
not exist. 

The orthogonality condition can be written as 

(Q:cf>, Q:if;) = (Q~cf>, Q:if;) = 0 

for a ;:C band cf>, if; E JC. For the case of Q_ and the 
integral representation of the wave operators this 
has the explicit form 

lim f'" fe-" dt lim f'" '1]e-"' ds 
f-O+ 0 ~-o+ 0 

x (e;n'e-;n·'E.cf>, eiH8e-iHb'Ebif;) = 0 (7.8) 

for a ;:C band cf>, if; E JC. It appears to be possible that 
this is also valid for cases where the asymptotic 
limits do not exist. A similar equation results for 
the case of Q+. If the wave operators are defined 
by the asymptotic limits the orthogonality condition 
has the form of Eq. (7.8) except again the limits of 
the form (7.3) are replaced by limits of the form 
(7.4) resulting in an apparently stronger condition. 

By the way of summary we can make the fol-

lowing statements in analogy to the single-channel 
case: 

The conditions sufficient for the integral-repre­
sentation wave operators to be a unique solution of 
the scattering problem are that: the limits of the 
integrals of Eqs. (6.1) and (6.2) exist; the wave 
operators thus defined satisfy Eqs. (4.3); the two 
sets of ranges of the wave operators each span ~ 
and have the orthogonality property. 

The conditions are satisfied in the case where the 
conditions of the time-dependent formulation are 
valid. Then the wave operators defined by the 
asymptotic limits are identical to those defined by 
the integral representation. Hence we have a new 
physical interpretation of the asymptotic limits as 
a solution of the stationary-state scattering problem. 
There is no need to interpret the parameter t 
occurring in these limits as having anything to do 
with time. 

It appears to be possible, because of the possibility 
that limits of the form (7.3) can exist when limits 
of the form (7.4) do not, that the conditions suf­
ficient for a solution are weaker than the asymp­
totic conditions. The settlement of this question 
has been reduced to a definite mathematical problem. 
One should be able either to find Hamiltonian 
operators for which the conditions of the time­
dependent formulation are not valid while the con­
ditions sufficient for the integral representation are 
valid, or to prove that the former conditions are 
implied by the latter. 

We have been unable to do either of these and 
hence the questions as to whether such a set of 
Hamiltonian operators exists as well as to whether 
it contains any Hamiltonians of physical interest 
remain as unsolved problems. 

8. REMARKS ON THE HAMILTONIAN OPERATOR 
FOR NONRELATIVISTIC AND RELATIVISTIC 

THEORIES 

We have said very little about how the Hamil­
tonian operators are to be defined. Usually they 
will be defined in terms of a basic set of operators, 
for example the coordinate and momentum opera­
tors of the particles involved, to which a natural 
physical interpretation can be attached. The "free" 
Hamiltonians corresponding to the various channels 
determine the various kinds and numbers of particles 
whoes measurement can be described by the theory, 
and the relation of the "free" Hamiltonians to the 
"total" Hamiltonian determines the dynamics of 
the interaction or scattering process. 

We have developed our formulation according to 
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the traditional framework of nonrelativistic quantum 
mechanics. However this framework is not neces­
sarily restricted to nonrelativistic theories; whether 
the theory is relativistic or nonrelativistic depends 
on the form of the Hamiltonian operators. 

The "free" Hamiltonian associated with a given 
channel must describe the dynamics associated with 
the unperturbed motion of the particles of that 
channel. For the purpose of illustrating our ideas 
suppose that for a given channel this unperturbed 
dynamics is that of N free particles. If we wish to 
give a nonrelativistic description of the scattering 
of those particles, then the channel Hamiltonian 
operator should have the form of the nonrelativistic 
expression for the energy of the N free particles, 
while if we want to give a relativistic description it 
should have the form of the relativistic expression 
for the energy of the free particles (see Jauch/ 
Sec. 3). 

The "total" Hamiltonian operator must satisfy 
conditions which are required for a meaningful 
physical interpretation of the theory. Among these 
are the existence of operators which commute with 
the Hamiltonian operator and represent the total 
momentum and angular momentum of the system. 
In a nonrelativistic theory the conditions of Galilean 
invariance must be satisfied.ll This means that the 

11 S. Okubo and R. E. Marshak, Ann. Phys. (New York) 
4, 166 (1958); L. Eisenbud and E. P. Wigner, Proc. Natl. 
Acad. Sci. U. S. 27,281 (1941). 

Hamiltonian, momentum, and angular momentum 
operators, together with the generators of Galilean 
transformations, must form a set of ten operators 
which have the correct commutation relations to be 
infinitesimal generators for a representation of the 
Galilean group. A relativistic theory must satisfy 
the conditions of Lorentz invariance, the main one 
of which is that the Hamiltonian, momentum and 
angular momentum operators, together with the 
generators of Lorentz transformations, form a set 
of 10 operators which have the correct commutation 
relations to be the infinitesimal generators for a 
representation of the inhomogeneous Lorentz 
group. 12 

Thus relativistic as well as nonrelativistic theories 
can fit into the framework which we have used, 
provided they contain "total" and "free" Hamil­
tonian operators. It is only these operators, their 
relationships, and the structure of the Hilbert space 
determined by their relationships that are funda­
mental to our formulation of the scattering problem. 
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!he e:,act amplitude for scattering ~f ~ Schriidinger or Dirac particle by a static potential is re­
WrItten III a two-potentIal for~ by sphttmg the potential into two parts, one of which contributes 
o~ly to e~actly forward sca~terI!~g. Repl~cement of the exact wave function by a modified plane wave 
¥Ives a hlg~-e.nergy approxlmatl?n that IS shown t? be .equivalent ~o th~ Saxon-:Schiff approximation 
m ~he Schro~mger case. CorrectIOns to th~ approXImatIOn are obtamed m princIple from a simplified 
serIes ~xpanslOn of the exact wave functIon having the modified plane wave as leading term. The 
~pproxlmate amp!it,ude r~duces at small scat~erin~ an~les to a well-known result; at large angles, 
It reduces to Schiff. s statIon~ry-1?hase approXImatIOn m the Dirac case but not, as shown by the 
example of a Gaussian potentIal, m the Schriidinger case. 

I. INTRODUCTION 

ELASTIC scattering of a high-energy particle by 
a static potential can be calculated either by 

partial-wave analysis, if the potential has spherical 
symmetry; by the Born approximation, if the 
potential is sufficiently weak; or by a less familiar 
high-energy approximation, if the scattering angle 
is sufficiently small. The last of these methods was 
initiated by Moliere,l but has been developed and 
expounded primarily by Glauber. 2 Briefly, it consists 
in approximating the unknown exact wave function 
by a plane wave modified in phase to take account 
of the shift in de Broglie wavelength while the 
particle is passing through the potential. Its virtue 
is its applicability to potentials so strong that the 
Born approximation is useless. Its weakness is the 
restriction to small angles: Although most of the 
scattering at high energies is nearly forward, the 
large-angle scattering is often crucial for the inter­
pretation of an experiment. 

An extension of the high-energy approximation 
to large angles was made by SChiff,3 who summed 
the infinite Born series after approximating each 
term by the method of stationary phase. For both 
Schrodinger and Dirac particles, Schiff obtained a 
large-angle scattering amplitude that differs from 

* Based in part on a thesis presented by one of the authors 
(P. J. L.) in partial fulfillment of requirements for the Ph. D. 
degree at Iowa State University. The work was performed in 
the Ames Laboratory of the U. S. Atomic Energy Commission. 

t Preliminary accounts have been given by B. C. Carlson 
and P. J. Lynch, Bull. Am. Phys. Soc. 5, 35 (1960) and by 
P. J. Lynch, thesis, Ames Laboratory Report IS-203 (un­
published). 

t Now at Space Technology Laboratories, Los Angeles, 
California. 

1 G. Moliere, Z. Naturforsch. 2A, 133 (1947). 
2 R. J. Glauber, Lectures in Theoretical Physics (Inter­

science Publishers, Inc., New York, 1959), Vol. I, p. 315. 
3 L. I. Schiff, Phys. Rev. 103. 443 (1956). 

the Born approximation by phase modification of 
both the initial and final plane waves. He also 
recovered by the same method the small-angle ap­
proximation (in which only the initial plane wave 
is modified in phase), but obtained no results for 
intermediate angles. This gap was remedied by 
Saxon and Schiff4 in a paper dealing only with the 
Schrodinger equation. The exact scattering ampli­
tude was recast in a form that reduces to the small­
angle approximation if the exact wave function is 
replaced by a plane wave. The high-energy approxi­
mation consists in replacing it instead by a plane 
wave modified in phase. Beside providing a well­
defined (although somewhat cumbersome) approxi­
mation for all angles, this new approach to the 
problem was used to rederive the simplified small­
angle and large-angle formulas and to revise their 
estimated ranges of validity. 

The present paper develops a two-potential formu­
lation of the high-energy approximation for both 
the Schrodinger and Dirac equations. The scattering 
potential (assumed real, although this is not essentia1 
to the method) is split into two parts, one of which 
is chosen to be the potential occurring in the wave 
equation satisfied by a modified plane wave. Since 
this part contributes only to exactly forward scatter­
ing, the remaining part provides a compact rear­
rangement of the exact scattering amplitude for 
nonzero angles. The exact wave function is then 
replaced by a modified plane wave as a high-energy 
approximation. 

Although an approximat.ion of this kind for all 
angles has not been given previously in the Dirac 
case, our procedure is related to earlier work on 
the Schrodinger scattering problem in two ways. 

4 D. S. Saxon and L. I. Schiff, Nuovo cimento 6, 614 (1957). 
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Lippmann5 proposed a two-potential formalism and 
used it to obtain an integral equation for the wave 
function, but his splitting of the potential is different 
from ours. Secondly, our form of the high-energy 
approximation will be shown in Sec. III to be equiva­
lent to Saxon and Schiff's, although the conclusions 
that we draw from it are at variance with theirs. 
Specifically, for 1800 scattering from a Gaussian 
potential, we shall find in Sec. V the Schiff large­
angle formula multiplied by!, plus additional 
terms that are small in a wide range of parameters 
(not including the range of validity of the Born 
approximation). The discrepancy is attributed to 
the method by which Saxon and Schiff estimate 
the size of discarded terms. For large-angle Dirac 
scattering, on the other hand, we recover the Schiff 
large-angle formula with no factor t, its absence 
being due to the linearity of the Dirac Hamiltonian 
in space derivatives. 

II. TWO-POTENTIAL FORM OF THE 
SCATTERING AMPLITUDE 

The exact amplitude for scattering of a Schro­
dinger particle by a scalar potential will first be 
rearranged in a form that is characteristic of two­
potential theory and has certain advantages at high 
energies. In order to simplify the derivation, the 
potential V(r) will be assumed to vanish outside 
a bounded region. If the particle has energy E = 
h2k2/2m, its wave function satisfies 

[\7 2 + e - U(r)N(r) = 0, (2.1) 

where U(r) = (2m/li2)V(r). Solutions having the 
asymptotic form of a plane wave plus outgoing or 
incoming spherical waves will be denoted by if; + 

or if; -, respectively. The exact scattering amplitude 
f is given by the well-known expressions6 

-47rf(k/ ko) = ('PI, Uif;~) 

= (if;~, U'Po) , 

where the plane waves 'P satisfy 

(2.2a) 

(2.2b) 

(2.3) 

The SUbscripts on the wave functions specify whether 
the plane wave (or plane-wave part of the asymptotic 
form) has the initial wave vector ko or the final wave 
vector k/. Each of these vectors has magnitude k 
and direction given by the unit vector ko or k,. 

6 B. A. Lippmann, Ann. Phys. 1, 113 (1957). 
6 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 

(1950). 

The momentum transfer q = ko - k f has magnitude 
q = 2k sin (8/2), where 8 is the scattering angle. 

A high-energy approximation to if; ~ is the modified 
plane wave2 

X ~(r) = 'Po(r) exp i oo(r) , (2.4) 

where 

'Po(r) = exp tko·r, (2.5) 

oo(r) = -(2k)-1 {" U(r - kos) ds. (2.6) 

The phase modification 00 takes account, to first 
order in U /k2, of the shift in de Broglie wavelength 
when the particle is inside the potential. By observing 
that 

it is easily verified that the modified plane wave 
satisfies the differential equation 

[\72 + e - Us(r)]x~(r) = 0, (2.8) 

where 

US=U-UL 

UL = -exp (-i 00)\72 exp i 00. 

(2.9) 

(2.10) 

To express the scattering amplitude in terms of 
x~, we apply Green's theorem to x~ - 'Po and 
(if;, - 'P/)*' the star denoting complex conjugation: 

J dr[(if;, - 'P/)*\72(X~ - 'Po) 

- (x ~ - 'Po) \7\ if;, - 'PI)*] 

= J dS'[(if;, - 'PI)*V(X~ - 'Po) 

(2.11) 

The right side is proportional to a transition current 
through the surface of a large sphere; we shall first 
show that this current vanishes as the radius of the 
sphere becomes infinite. The quantities oo(r) and 
x~(r) - 'Po(r) vanish unless r lies either in the 
potential or in a semi-infinite cylinder such that 
a straight line proceeding from r in the direction 
-ko pierces the potential. This second region will 
be called the forward cylinder with axis in the 
direction ko• Thus the surface integral reduces to 
an integral over the area of intersection of the 
forward cylinder with the sphere. As the radius of 
the sphere tends to infinity, this area remains 
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bounded because the potential vanishes outside a 
bounded region, but (if;, - IPf)* and its gradient 
decrease as the reciprocal radius; hence the surface 
integral tends to zero. 

If Eqs. (2.1), (2.3), and (2.8) are substituted in 
the volume integral in Eq. (2.11), we obtain (for 
real U) 

(2.12) 

By use of Eqs. (2.2b) and (2.9), this equation 
becomes 

(2.13) 

Equation (2.13) has a form characteristic of 
scattering by two potentials: the first term is the 
scattering by Us alone and the second term is the 
scattering by U L as modified by the presence of Us. 
A similar division of the amplitude is familiar7 

in scattering problems where two physically distinct 
forces are acting, particularly when the scattering 
produced by one of them alone can be calculated 
exactly. In the present situation a single potential 
has been divided into two parts in a convenient but 
artificial way by introducing x~; the separate parts 
are not real, and they differ from zero throughout 
both the potential region and the forward cylinder. 
Because of these peculiarities, we shall have to 
discuss the existence of the separate terms of Eq. 
(2.13); also, we have felt it desirable to derive this 
equation by an elementary procedure for which 
the conditions of validity are more evident than 
for the operator method. 7 Our method can be used 
also when the two potentials both have finite range, 
for the surface integral in Eq. (2.11) then vanishes 
because of cancellation between the two terms in 
the integrand. With a different choice of outgoing 
or incoming spherical waves, the same procedure 
is convenient for deriving other identities between 
different forms of the scattering amplitude; for 
instance, replacement of x~ - 'Po by if;~ - lPo in 
Eq. (2.11) shows the equivalence of Eqs. (2.2a) 
and (2.2b). 

As mentioned, both Us and U L are nonzero 
throughout the forward cylinder. This implies that 
each term of Eq. (2.13) is an integral that appears 
to oscillate rather than converge, although the sum 
of the two terms is well defined. For exactly forward 
or backward scattering, this appearance is illusory 
as each term can actually be shown to converge 

7 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 
(1953). A misprint in Eq. (4.4) is corrected by Lippmann.' 
See also M. Hack, Phys. Rev. 108, 1636 (1957). 

separately. At all other angles, it will be convenient 
to define the integrals separately by adding a small 
positive imaginary part to the component of mo­
mentum transfer along the direction ko• That is, 
if the z axis is chosen along this direction, we replace 
q. by q. + iE and take the limit of each integral 
as E goes to zero. The use of this Abelian definition 
of the integrals cannot change their sum, which is 
well defined in any case. One may like to think of 
the convergence factor exp (- EZ) as a device for 
representing the attenuation of the geometrical 
shadow by diffraction effects. 

Because x ~ describes a particle whose direction 
of motion is unchanged as it passes through the 
potential, Us may be expected to contribute only 
to exactly forward scattering, while U L produces 
scattering through finite angles. The idea of splitting 
the potential into two parts of this kind has been 
discussed by Lippmann,5 but his division of the 
potential is different and less explicit than the one 
given by Eqs. (2.9) and (2.10). 

One's qualitative view of the contributions of Us 
and U L to the scattering process is confirmed by 
the following exact result: 

( U +) - {(IPO' Ux~), 
lPf' sXo-

o , 
8 = 0, 

e> o. 
(2.14) 

Since the scattering amplitude is a continuous 
function of 8, this discontinuity in the first term 
of Eq. (2.13) must of course be accompanied by a 
compensating discontinuity in the second term. In 
order to prove Eq. (2.14), we consider first the 
matrix element 

(lPf' ULX~) = - J dr (exp iq·r)\72 exp i oo(r). (2.15) 

When the scattering is forward, q vanishes and the 
volume integral can be rewritten as an integral 
over the surface of a large sphere: 

(lPo, ULX~) = - J dS·V exp i oo(r) = 0, e = o. 
(2.16) 

Because V exp i 00 is nonzero only on the inter­
section of the sphere with the forward cylinder, 
only its component along the axis of the cylinder 
contributes to the integral when the sphere has 
infinite radius. However, this axial component is 
proportional to U(r) by Eq. (2.7) and therefore 
vanishes at large distances. 

For nonzero angles, it is convenient to integrate 
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by parts with respect to z in Eq. (2.15): 

('Pr, ULX~) = i(qz + i~)-l 

X If: dx dy exp (iq,x + iqyy) 

X [exp (iq,z - ~Z)\12 exp i oo(r)]; __ ", 

- (2k)-1(q, + i~rl 

X I dr exp (iq·r)V'~U exp i (0)' (2.17) 

The boundary term vanishes because the con­
vergence factor is zero at the upper limit and the 
factor \1 2 exp i 00 is zero at the lower limit. In the 
second term, the quantity E may be set equal to 
zero (when 8 > 0), for the integration is limited to 
the potential region. The Laplacian operator can 
be transferred to the factor exp iq· r by an applica­
tion of Green's theorem, the surface integral vanish­
ing because the potential is bounded in space. Since 
the quantity q2 12kq. is unity, Eq. (2.17) becomes, 
in conjunction with Eq. (2.16), 

{ 
0 (J = 0, 

('Pr, ULX~) = ' 
('Pr, Ux~), (J > O. 

(2.18) 

[A unified proof of both parts of Eq. (2.18) may be 
obtained by observing that the limit as ~ -t 0 of 
(2k)-1(q. + i~)-l q2 is 0 for 8 = 0 and 1 for 8 > 0.] 
Because U = Us + U L, Eq. (2.14) follows directly. 
Finally, we can rewrite Eq. (2.13) as 

-41l-/(kr, ko) 

= {('PO' Ux~) + (1{;~, [hx~), 
(1{;i, ULX~) , 

8 = 0, (2.19) 
8> O. 

Equation (2.19) is a rearrangement (without ap­
proximation) of the exact scattering amplitUde, 
Eq. (2.2b), in a form that is expected to be useful 
at high energies. This expectation is supported by 
a comparison of the results of replacing 1{;i by the 
plane wave 'Pr in the two expressions. Equation 
(2.2b) gives the Born approximation, while Eq. 
(2.19) becomes 

(2.20) 

by virtue of Eq. (2.18). The last equation is a well­
known approximation for high-energy scattering 
valid at small angles. 2 The use of a better approxi­
mate wave function in Eq. (2.19) will be discussed 
in Sec. V. 

III. DERIVATION OF THE SAXON-SCHIFF 
AMPLITUDE 

Saxon and Schiff 4 have rewritten the exact 
scattering amplitude in another form that is useful 
for obtaining high-energy approximations. We shall 
now show that the two-potential form of the ampli­
tude, Eq. (2.13), is closely related to the Saxon­
Schiff form and incidentally provides a substantially 
simpler way of deriving it than that given originally 
by Saxon and Schiff. Secondly, we shall show the 
equivalence of the high-energy approximations ob­
tained when 1{;i is replaced by a modified plane wave 
xi in these two forms of the amplitude. 

The Saxon-Schiff amplitude is 

-411'f(kr , ko) = ('Pr, Ux~) 

+ 2ik I drU(r)[exp i 00(r)]\12 J.'" dZ''Po(r')1{;,~(r'), 
(3.1) 

where r' = (x, y, z') and 

1{; Be(r) = 1{; i(r) - 'Pr(r). (3.2) 

To obtain this result from Eq. (2.13), we first 
substitute Us = U - U L: 

-411'f(kf , ko) = ('Pr, ['x~) 

- [1{;,,, (\7 2 exp i oO)'Po]' (3.3) 

With the z axis parallel to ko, integration by parts 
with respect to z and use of Eq. (2.7) change the 
second term of Eq. (3.3) to 

- II dx dy[\12 exp i oo(r)] 

X J.'" dZ''Po(r')1{;,~(r') c:: 
- 2

i
k I dr{\1

2
[U(r) exp i oo(r)Jl 

X J'" dz' 'Po(r') 1{;.~(r'). (3.4) 

Since the asymptotic form of 1{;.c is an incoming spher­
ical wave, 'Po(r') 1{;.~(r') varies as (liz') exp (2ikz') 
at large positive z' for fixed x and y. Hence the 
integral over z' exists and tends to zero as z -t + CX) • 

Since \1 2 exp (i 00) vanishes at large negative z, 
the first term of Eq. (3.4) clearly vanishes at both 
limits. Green's theorem applied to the second term 
now yields Eq. (3.1), the surface integral in Green's 
theorem having a vanishing integrand because U 
vanishes at large distances. 

If if; i is replaced by a modified plane wave X {' 



                                                                                                                                    

444 P. J. LYNCH AND B. C. CARLSON 

the only part of this demonstration that needs 
changing is the reason why the boundary term 
vanishes at the upper limit. When XI is defined in 
more detail in Sec. IV, it will be seen that X, - IP, 

vanishes at large positive z for fixed z and y unless 
the scattering angle is 180°. In this exceptional 
case, the integral over z' must be defined in the 
Abelian sense, and the convergence factor then 
causes the boundary term to vanish at the upper 
limit. 

IV. ITERATION SCHEME 

In order to make use of Eq. (2.19), the unknown 
exact wave function 1/Ii must be replaced by an 
approximate wave function or, more systematically, 
by the leading term or terms of a series expansion. 
For example, Eq. (2.20) resulted from replacing 1/1, 
by the leading term of its Born series. At high 
energies, a better choice should be the modified 
plane wave xi, which is a good approximation to ifii 
in the potential region provided that kR » 1, 
U « k2

, and (Ule)(URlk) « 1.4 (The potential 
is assumed to be smooth and to occupy a region of 
dimension R.) Postponing until Sec. V a further 
discussion of this approximation, we consider here 
the problem of expanding ifi, in a series having X, 
as its leading term. 

For convenience of notation we shall actually 
work with ifi~ instead of ifi, ; one can be obtained 
from the other by use of the relationS 

(4.1) 

where -1 refers to the wave vector -k,. Similarly, 
X - and X + are related by 

xi(r) = [x~,(r)]* = exp [tR/·r - i IL,(r)], (4.2) 

a-fer) = -(2k)-1 foOO U(r + kls) ds. (4.3) 

The phase modification is nonzero if r lies in the 
potential or in the backward cylinder with axis in 
the direction -k, (a semi-infinite cylinder such 
that a straight line proceeding from r in the direction 
k, pierces the potential). 

Saxon and Schiff4 obtained a series for 1/1~ with 
x~ as leading term by iterat.ing an int.egral equation 
for ifi~. We shall inst.ead obtain an int.egral equation 
for the exact Green's function and subst.itute its 
it.erat.ion series in a suitable expression for ifi~, to 
be derived in the next paragraph. Although our 
procedure is more complicated, the results are in 
one respect. simpler. 

8 L. D. Landau and E. M. Lifshitz, Quantum Mechanics 
(Pergamon Press, New York, 1958), p. 422. 

Whereas Saxon and Schiff applied Green's theorem 
to if;~ and an approximate Green's function, we 
shall apply it to x~ and the exact Green's function, 
which satisfies 

[\7 2 + k 2 
- U(r)]G+(r, r') = - oCr - r'). (4.4) 

From Green's theorem and Eq. (2.8), it follows that 

n(r) == f dS'·[G+(r',r)V'x~(r') 
(4.5) 

= x~(r) - f dr'G+(r',r)UL(r')x~(r'). (4.6) 

Equation (4.6) shows that the surface integral n 
satisfies the same Schrodinger equat.ion as ifi~. 
However, it is not obvious that n has the asymptotic 
form of a plane wave plus outgoing spherical waves 
[the asymptotic form of the volume integral cannot 
be obtained by simply substituting for G+ its 
asymptotic form, since the integration in Eq. (4.6) 
extends over both the potential region and the 
forward cylinder]. To show that n is indeed ifi~, 
we observe that the same procedure, applied to lPo 
instead of x~, leads to a familiar equation9 for 1/1~, 
with no difficulties about the asymptotic form: 

ifi~(r) = J dS'·[G+(r', r)V'lPo(r') 

- lPo(r')V'G+(r', r)] (4.7) 

= lPo(r) - f dr'G+(r, r')U(r')lPo(r'). (4.8) 

But the surface integrals (4.5) and (4.7) are equal, 
for x~ - lPo and its gradient are zero on the surface 
of a large sphere except at its intersection with the 
forward cylinder, while G+(r', r) decreases at large 
r' as 1/r'. Finally, by the reciprocity property of 
the Green's function, Eq. (4.6) becomes 

ifi~(r) = x~(r) - f dr'G+(r, r')UL(r')x~(r'). (4.9) 

This equation bears the same relation to Saxon and 
Schiff's integral equation for ifi~ as does Eq. (4.8) 
to the integral equation 

if; ~(r) = lPo(r) - f dr'G~(r, r') U(r') 1/1 ~(r'). 

The iteration series to be substituted for G+ in 
Eq. (4.9) is chosen to have as its first term the 
approximate high-energy Green's function proposed 

9 G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 
(1952). 
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by Saxon and Schifr: 

rCr, r') = G~(p) exp i oCr, r'), C4.1O) 
where 

!) = r - r', 

G~(p) = (4?rp)-1 exp ikp, 
(4.11) 

oCr, r') = -(2k)-1 f U(r - psi ds. 

The approximate Green's function satisfies the dif­
ferential equation 

[V 2 + e - U(r) + W(r, r')]r(r, r') = - oCr - r'), 
(4.12) 

with 

W(r, r') = -exp [-i oCr, r')]V2 

X exp [i o(r,r')] - (i/kp)U(r). (4.13) 

When Green's theorem is applied to G+ and F+, 
the surface integral vanishes and we obtain the 
integral equation 

G+(r, r') = F+(r, r') 

- J dr" F+ (r, r") W(r", r)G+ (r", r'). (4.14) 

Iteration of this equation gives a series for G+ 
that can be substituted in Eq. (4.9) to yield the 
desired series expansion of 1/1~: 

1/I~(r) = x~(r) - J dr'r(r, r')UL(r')x~(r') 

+ J dr' dr"F+(r, r")W(r", r) 

X r (r" , r') U L(r')x ~(r') + ... (4.15) 

The series obtained by iterating Saxon and 
Schiff's integral equation differs from this in only 
one respect: the factor UL(r') that precedes x~(r') 
in all terms but the first of Eq. (4.15) is replaced 
by the more complicated W(r', r<n» of Eq. (4.13). 
This replacement does not change the values of 
the individual terms of the series; by a proof that 
begins with the application of Green's theorem to 
F+ and x~, one can show that 

J dr'r(r, r')[UL(r') - W(r', r)]x~(r') = O. (4.16) 

Before turning to other questions, we should like 
to mention a further use for Eq. (4.9): it provides 
an alternative derivation of the exact scattering 
amplitude in the form of Eq. (3.3). We observe 
that the argument of 1/1~ in Eq. (4.9) occurs in the 
integrand only as an argument of the exact Green's 

function. As a result, a familiar integral occurs 
when Eq. (4.9) is substituted in Eq. (2.2a) and the 
order of integration is reversed in the second term: 

-4?r/(kr , ko) = ('Pr, Ux~) - J drUL(r)x~(r) 
X J dr''P*r(r')U(r')G+(r', r). (4.17) 

Now the solution of the Schrodinger equation having 
the asymptotic form of a plane wave 'Pr plus in­
coming spherical waves is 

1/1 i(r) = 'Pr(r) - J dr'G-(r, r') U(r')'PrCr'). (1.18) 

By Eq. (3.2) and the identity 

[G-(r, r')]* = G+(r', r), 

it follows that 

1/I,~(r) = - J dr'G+(r', r) U(r')'P*r(r'). (4.19) 

This identification of the integral shows Eq. (4.17) 
to be the same as Eq. (3.3). 

V. SMALL-ANGLE AND LARGE-ANGLE 
APPROXIMA TrONS 

When 1/Ii is replaced in Eq. (2.19) by the approxi­
mate high-energy wave function xi, we obtain an 
approximate scattering amplitude 

-4?r/l(kr , ko) 

= {('Po, Ux~) + (x~, ULX~), 0 = 0, 

(xi, ULX~) ,0 > O. 
(5.1) 

In spite of its very different appearance, this ex­
pression is equivalent, as shown already in Sec. III, 
to the high-energy approximation given by Saxon 
and Schiff.4 They have discussed its accuracy, as 
well as the ranges of energy and angle in which it 
reduces to the simplified small-angle approximation, 
Eq. (2.20), or to Schiff's large-angle formula, 
(xi, UX~).3 

To discuss these questions again would surely be 
superfluous if Saxon and Schiff had not found it 
necessary to make order-of-magnitude estimates 
[following their Eq. (32), for example] of some 
rather complicated integrals containing rapidly oscil­
lating factors in their integrands. Such estimates 
are very difficult to make with certainty; for instance, 
the relative magnitudes of two functions are no 
guide to the relative magnitudes of their Fourier 
transforms, except for the low-frequency com­
ponents. In view of this, we have thought it worth­
while to see what conditions of validity can be 
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established by taking the form (5.1) of 11 as an 
alternative starting point and abstaining from 
order-of-magnitude estimates of the kind just 
mentioned. 

The conclusions that we have reached by this 
route are very limited. The first is that fl reduces to 
the small-angle approximation for scattering angles 
6 ::s l/kR; that is, for such small angles, it is im­
material whether 1/1, is approximated in Eq. (2.19) 
by a modified or unmodified plane wave. For reasons 
to be explained presently, we are not able to extend 
this conclusion to the wider range of angles, 6 « 
(kR)-t, given by Saxon and Schiff. For angles near 
180°, our attempt to recover the Schiff large-angle 
formula will serve only to underline the hazards 
of making order-of-magnitude estimates. An effort 
to avoid them in a particular case, by an approxi­
mate saddle-point integration, will be found to sug­
gest that the Schiff large-angle formula should be 
multiplied by ~ and its range of validity restricted 
to avoid overlap with that of the Born approxima­
tion. (For a Dirac particle, on the other hand, the 
Schiff large-angle formula will be obtained without 
difficulty in Sec. VI.) 

For small scattering angles, it is convenient first 
to rearrange Eq. (5.1) in the form 

-41Tft(kj, ko) = ('Pj, Ux~) + (x, - 'Pj, ULX~)' (5.2) 

The first term is the familiar small-angle formula 
of Eq. (2.20); the second term is a correction whose 
relative order of magnitude we wish to estimate. 
(The second term is well-defined, with one exception, 
because the integrand vanishes except in the poten­
tial region and in the intersection of the forward 
and backward cylinders; at 6 = 180°, these cylinders 
coincide, but convergence can be restored by adding 
a small positive imaginary part to qz as in Sec. II.) 
We suppose that the potential is smooth and oc­
cupies a region of dimension R, that kR » 1 and 
U « e, and that UR/k is not large compared to 
unity. Then the only factor in either integrand that 
can oscillate rapidly in a distance R is exp (iq. r). 
If 6 ::s l/kR, this factor too is slowly varying, and 
a straightforward estimate of orders of magnitude 
gives roughly UR3 for the first term of Eq. (5.2) 
and U2R3 je for the second term. Thus the second 
term is of relative order U /e and can be neglected. 
But if 6» 1jkR, the integrand of each term contains 
the rapidly oscillating factor exp (iq· r), and order­
of-magnitude estimates, whether of the individual 
terms or of their ratio, become unreliable. 

At large scattering angles, this difficulty of esti­
mating high-frequency Fourier components is ag-

gravated. Reflection from a one-dimensional barrier 
will illustrate how one can be deceived by apparent 
orders of magnitude; the same hazards will then be 
encountered in a discussion of 180° scattering from 
a Gaussian potential in three dimensions. 

The reflection amplitude from a one-dimensional 
barrier is10 

(5.3) 

This can be rewritten in the two-potential formal­
ism as 

2ikr = ('Pj, Usx~) + (1/1" ULX~), (5.4) 

where 

'Pj(Z) exp (-ikz) , 

x~(z) = exp [ikz + i oo(z)] = [x,(z)] * , 

oo(z) = -(2k)-1 foo U(z') dz', 

UL(z) = -exp (-i oo)(d2 jdi) exp (i (0)' 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

As expected, the first term of Eq. (5.4) is easily shown 
to vanish. Replacement of 1/1, in the second term 
by x, gives a high-energy approximation analogous 
to Eq. (5.1): 

2ikrl = (x" ULX~) 

= _foo dz exp (2ikz + i 00) dd
2

2 exp i 00' (5.9) 
-00 z 

The integral can be rewritten in two ways by substi­
tuting the identities 

( .~)d2 .~ Id
2 

(2'~) exp ~ {lo dz2 exp ~ {lo = 2 dz2 exp ~ {lo 

+ (! 00 Y exp (2i (0) (5.1 Oa) 

1 d 2 

= - -- exp (2i 0 ) 4 di 0 

. 1 (d2

) (.) + ~ 2 di 00 exp 2~ 00 . (5. lOb) 

In each case, we integrate the first term by parts 
to obtain 

(5.lla) 

(5.11b) 

A glance at Eq. (5.l1a) suggests that the second 
term is of order Uoje compared to the first and can 

10 P. :.vI. Morse and H. Feshbach, Methods of Theoretical 
Physics (McGraw-Hill Book Company, Inc., New York, 
1953), Vol. II, p. 1071. 
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be neglected at high energies, leaving (x" Ux~) 
as expected by analogy with the Schiff large-angle 
formula in three dimensions. A fallacy in this argu­
ment is that U2 usually varies more rapidly than U 
and consequently has larger high-frequency com­
ponents. Moreover, a contradictory conclusion is 
reached by estimating the second term of Eq. 
(5.11b) to be of order l/kR compared to the first. 

We shall try to resolve this dilemma by con­
sidering a Gaussian potential, U = Uo exp (-l/a2

). 

The integrand of Eq. (5.11a) has no singularities 
for finite complex z, but the quantity 

In [(X/)*X~J = 2ikz - i(Uo/k) Loo exp (-~;) dz' 

(5.12) 
has a saddle point at 

z = ialln (2e/Uo)J~ = iyo, (5.13) 

U(iyo) = 2e. 
If the integration contour is shifted from the real 
axis to the line z = x + iyo, then the real part of 
Eq. (5.12) has a sufficiently sharp maximum as x 
goes through zero that the variation of the remaining 
terms of the integrand can be neglected, provided 
that Yo « ka2

• Instead of recording the rather 
cumbersome result of the saddle-point integration, 
we observe only that U2/4e has the same value 
as U /2 at the saddle point; thus, in this approxima­
tion, we simply recover the first term of Eq. (5.11b). 

A better approximation should result from apply­
ing the same procedure to Eq. (5.11b), because 
dU /dz = -2zU /a2 varies less rapidly than U2

• 

Indeed, only z need be replaced by its value at the 
saddle point to obtain a small correction term: 

(5.14) 

If the saddle point is defined more carefully by 
adding In U to Eq. (5.12), the algebra becomes 
more complicated but the saddle point is shifted by 
a negligible amount to approximately iyo - i(2k)-1. 

An objection to this saddle-point approximation 
is that the real part of Eq. (5.12) does not continue 
to decrease with further increase of Ixl but oscillates 
and reaches a local maximum (never as large as the 
one at the saddle point) whenever Ixl is an integral 
multiple of 7ra

2/yo. However, if Yo ~ 7I"a, i.e., if 
uo/e ,2:, 10-4

, the heights of these subsidiary 
maxima decrease rapidly from one to the next. 
Even at the first and largest of them, the exponential 
of the real part is small compared to its value at 
the saddle point, and the exponential of the imagi­
nary part is oscillating rapidly. Consequently, we 

believe that the value of the integral comes almost 
entirely from the saddle point. 

Since the high-energy approximation requires 
ka » 1 and (Uo/e)(Uoa/k) « 1, we find that Tl 

is half as large as the analog of the Schiff large­
angle formula in the range of parameters 10-4 ~ 
Uo/k

2 « (ka)-t. No inconsistency with the Born 
approximation arises from the factor!. because the 
second Born approximation for a Gaussian potential 
is large compared to the first in this range. 

The factor ! does not seem to be a peculiarity of 
the one-dimensional case. In three dimensions, the 
approximate amplitude for 1800 scattering is 

-471"M-ko, ko) = (XI, ULX~) 

= - J dr exp (2ikz + i 00)'\12 exp i 00' (5.15) 

As in one dimension, we avoid terms explicitly 
quadratic in U by substituting an identity similar 
to Eq. (5.lOb): 

exp (i 00)'92 exp i 00 

= 1\12 exp 2i 00 + !i(V2 00) exp 2i 00' (5.16) 

When the first term is integrated by parts, the 
surface integral vanishes by the reasoning applied 
earlier to Eq. (2.16), and the volume integral is 
just one-half the Schiff large-angle formula. If the 
second term is evaluated for a Gaussian potential, 
U = Uo exp (_r2/a2), Eq. (5.15) becomes 

-471"/1 = J dr exp (2ikz + 2i 00) 

X [!U - h(ka2)-lzU 

- 2ia- 4(x2 + y2 - a2
) ooJ. (5.17) 

The integrations over x and y can be carried 
out exactly, a convenient variable being t = 
exp [- (x2 + y2)/a2 J. The first two terms present 
no difficulties; the third term, which is defined in the 
Abelian sense by the convergence factor exp (- EZ), 
is first integrated by parts with respect to z and 
then with respect to t. The result is 

-471"/1 = 7I"a
2 i: dz exp (2ikz + 2i ooHU(z) 

X {[I - i(ka2)-lz - (ka)-2J(2i 00)-1 

X [1 - exp (-2i 00)] + (ka)-2). (5.18) 

In this last equation, but not in Eq. (5.17), U 
and 00 are functions of z alone: U(z) stands for 
Uo exp (_Z2/a2) and 00 is related to it by Eq. (5.7). 
The terms in (ka)-2 come from the third term of 
Eq. (5.17). 
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As in the earlier discussion of the reflection 
amplitude, we estimate the relative importance of 
the slowly varying factors by evaluating them at 
the same saddle point, Z = iyo. Admittedly, the 
variation of [1 - exp (-2i 00)] is not slow near 
the saddle point, but its value remains very close 
to unity. The term in (ka2)-lz is then of relative 
order yo/ka2

, and the square bracket containing 
this term is effectively unity. The last term in 
Eq. (5.18) is of relative order (ka)-2 00 ~ (kYO)-l« 1. 
We conclude that only the first term of Eq. (5.17) 
is important, again provided that Yo ~ 'Ira: 

-4'1rft( -ko, ko) ~ t(Xr, Ux~). (5.19) 

One would like to know whether Eq. (5.19) is 
correct for potentials other than a Gaussian, in a 
suitable range of parameters, and whether it can be 
extended to scattering angles other than 180°. The 
assumption of a Gaussian potential was not used 
in obtaining this expression directly from the first 
term of Eq. (5.16), and we speculate that this term 
will in general have substantially larger high-fre­
quency components than the second term because 
it contains the square of the z derivative of the 
potential. As in the Gaussian case, the effect of its 
more rapid variation will be compensated by its 
quadratic dependence on Uo when Uo becomes 
sufficiently small that the Born approximation is 
valid. The first term leads directly to the right­
hand side of Eq. (5.19) also at scattering angles 
other than 1800 provided that xf is approximated 
by 'P, exp (-i 00)' We have not been able to estimate 
reliably the range of angles about 1800 in which no 
serious error is caused by this approximation. 

VI. DIRAC SCATTERING 

In order to describe high-energy potential scatter­
ing of physical electrons, one must use the Dirac 
equation to satisfy the requirements of special 
relativity. We shall find that the two-potential 
formalism developed earlier for the Schrodinger 
equation can be applied also to the single-particle 
Dirac equation with only minor changes. Aside from 
the complications of spin, the resulting high-energy 
approximation is in fact simpler in the Dirac case; 
for 1800 scattering, in particular, we shall recover 
the Schiff large-angle formula3 with no factor ! 
and with no additive terms. These simplifications 
occur because the Dirac Hamiltonian is linear rather 
than quadratic in space derivatives. 

The Dirac equation for a particle in a scalar 
potential VCr) isH 

11 L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book 
Company, Inc., New York, 1955), 2nd ed., p. 329. 

[E - Ho - V(r)]lf(r) = 0, (6.1) 

where 

(6.2) 

If no potential is present, the plane-wave solutions 
with positive energy will be denoted by 

'Pi(r) = ui(k) exp (ik·r), i = ±t, 

e = (E/1i4 - k~, (6.3) 

kc = me/h. 

The four-component spinors Ui satisfy the ortho­
gonality relations 

u;u; = (E/me2
) 0.; = 'Y Oi;, (6.4) 

t 
u.!3u; = - 0;;. (6.5) 

The exact amplitude for scattering from an initial 
state with wave vector ko and spin So (spinor Ui 

with i = so) to a final state with k, and s, is given by 

-411'f(k" Sf; ko, so) = (cp" Ulf~) = (Iff, U'Po), (6.6) 

U(r) = (2m/h2) V(r). 

The differential cross section 1/12 must of course be 
averaged over initial spins if the beam is unpolarized 
and summed over final spins if the spin direction is 
not observed. 

To split the potential into two parts, we again 
use a plane wave modified by a phase factor that 
corrects for the change of wavelength in the potential 
region: 

X ~(r) = 'Po(r) exp [i oo(r)], 

oo(r) = -'Y(2k)-1 f' U(r - kos) ds. 
(6.7) 

The only differences from the Schrodinger case are 
that the plane waves are now spinors and that 00 
is now proportional to 'Y = E/mc2

• The origin of the 
factor 'Y becomes obvious when the relativistic 
expression for the wave number is expanded to first 
order in V. The Dirac equation satisfied by the 
modified plane wave is 

[E - Ho - Vs(r)]x~ = 0, (6.8) 

V s(r) = -ihe exp (-i oo)n· V exp i 00 = hen· V 00' 
(6.9) 

To express the scattering amplitude in two­
potential form, we again integrate the transition 
current between (Iff - 'P,) and (x~ - 'Po) over the 
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surface of a large sphere: 

I dS'(ifi, - ~f) \I:(X~ - ~o) 

(6.10) 

The surface integral vanishes because the factor 
(x~ - ~o) limits the integration to the intersection 
of the forward cylinder with the sphere, while 
(ifi, - ~f) decreases asymptotically as l/r. By sub­
stituting Eqs. (6.1) and (6.8) in the volume integral 
and using Eq. (6.6), we obtain 

where 

Us = (2m/Ie) V s = 2kca· V 00, 

U L = U - Us. 

(6.11) 

(6.12) 

(6.13) 

As in Sec. II, the two terms of Eq. (6.11) can be 
defined separately in the Abelian sense. The first 
term again contributes only to exactly forward 
scattering: 

() = 0, 

() > o. 
(6.14) 

(Even at zero angle, it must be remembered that ~f 
and ~o may describe different spin states.) To prove 
Eq. (6.14), we first write out the matrix element in 
detail: 

(~f' U sX~) = - 2ikcu;auo 

X I dr(expiq·r)V expi 00 , (6.15) 

In the case of forward scattering, the spinor product 
is proportional to the incident current density if 
the initial and final spin states are the same, and 
vanishes otherwise: 

(6.16) 

"Gse of Eq. (6.4) and the second of Eqs. (6.7) leads 
at once to 

(~f' Usx~) = 'Y O(Sf' so) I drU exp i 00 (6.17) 

= (~f' Ux~), () = O. 

Since this proof makes no demands on the spatial 
dependence of ~f> we observe for future reference 
that also 

(x" Usx~) = (x" Ux~), () = O. (6.18) 

For nonzero angles, we perform an integration 

by parts with respect to z in Eq. (6.15): 

(~" Usx~) = -2kcCq. + ie)-lu;auo 

X {Ie'" dx dy exp (iqxx + iq.y) 

X [exp (iq.z - ez)V exp i 00];:_'" 

+ i'Y(2kf l I dr exp (iq·r)V(U exp i oo)}. (6.19) 

The boundary term vanishes at the upper limit 
because of the convergence factor and at the lower 
limit because of the factor V exp (i 00)' Integration 
of the second term by parts transfers the gradient 
opera tor to the factor exp (iq· r), the surface integral 
vanishing because the potential vanishes at large 
distances. The second half of Eq. (6.14) now follows 
from the identity 

t 
UfauO·q = O. (6.20) 

Alternatively, the two parts of Eq. (6.14) can be 
proved in a unified way by observing that 

lim u;auo·(q + iez)(q. + ie)-l 

= {- O(Sf' So) (k/kc) , () = 0, 

o ,() > O. 
(6.21) 

The exact scattering amplitude can now be 
written as 

-4'1I} = {(~f' Ux~) + (ifi" ULX~), 
(ifi" ULX~) , 

() = 0, 
(6.22) 

() > O. 

As in the Schri:idinger case, replacement of ifi, by ~I 
gives the familiar approximation 

(6.23) 

where we have used Eq. (6.14). A better replace­
ment for the exact wave function is the modified 
plane wave 

X,(r) = ~f(r) exp [-i Lf(r)], (6.24) 

O-f(r) = -'Y(2k)-1 fa'" U(r + kfs) ds. (6.25) 

The parameters are assumed to satisfy the same 
conditions as in the Schri:idinger case, with U re­
placed by 'YU; in addition, we assume that 'Y » 1. 
Because of Eq. (6.18), the resulting high-energy 
approximation is simpler at 0° than in the Schri:i­
dinger case: 

-471}1 = { (~f' Ux~), () = 0, (6.26) 

(x,, U LX ~), () > O. 



                                                                                                                                    

450 P. J. LYNCH AND B. C. CARLSON 

For small scattering angles () .$ l/kR, it is again 
immaterial whether a modified or unmodified plane 
wave is used as the approximate wave function, and 
we are again unable to extend this conclusion to 
the wider range of angles 0 « (kR)-!.3 We first re­
arrange Eq. (6.26) in the form 

-47rfl = (I{)" UX~) + (x~ - I{)f, ULX~), 

UL = U - 2kc lX''1 00' 
(6.27) 

If 'YUR/k is not large compared to unity, the 
integrals contain no rapidly oscillating factors, and 
their orders of magnitude can be safely estimated. 
On evaluating the matrix elements of lX, the terms 
in a z and au are found to be at most of order () relative 
to (I{)" Ux~). When the remaining terms of U L are 
combined in the form U(1 + cv-ta.), where v is 
the speed of the particle, their contribution is at 
most of order 1h relative to (I{)I, Ux~), and only 
of order ()2h if the spin state is unchanged. 

At a scattering angle of 180°, Eq. (6.26) will be 
shown to reduce to the Schiff large-angle formula3 

with no approximations: 

-47rfl = (x~, Ux~), () = 1800
• 

We consider first the matrix element 

x J dr exp (iq·r + i B-,)'1 exp i 00' 

(6.28) 

(6.29) 

The phase modification B-, is equal to 00 for 0 = 1800
; 

in contrast with Eq. (5.16), we have 

(exp i 00)'1 exp i 00 = !'1 exp (2i 00)' (6.30) 

Thus, Eq. (6.29) has the same structure for 1800 

scattering as Eq. (6.15), and the same steps that 
were used earlier to prove the second half of Eq. 
(6.14) now lead to 

(X~, Usx~) = 0, () = 1800
• (6.31) 

Equation (6.28) follows immediately, and its de­
rivation clearly remains valid in a range of angles 
about 1800 provided that x ~ is approximated by 
I{)f exp (-i 00), As in the Schrodinger case, we are 
unable to estimate reliably the accuracy of this 
approximation. 
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An approach to perturbation theory is considered based on 
the formula exp (-iB) A exp (iB) = A exp (iB]), where 
[AB] = AB - BA is the commutator. The operators A 
constitute a linear space a and the operators B considered 
are such that B] take a into itself. The present discussion 
considers the case where a is finite dimensional with coordi­
nates Cr, ••• , Cn; i.e., a is isomorphic with the set of n-dimen­
sional vectors c. Under these circumstances sufficient con­
ditions for the basic formula are given in terms of the "ana­
lytic vectors" of Nelson. The set, CB, of B's available can be 
considered closed under the processes of taking linear combi­
nations and forming the commutator. Thus CB is a Lie algebra. 
Exponentiation leads to a Lie group of operators U, and A 
and A' are said to be B equivalent if A' = U-iAU. For a 
finite dimensional each B is associated with an n X n matrix, 
b, which specifies the operation B] relative to the vectors c. 
Effectively then, CB is finite dimensional. The matrices b 
form a Lie algebra with a corresponding Lie group of matrices 
u such that A and A' are B equivalent if and only if the 
corresponding two vectors c and c' are u images; i.e., c' = u c. 

INTRODUCTION 

PERTURBATION theory is concerned with 
establishing the spectral characteristics of an 

operator A' = A + oA, where A is an operator 
whose spectral resolution is known and oA is a 
"perturbation." Procedures for investigating this 
problem are of great practical importance (cf. 
Dalgarno; Dalgarno and Stewart; Dirac; Gell-Mann 
and Goldberger; Gunthard and Primas; Hugenholtz; 
Karplus et al.; March and Young; Nakanishi; 
Nambu; Schwartz; Speisman; Sysmanik; YoungV 
In the classic approach, one chooses a coordinate 
system or its continuous equivalent in which A is 
diagonal and seeks a unitary operator U such that 
U-iA'U is also diagonal; i.e., commutes with A and 
may even be a function of A. However, it is a well­
known result of Weyl that, even when oA is com­
pletely continuous, A' may have a different spectral 
type from A (cf. Aronszajn; Kuroda; Rosenbloom) 
and because of this the structure of A + oA has 
been intensely investigated (cf. S. Goldberg; V. N. 
Goldberg; Kato; Porath; Zaidman). These investi­
gations have often been based very strongly on the 
spectral structure of A (cf. Castoldi; Faddeev and 
Ladyzenskaya; Folguel; Friedrichs; Rellich; Rosen­
blum; Schroder; Van Hove). 

There is however another procedure by which 
off diagonal terms can be eliminated. We denote 

1 See the references given at the end of this paper. 

Computationally, therefore, the set of A' equivalent to a 
given A is obtained by considering the orbit of a given vector 
c under the Lie group; i.e., the set of u c. A neighborhood a' 
of a given A consists of those operators A' in the form A + oA 
where oA is arbitrary except for a restriction on the size of 
its coordinates, Ci. Given A, a neighborhood a' can be found 
for which one can obtain by a well-known construction on 
the orbits a set of functionally complete and functionally 
independent invariants for B equivalence. Computationally 
global and rational invariants are desirable and these can be 
obtained in the form of similarity invariants, provided that 
a can be mapped onto a set of n X n matrices a in such a way 
that if c corresponds to a, then b c corresponds to a' = [ab]. 
If the sets a and CB are identical such a mapping is immedi­
ately available and if. in addition, the corresponding Lie 
algebra is semisimple, in general, given A, the A's in some 
neighborhood are each equivalent to an A 1/ which is a function 
of A. This corresponds to a case in which a very simple per­
turbation of A levels occurs. Two examples are discussed. 

AB - BA by [AB] and write U in the form exp (iB). 
One has the formal relationship 

exp (-iB)A exp (iB) 

= A + [AiB] + (1/2!)[[AiB]iB] 

+ (1/3 !)([)3 A (iB]) 3 + 
= (say) A exp (iB]) (1) 

to specify a rotation (cf. Foldy and Wouthuysen; 
Garrido and Pascual; Newton and Wigner; Pryce). 
The commutator operator has been investigated 
from a number of points of view (cf. van Kampen; 
Kermack and McCrea; Putnam; Putnam and 
Wintner; Sack; Vidav). We consider then a linear 
set a of operators A and suppose that iB] takes 
a into itself. Formally, (1) implies that exp (iB]) 
also takes a into itself. If B i , B2 , ••• is a sequence 
of B's for which iBa] takes a into itself, then formally 
L: f..LaB a also has this property and the "diagonali­
zation" of A' = A + oA then consists in choosing 
the f..La so that A" = A' exp (i L: f..L"Ba]) does not 
have off-diagonal terms. If the operator A, whose 
spectral resolution has determined the coordinate 
system, has simple spectrum, this can be accom­
plished by choosing the f..La so that A" is in the set 
of A's which commute with A. 

The present discussion considers the case where 
a is n dimensional. If At. ... , An is a basis for a, 
we use the notation A = L:~i caAa = c·A; i.e., 
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A is a vector IAh ... , AnI and e is the vector 
ICh ... , cnl. We suppose that each such A has a 
closure .A. Since iB] takes a into itself, there is an 
n X n matrix b, which has the corresponding effect 
on the vector e; i.e., e.A(iB]) = (be) ·A. Under 
these circumstances, sufficient conditions can be 
formulated in terms of the "analytic vectors" of 
Nelson for the basic formula (1) to hold for a given 
element f (cf. Nelson). These conditions can be 
fulfilled on a nondense subset of Hilbert space and 
thus we can consider rotating A' on linear subspace 
rather than on the whole space. 

If a is isomorphic with a linear vector space e 
to each B for which iB] takes a into itself, we have 
a transformation b of e into itself. The set of such 
B is of course linear and furthermore if certain 
domain conditions are verified, [B1B2] is such a B, 
if Bl and B2 are. The correspondence B roo...J b is 
linear and [B,B 2 ] will correspond to [b 1b2 ]. If e is 
finite dimensional, the set of b's constitutes a finite­
dimensional Lie algebra and a finite-dimensional 
linear set ill, of B's can be obtained which are in 
one-to-one correspondence with the b's. We suppose 
that there is an appropriate domain such that for 
every B in ill" the basic formula (1) holds. 

The set of b's constitutes a finite-dimensional Lie 
algebra. Exponentiation and multiplication of a 
finite number of exponents will yield the corre­
sponding Lie group of elements, u [cf. ChevaIIey 
(1946)]. In view of (1), we also have for each B of ill" 
a V = exp (iB) which corresponds to the Lie-group 
element, v = exp b, in such a way that if A and A' 
are two operators of a with corresponding e and e' 
in e, then V- 1A V = A' on an appropriate domain 
is equivalent to ve = e/. Clearly a product U of a 
finite number of such V's will also correspond to 
the product u of the corresponding v in such a way 
that U- 1AU = A' on an appropriate domain is 
equivalent to ue = e/. We say that A and A' are B 
equivalent if there is such a U such that U-1 AU = A I 
on an appropriate domain and it is clear that B 
equivalence for A and A' corresponds to ue = e' 
for a u in the Lie group. 

The finite-dimensional set ill, is linear but not 
necessarily closed under the operation of forming 
the commutator. If there is a finite-dimensional set 
ill; of B's which contains ill, and closed under forming 
the commutator, then ill; is a finite-dimensional 
Lie algebra and sufficient conditions are known so 
that one can consider the set of U's as a unitary 
representation of the corresponding Lie group (cf. 
Nelson, Theorem 5, p. 602). In general we are con­
cerned with the unitary character of the individual 

U's either on the whole space or on an appropriate 
subspace and this can be investigated directly. For 
instance, if B is self-adjoint, exp (iB) is unitary 
(cf. Stone). 

The B equivalence of A and A I corresponds to the 
existence of a u in the Lie group for the Lie algebra 
of the b's such that ue = e/. Thus the problem of 
determining the set of A' equivalent to a given A 
is the same as determining the "orbit" of e; i.e., 
the set of elements in the form ue for u in the Lie 
group. The topological character of the set of orbits 
which occur in a representation of a Lie group has 
been extensively investigated (cf. Cartan; Conner; 
Conner and Floyd; Karube; Mills and Seligman; 
Montgomery; Montgomery and Yang; Montgomery 
and Zippen; Mostov; Nono) and a study of B 
equivalence could be based on these, in particular, 
on the theory of "cross-sections." 

However, it is possible to present a somewhat 
more elementary discussion using a construction 
given by Weyl and a choice of coordinate systems 
similar to those described by Pontrjagin. Let A 
be given and the corresponding vector e. A "neigh­
borhood" of A consists of the A' = A + oA where 
OA has a e in a neighborhood of the origin. Let me 
consist of the vectors be in e, b as defined above. Let 
Se denote a set complementary to me in e in the linear 
sense. Let A" denote an element in the form A + aA 
where aA has a e in Se. One can show that there is 
a neighborhood of A such that every A' in this 
neighborhood is equivalent to an A" in the form 
specified. The set of operators A for which So has 
minimum dimensions, has a complement in a of 
lower dimensionality and for an A in this set, if a 
coordinate system in Se is given with coordinates 
Z" ••• , Zp, then the coordinates of the vector cor­
responding to aA constitute, locally, a functionally 

. complete and functionally independent system of 
invariants for B equivalence within the neighbor­
hood of A. 

However, from the computational point of view 
it is desirable to obtain global and rational invariants 
for B equivalence. This can be done if the vectors e 
can be mapped on n X n matrices a, e ~ aCe), 
in such a way that for the b defined above which 
corresponds to the operation iB] we have [a(e)b] = 
a(be). This implies that exp b aCe) exp (-b) = 
aCe) exp (b]) = a (exp be) and thus a(ue) is ob­
tained from aCe) by a similarity transformation 
and all similarity invariants of aCe) are invariants 
for A under B equivalence. If the mapping e ~ aCe) 
is one-to-one, all invariants of B equivalence can 
be expressed in terms of the elements of the matrix 
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aCe) (the similarity invariants are examples of this), 
but if the mapping e ---t aCe) is not one-to-one, the 
situation is more complex. 

A mapping e ---t aCe) is immediately available if 
the set of A's coincides with the set of B's; i.e., 
we take aCe) to be the b matrix associated with A. 
If, under these circumstances, the Lie algebra of 
the b's is semisimple, then (in general) A' is B 
equivalent with an A" which commutes with A. 

In view of the detailed investigations of Lie 
algebras and Lie groups now available, the present 
discussion could be continued into a categorical 
specific a tion of the case considered (cf. Borel; 
Chevalley). But the assumption of a finite dimen­
sional is intended merely to develop background 
material for the more interesting and more per­
tinent infinite-dimensional case, which will be con­
sidered in the future. 

Normally the unitary equivalence of the A's 
relative to B's would be studied by the use of the 
ring of operators determined by the B and A's. 
(cf. Kadison and Singer). However, under the 
circumstances indicated above, a smaller structure 
can be used; i.e., the B set itself, and this is significant 
in the infinite-dimensional case. The relation between 
B equivalence and more general equivalence rela­
tions is also extremely important. 

Our discussion concludes with consideration of 
two examples. Operators p and q are defined on 
the set of summable squared functions of x for 
- co < X < co, by qf = xf(x), pf = i(d/dx)f(x). 
One example has AI, A 2 , A3 defined as p, q and the 
identity; the other is based on p2, q2, and 2qp + 1. 
Apparently if p or q occur to a higher degree in 
similar examples, one does not have a finite di­
mensional a. 

SECTION 1 

We consider a finite-dimensional linear set a of 
operators A on Hilbert space with basis AI, ... , An 
and an operator B such that for every A in a, 
[AB] is in a. (This assumption will be modified by 
domain restrictions later.) 

The commutator [AB] as an operator can be 
iterated 

[[AB]B] = (D2 A (B])2 

[[[AB]B]B] = (D3 A(B])3 
(1.1) 

We ignore the multiplicity of the first bracket 
and hence can express a polynomial or power series 
in the commutator operator with a single first 

bracket. For instance 

'" 
[A exp (B]) = I: (a!)-I([)a A(B]) " . (1.2) 

a-O 

In this terminology we wish to establish the 
relation 

exp (-iB)A exp (iB) = [A exp (iB]) , (1.3) 

which is the formal basis for the study of equivalence. 
Our procedures are analogous to those of Nelson 
and we use his terminology for analytic vector. 
The type of generality we want is determined by 
various practical considerations and thus it is 
desirable to make the current discussion self-con­
tained. Thus no properties of the operators not 
explicitly given here will be used. This permits one 
to apply these formulas to cases where operators 
are not known to be self-adjoint and on sets of 
elements in Hilbert space not known to be dense. 

Lemma 1.1. Let AI, .,. , An be n operators such 
that the linear combination, A = I:: -1 c "A a has a 
closure A. Let f be an element of the Hilbert space S5 
and B an operator such that 

(1.4) 

and such that f and AJ are analytic vectors for B. 
Then there exists an s > 0, such that if Izl < s, then 

exp (-Bz)A exp (Bz)f = [A exp (zB])f. (1.5) 

Let e denote the vector (CI' '" , Cn I. We define 

(1.6) 

and use the notation A = {AI, '" , AnI and eoA 
as in the introduction. Equation (1.4) is equivalent to 

[eoAB]f = (be)oAf (1.7) 

for all e and for the matrix b = {bi;!' There is a 
C :2: ° determined by the matrix b such that 

Ilbe/im = Ile'llm ~ C Ilelim (1.8) 

for all e. The obvious triangle property of II II m 

can be used then to show the existence of 

[eoA exp (tB])f = (exp tb)eoAf (1.9) 

for every complex t and 

[[ eo A exp (tIB]) exp (t2BJ) 

= [e oA exp WI + t2)B] I. (1.10) 

Since AJ is an analytic vector for B, it is in the 
domain of W for p = 1, 2, .... We define 

(1.11) 
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and there is an s, > 0 such that 

Thus we can find as> 0 and a K such that for 
every i, 

IIBe> A,fll ~ Ka! s-e>. (1.13) 

Now Eqs. (1.7), (1.S), and (1.13) imply 

IIBe>[A(B])~fll = IIWWc)·Afll 

= II(b~c)·Be>Afll 

~ c~ IIcll m (2: IIBe>A~flJ) 
~ 

(3) The transformation b on e corresponding to 
B] should be bounded. 

These are adequate to replace the finite dimen­
sionality of a and of course the condition of ana­
lyticity for the A d in the present lemma. However 
the other conditions such as the analyticity of f 
relative to the transformation B and the existence 
of the closure of A must be retained.] 

Let 
P Q 

g~~ = L: L: (a! .B!)-lte>Be>[A(tB]/f 
ac:p {J-o. 

= {~ (a!)-lte>Be> X~ (.B!)-I[A(tB])R}f (1.15) 

and 
P 2P-e> 

~ IIcll m KnC~a! s-e> = (say) K'CRa! s-e> 

for K' = IIcll m Kn. (1.14) kp = L: L: (a!)-lte>(.B!rIBa[A(tB])~f (1.16) 

[In the current discussion of the basic formula 
(1.3), the finite dimensionality of the set a is used 
only in the derivation of (1.14).] It is worthwhile 
to point out here precisely what is needed to obtain 
(1.14) by the above argument independently of the 
finite-dimensionality assumption. 

We suppose that the set a is isomorphic to a 
linear vector space e with norm IIclh and let A 
correspond to c. Let a subset a1 of a be specified. (In 
the finite-dimensional case a l is the set Alt ... , An 
but it may be a itself in some cases.) Let 5' denote 
a set of elements, g, in Hilbert space, such that 
there is a g corresponding to each A in a l • For 
instance if f is in the domain of every A in alt then 
the set Ad which consists of the Af, A in a l is 
such an 5'. The sum, 5'1 + 5'2 can be defined as the 
5' for which g = g\ + g2 where gl, g2, and g corre­
spond to the same A in (Xl and similarly C5'1 for a 
scalar c is the set 5' of g in the form cg lt g, and gl 
corresponding to the same A. Thus the set of 5"s 
constitutes a linear vector space and we suppose a 
norm 115'112 is defined at least for a subset of 5"s 
which will constitute a normed linear vector space 
with the above definitions of + and c '. If Bg is 
defined for every g in 5', we define fj5' as the set of 
Bg's for g in 5'. 

The three critical assumptions we need for the 
above discussion of (1.14) are: 

(1) If A", c, IIAtl1 ~ Ilell l IIAdI12' 
(2) Ad is an analytic vector for fj; i.e., there is 

an s > 0, such that 
00 

L: se>(a!)-I IIfje>Adll2 < co. 
a-O 

a-O Il-P+l 

and 
2P 2P-a 

kf, = L: L: (a!)-lte>Ba(.B!)-I[A(tB]/f· (1.li) 
e>-P+I /1=0 

Now (1.14) permits one to apply the usual 
limiting arguments to show both the existence of 
certain limits and the relations 

lim g~~ = lim (lim g~~) 
p_~ P_oo Q_oo 

= exp (tB)[A exp (tBJ)f (1.1S) 

and 

lim kp = 0 and lim kJ. = 0 (1.19) 

for It I < s. 
The assumption that Ad and f are analytic vectors 

implies that f and Ad are in the domain of B P
, 

p = 1,2, '" . We also have the relation 

ABPf = j; (~)Ba[A(B])p-e>f (1.20) 

which can be proven inductively. It is valid for 
p = 1. The induction must be concerned only with 
operations on the left since only one f is involved. 
The result is assumed for ABP-Ij and, since A 
is arbitrary, for [AB]BP-lj. Then the relation 
AWj = BABP-lt + [AB]BP-lf and the addition 
formula for binary coefficients yields the result for p. 
Since A is arbitrary, we also get the corresponding 
[AB] result. 

Now (1.20) yields by summing from 0 to 2P 

A{~ (,B!)-ltIlBR}t 
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2P fJ 

:E :E {a!(~ - a)!}-l(tB)"[A(tB])fJ-"f 
fJ*O a-O 

2P 2P-a 

:E :E (al ~!)-I(tB)"[A(tBJlf 
a-O fJ-O 

= g~~ + kp + kf,. (1.21) 

Since f is an analytic vector for B, we have the 
existence of 

00 

:E (~l)-I(tB)fJf = exp (tB)j (1.22) 
11-0 

for t in a certain neighborhood of the origin. We can 
adjust the s of (1.13) so that (1.22) converges for 
It I < s. Now (1.18) and (1.19) imply that the right­
hand side of (1.21) has a limit as P ~ <Xl. Further­
more A has a closure A and hence (1.22) and the 
above yields 

sisting of those real t" for which It" - t'l < s/2. 
These neighborhoods are defined for the real t' 
such that 0 S t' S t. Since this set is compact, a 
finite number of these neighborhoods cover this 
interval in an overlapping manner. Let 0 = to < 
tl < ... < tf> = t denote the center points of these 
neighborhoods and s" the value of s corresponding 
to ta • 

Since the neighborhoods overlap, for each a there 
is a t' such that 

It' - t" I < s,,/2 and It' - t"+11 < s,,+1/2. (2.3) 

Depending on whether s" is larger than S"+1/2 or not, 
we have 

It"+1 - t,,1 < s" or It"+1 - tal < S,,+I' (2.4) 

The last inequality implies that for A' = c· A 

A (exp tB)f = exp tB[A exp (tB])j. (1.23) exp {i(t,,+1 - t,,)B} A' 

Since the A if are analytic vectors for B, one can 
readily show that exp (-tB) and exp (tB) are in­
verses on the linear combinations of the Aif for 
It I s s. Since [A exp (tB])f is such a linear com­
bination, Eq. (1.23) implies the desired Eq. (1.5). 

SECTION 2 

Lemma 2.1. Let AI> ... , An be n operators with 
the property that each linear combination A = c • A 
has a closure, A. Let an operator B, a set D in 5) 
and an n X n matrix b, {b i;l, be given with the 
property that if j is in D 

(1) f is in domain of Ai 
(2) [AiB]f = :E:_lba.Aaf 
(3) j is an analytic vector for B 
(4) A,f is an analytic vector for B 
(5) For 0 S t S T, exp (itB)f is in D. 

Then for 0 S t < T and all f in D: 

exp (-itB)A exp (itB)f = [A exp (iBI])f. (2.1) 

(Note that no denseness or completeness require­
ment is imposed on D.) 
_ Proof. For f £ D, Aif exists and hence Af. Thus 

Af = Af. Now let a t with 0 < t < T be given 
and a f £ D. Consider then a t' with 0 S t' < t. 
It is clear that the hypothesis of Lemma 1.1 h-;;-lds 
for exp (it'B)f and thus there exists an s > 0, de­
pendent on t' such that if Izi < s 

exp (-zB)A e}'."p (zB) exp (it'B)f 

= [A exp (zB]) exp (it'B)f. (2.2) 

X exp {i(ta - ta+l)B} exp (ita+lB)j 

= [A' exp {iCta - t.,+l)BJ} exp (it"+IB)f. (2.5) 

Now let A = [A' exp {i(t" - t,,+1)B]}. This 
implies then that for all A 

[A exp {i(t.,+l - t.,)B]} exp (it.,B)f 

= exp {-i(t"+1 - t,,)B} A 

X exp {iCta+1 - t,,)B} exp (it"B)f. (2.6) 

This also holds for the case lta+l - t,,1 < S", 

Suppose now that for t" we have for all A' 

exp (-it"B)A' exp (it"B)f = [A' exp (itaBJ)f. (2.7) 

Let A' = [A exp li(t"+1 - ta)B]) in (2.7) and apply 
exp (-itaB) to (2.6). One then obtains by (1.10), 

exp (-ita+IB)A exp (it"+lB)f 

= [[A exp li(tC>+l - t,,)B]} exp (it"B])f 

= [A exp (ita+1BDj. (2.8) 

Since this will hold for a = 0, we have it then also 
for t = ttl, Q.E.D. 

We consider now a set of B's, with the property 
that [AB] is in a for each A in a. A linear combina­
tion of B's with this property has this property 
also and thus we can suppose that we are dealing 
with a linear set of such B's. This set we denote ill. 
Now suppose Bl and B2 are two elements of CB for 
which (1.4) holds on a set ~. This implies that for 
i = 1,2 

[c·A B i ] = (b,c).Af (2.9) 

To each such t', we define the neighborhood con- [see (1.7)] for f in D and also 
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([b lb2]e)·Af = [[e·A B 2]BI]f - [[e·A B I]B2]f 

= [e·A[B2B I]]f· (2.10) 

Thus we can suppose that the set CB is both linear 
and closed under the operation of forming the 
commutator and this also holds for the set v of b's. 
Both sets are, therefore, Lie algebras and the 
mapping B ......... b is a homomorphism. If ;)lB is 
the set of B's which are mapped on the zero n X n 
matrix, then there exists a finite dimensional linear 
set of B's, CBf which are mapped in a one to one way 
and linearly onto V. From the point of view of 
computational effectiveness, we need only concern 
ourselves with the properties of the B's in CB f • 

Assumption. Let a and CB f be two finite-dimensional 
linear sets of operators on Hilbert space and ~ a 
linear set in Hilbert space which is in the domain of 
each A in a. Let AI, ... , An denote a basis for a. 

We assume 
(1) To each B in CB, there is a matrix b, fbi; l. 

such that 

n 

i[A,B]f = 2: baiAaf (2.11) 

for f £ ~. If e·A denotes 2:~~1 caAa this can also 
be written 

i[e·A BJf = (be) ·Af (2.12) 

(2) For each A in a, there is a closure A and 
tor B in CBf , t in ~ we have tor A = e·A 

exp (-iB)A exp (iB)f = [A exp (iB])f = exp be·Af 
(2.13) 

(3) The set v of matrices b is closed relative to the 
operation of forming the commutator and hence, since 
it is linear, is a Lie algebra. 

Since v is a Lie algebra, exponentiation and re­
peated multiplications determine a Lie group 9 
(cf. Chevalley or Pontrjagin). 

Definition. If a, CBf , and b are as in the above 
assumption and 9 is the Lie group generated by v, 
then two operators A and A' of a will be said to be B 
equivalent if tor the vectors e and e' such that A = e·A, 
A' = e' .A, there exists a u in 9 such that e' = ue. 

Lemma 2.2. The relation B equivalence is transitive 
and reflexive. If A and A' are B equivalent, and the 
set ~ in the assumption is invariant under the operators 
V = exp (iB) for B in CBfI then there exists an operator 
U in the form VI ..... Vr where Va = exp (iBa) 
such that U-IAUt = A't lor all f in~. 

The first sentence is a consequence of the group 
property of the u's. If V = exp (iB) , then g = Vf 
is in ~ and hence for A in a we have Ag = Ag. 
Thus (2.13) becomes V-IA Vf = f. If we have two 
such V's, VI, V 2 , 

(VI V 2)-IA VI V 2! 

V;-I V;I A VI Vd = V;-I( V;I A VI) Vd 

V;-I (exp ble·A) Vd = exp b2 exp ble·Af. (2.14) 

Repeated application of this argument will yield 
the desired result. 

We now explore the definition of B equivalence. 
The characteristics of the operators U or Vi do not 
enter into this discussion. 

The set of matrices u are usually described as a 
"representation" of an abstract Lie group and the 
set e' in the form ue constitute an "orbit" for e 
in this "representation." 

SECTION 3 

We suppose that a and CB f are as in the assumption 
of Sec. 2 and let B I , '" , Bm be a basis for CB f and 
let bl , ... , bm denote the corresponding matrices b. 
Let b = 2::-1 J.laba and v = exp b. The set of e' 
in the form e' = ve in general has dimensionality 
less than m, the number of parameters J.l. The set 
of v in the form v = exp b fill out a neighborhood 
of the identity in the Lie group and thus for a 
neighborhood of the origin, B equivalence for A and 
A' is equivalent to the existence of such a v with 
e' = ve. 

We seek a complete set of local "invariants" for 
the orbit relationship; i.e., we want a set of functions 
of the coordinates of e', /:, ... ,h such that fi(e) = 
fi(e'), if and only if e' = ve. It is desirable that 
these I's be functionally independent. 

Let e denote the set of e'. If we fix e, the relation 

(3.1) 

describes a linear transformation Te from V to e. 
There is a set We of b's for which 

be = 0, (3.2) 

and a set CR e of e' which eonstitutes the range of Te; 
i.e., those e' in the form be for some b and the given e. 
Let Se denote a set of e' which is complementary 
to CR e and let us choose a basis for the e' 

(3.3) 

such that el , '" , Cp is a basis for Se and Cp + l , ••• , en 
is a basis for CRe • Let £1* denote a set of b's com­
plementary to We and let 
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(3.4) 

where b1 , ••• , bn - v is a basis for b* and bn - p +], ••• , bm* 

is a basis for 91,. We can suppose Cp +" = b"c for 
a = 1, ... , n - p. Now consider the set of vectors 

p 

n-p 

L: dp."b",c = T,(L: dlJ,,,,b,,,) (3.12) 
a=l 

and since the range of T" CR" is determined by 
Cp+l! ••• , Cn, it follows that (3.11) is equivalent to 
n-1 n 

c" = c + L: z"C". (3.5) L: dlJ,,,,b,,,c = T,,(L: dp."b,,) L: dy",c" (3.13) 
a=1 

By a "neighborhood of the origin" in the set SOl 

we mean the set of L:~~1 z"c" for which IZal < 0 
for some specified positive 0 and this expression will 
be applied to other linear sets. Similarly we consider 
the set of vectors 

p n 

C' = C + L: X",C" + L: Y"'C"" (3.6) 
a=1 a=p+l 

We now consider c" and c' as given by (3.5) and 
(3.6) and the relation 

exp (~IJ,,,b,,,)c,, = c'. (3.7) 

It is clear that this relation IS equivalent to n 
relations 

(3.8) 

where the F" and G" are analytic functions of the 
indicated variables and for IJ,i = 0, these relations 
become 

(3.9) 

Lemma 3.1. There is a neighborhood of the origin 
in the space e, L:~-l Ix",12 + L::~P+l ly,,1 2 < 0, 
such that on this neighborhood there exists analytic 
functions 

(3.10) 

which are inverse to the relation (3.9). 

Proof. It follows from (3.9) that if zero is substi­
tuted on both sides of (3.8) it is satisfied. We must 
show that the Jacobean of the Eqs. (3.8) is not 
zero at zero. 

If we take differentials of (3.7) at the zero point 
we have by (3.5) and (3.6): 

l' n-p 

L: dz"c", + L: dlJ,,,b,,c 
a=l a=1 

P n 

= 2: dx"c" + L: dy"c". (3.11) 
0:=1 «=p+1 

By (3.1) we have that 

"~l a=p-r-l 

and 

(3.14) 
a=1 Q=1 

At the zero point, the Eqs. (3.8) specify a linear 
transformation of the vectors 

onto the vectors 

The Jacobean is the determinant of this trans­
formation regarded as a linear transformation of 
n space. Now T, takes b* in a one to one manner 
into CR, and consequently (3.13) and (3.14) imply 
that this linear transformation is nonsingular and 
hence the Jacobean is not zero, Q.E.D. 

SECTION 4 

Lemma 3.1 describes the relation vc" = c' for 
a v in the form exp (2:;:;, IJ,,,b,,). The more general 
case for v must be considered. To do this we must 
get a number of results on the product of such v's. 
These results are either in Pontrjagin or are minor 
variations from results given there. The proofs are 
relatively straightforward in our present context 
and are merely indicated here. 

Consider now a finite Lie algebra which consists 
of n X n matrices b which are linear combinations 
of a basis b], ... , bm • We have 

[bib;] = L: ci~ba. (4.1) 
" 

Lemma 4.1. If band b' are matrices, then 

(4.2) 

where ([)Ob'(b])O = b'. 
This is simply the n-dimensional matrix equivalent 

of (1.20). 

Lemma 4.2. Le bet) be a matrix function, witth 
derivative b' (t). Then 

Ii b(tr = t ( n )b~([)n-l-~b'(b]t-I-~ 
dt ~_o n - 'Y 

(4.3) 

This follows from (4.2) by a straightforward ma-



                                                                                                                                    

458 F. J. MURRAY 

nipulation. Similarly, we obtain 

Lemma 4.3. If bet) is a matrix function with a 
continuous derivative b' on a closed interval c) ~ t ~ C2, 

then for this interval 

(d/dt) {expb(t») = expb(t)[b'g(b]), (4.4) 

where 

g(x) = (exp x - l)/x (4.5) 

Lemma 4.4. Let ao be a given constant matrix and 
aCt) a matrix function of t with a continuous derivative 
on some closed interval 0 ~ t ~ c. Then the differential 
equation 

db/dt = b[a'g(aJ) (4.6) 

[see (4.5) above] has a unique solution b=exp {aCt) lao 
in the t interval 0 ~ t ~ c, if b(O) = exp {a(to»)ao. 

In view of Lemma 4.3, we must establish the 
uniqueness. Now (4.6) can be regarded as n2 equa­
tions which express the n2 derivatives of the com­
ponents of b as linear combinations with coefficients 
which are continuous functions of t on the interval. 
The solution of such a system is uniquely specified 
by its initial condition. [Since exp {aCto) I is non­
singular, an arbitrary choice of ao corresponds to 
an arbitrary choice of bo.] 

Lemma 4.5. Let b denote a Lie algebra of n X n 
matrices with basis bit .,. , bm ; i.e., we have 

(4.7) 

Let r be an integer, 1 ~ r < m. There exists an '71 > 0 
and 1]2 > 0 such that for L::-) /L! < 1]) and 
L::-r+! /L! < 1/2, there exists p), ... , Pm which are 
functions of /L), ... , fJ.m such that 

exp (~ /Laba) = exp (j; Paba) exp C~l Paba) 

(4.8) 

Proof. Let us consider the equation 

exp (j; /Labe< + t a~l fJ.ab a) 

'" 
b

O = L: /Laba 
a=r+l . 

b* = L: Pa(t)ba 
a=1 

a=r+l 

Differentiating and using (4.9) yield 

Wg(b]) = [[b*'g(b]) exp (btJ) + [bt'g(btJ) 

C4.11) 

(4.12) 

(4.13) 

(4.14) 

Because of (4.7), both sides of (4.14) can be ex­
pressed as a linear combination of b), ... , bm • 

Hence (4.14) can be regarded as m equations on 
PIt ••• , Pm and their first derivatives. These equa­
tions are linear in the derivatives of PI, ••• , Pm. 
At t = 0, (4.14) reduces to 

[bOg(j; /Laba J) = ~ p;(t)ba (4.15) 

It follows then that there is a t interval 0 ~ t ~ c 
and a PIt ••• , Pm neighborhood of /LIt ••• , /L" 
0, ... , 0 within which it is possible to solve the 
m differential equations equivalent to (4.14) for 
JI:, ... , P~. This yields m differential equations 
depending on the parameters /L.+lt .,. , /Lm and with 
initial conditions /L), ... ,/L" 0, ... ,0 for Pit ••• , Jim' 

The existence theory for differential equations (cf. 
Miller and Murray) shows that there exists 1]1 and 1/ 

greater than 0 and a t interval 0 ~ t ~ c such that 
there is a solution PaCt, /Lit ••• , fJ.m) of (4.14) on 
this t interval defined for every set of /L'S for which 
L::=l /L! < 1]) and L::-r+l /L! < 1]. 

Let us consider then such a solution of the dif­
ferential equation (4.14). Then differentiating the 
right side of (4.9) and using (4.14), we obtain 

(d/dt) {exp (b*) exp (b t») = exp b* exp btWg(bJ) 
(4.16) 

We also have 

(d/dt) (exp {bet)}) = exp {b(t»)Wg(b]) (4.17) 

Let 

DCt) = exp (b*) exp (b I) - exp (b(t» C4.18) 

Then (4.16) and (4.17) imply 

= exp {j; PaCt)ba} exp ttl PaCt)ba} (4.9) (d/dt){ D(t) I = D(t)Wg(bJ) ( 4.19) 

as determining Pa as functions of t. At t = 0, this 
has a solution Pa = fJ.a, a = 1, '" , r, Pa = 0, a = 
r + 1, ... , m. Now let 

r m 

b(t) = L fJ.aba + t L /Lab a (4.10) 
0:=1 a=r+l 

By Lemma 4.4, D(t) = ao exp bet). But D(O) = 0 
and hence ao = 0 and thus D(t) = 0, for the solution 
of (4.14) which we obtained. This is easily seen to 
be equivalent to the conclusion of Lemma 4.5 with 
1]2 = C

2
1]. [See discussion between (4.15) and (4.16) 

above.] 
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The essential part of the above discussion is to 
obtain a system of m equations by means of (4.14) 
and then pass to n2 relations by the argument of 
(4.16) to (4.18). The following is proved in a similar 
fashion. 

Lemma 4.6. Let E > 0 be given. There exists an 
771 > 0 and 772 > 0, such that if L::~l /L! < 771 and 
L::-t /L~2 < 772, then there exists a set p" •• , , Pm 
with L: P; < E for which 

exp (~/L"ba) exp (~/L~b,,) = exp (L: Paba). 

(4.20) 

Lemma 4.7. Let U i be an exponential in the form 
exp (L: /Laba) for i = 1, .. , , r. Then there is a 
neighborhood of the origin such that it for i = 1, ... ,r, 
the corresponding L: /Lab" are in this neighborhood 
and for j < r, II~~1 U a is an exponential in this 
neighborhood in the specified form, then II:-I U a 
is also an exponential in this form. 

Lemma 4.7 follows from Lemma 4.6 by an obvious 
induction. This lemma is essentially the statement 
that /LI, '" , /Lm can be used as a coordinate system 
for the local group obtained by exponentiation from 
the Lie algebra of the b's (cf. Pontrjagin). 

Lemma 4.8. Let 'U denote the set of vectors c' in 
the form 

(4.21) 

where c is given as in Sec. 3 above and bIt .,. , bn _ p 

are as in (3.4). Let u denote an exponential 
exp (L::.I /Lab a). The set 'U is of n - p dimensions 
and there exists a neighborhood of the origin such that if 
L::.l /Lab" is in this neighborhood then uc is in 'U. 

Proof. Consider the c' in the form given by Eq. 
(3.6). The c" are linearly independent and hence the 
L::.1>+1 Y"C" will form an n - p dimensional set 
if the Ya's are arbitrary. Furthermore, if the Xa 

are given as analytic functions of Yv+l, .,. , Yn' 

the c' will still constitute an n - p dimensional set. 
Now the set 'U of (4.21) can be obtained by setting 
Za = 0 in (3.7). [See Eq. (3.5).] But the argument 
of Lemma 3.1 shows that for Z = 0, we can insert 
the second set of equations of (3.8) and express 
the /L" '" t /Ln-p as functions of Yp+l, ••• , Yn and 
if we substitute these in the first set of (3.8) with 
Z = 0 we will have Xa as an analytic function of 
Y .. +lt ••• , Yn for a = 1, .,. , p. To each choice 
then of YP+lt ••• , Yn in the neighborhood, in which 

we can insert y" = Ga , we have then a c' in the­
form specified for which there is a set /LI, ... , /Ln-p 

which yields that c' is in the set 'U. This shows then 
that 'U contains the set of c' in the form specified; 
i.e., with the Yp+l, '" , Yn arbitrary and Xa as a 
function of the y's. On the other hand, the second 
set of equations of (3.8) shows that for Za = 0, 
the /LI, '" , /Ln-p determine the y's and hence 
every c' in 'U is in the form specified. Thus 'U is 
n - p dimensional. 

Now let u = exp (L::-I /Lab a). Let us apply 
Lemma 4.5 and, for an appropriate neighborhood, 
express u in the form u = u'u" where 

1l' = exp (~ Paba), U" = exp C-~+l P~ba) (4.22) 

Since bn -v+lt ••. , bm is a basis for me [cf. (3.2) 
and (3.4)] 

( ~ P~ba)C = 0 
a=n-1)+l 

(4.23) 

and u"c = c. Hence we have uc = u'u"c = u'c 
which is in 'U. 

SECTION 5 

Theorem. We make the assumption of Sec. 2 and 
specify an A = c· A by means of the vector c. Let 
n - p denote the dimensionality of CRe , the set of 
vectors in the form bc. Then p is the same for all c' 
equivalent to c and the dimensionality of the set of A' 
equivalent to A is n - p. If Se is a set complementary 
to CRe and CIt '" t Cp is a basis for Se and c l , .,. , Cn 
a basis for e, then there exists a neighborhood of A 
such that for all A' in this neighborhood, 

p n 

A' = A + L: xaAa + L: y"A a, (5.1) 
a-I a==p+l 

then A' is B equivalent to an A" in the form 

(5.2) 

Proof. Since c' '" c is equivalent to exp bc = c' 
and exp (- b )c' = c, one can readily show that p 
is the same for c and c' if they are equivalent. 
Lemma 4.8 shows that for each A, there exists a 
neighborhood for which the set of equivalent A's 
is n - p dimensional. 

The last sentence of the Theorem is essentially 
Lemma 3.1. For Eqs. (3.10) show how, for an 
arbitrary set of XI, '" , Xp, Yp+lt ••• , y", we can 
find a set of z's and /L'S for which (3.7) holds, and 
hence for which the required B equivalence holds 
(definition, Sec. 2). 
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Notice then that the </>'" of (3.10) do constitute a 
complete set of invariants for the restricted type 
of B equivalence associated with L:::r JJ.",B", [see 
(3.7)] and for the appropriate neighborhood. Two 
A' in the form (5.1) will be equivalent under this 
restricted B equivalence to the same A" in the 
form (5.2) if and only if all the </>" functions agree. 
Now an A' in the form (5.1) will be equivalent to 
a set 'ti' of dimension n - p'. This 'ti must include 
the set of those equivalent to a transformation in 
the form (5.2) under the restricted B set and argu­
ment of the proof of Lemma 4.8 with the specified 
values of Za will show that the latter set has di­
mension n - p. Hence n - p' 2': n - p and the 
</>a will constitute a set of invariants for the full B 
equivalence if the equality holds. 

Corollary 1. Given an A, there exists a neighborhood 
such that for all A' in this neighborhood p' 2': p. 

Since p is positive and integral, there is a least 
value that it assumes. Suppose A has been chosen 
so that p has this value. Then in a neighborhood 
p' = p and we have a local set of invariants. If we 
recall the definition of p [cf. (3.3)], we see that 
there must be a determinant of order n - p in the 
matrix for To which is not zero. For A' in the form 
(5.1) this determinant becomes a polynomial in 
Xl> ••• , xv, Yv+l, •• , , Yn and hence not zero except 
on a set of dimensionality lower than n. 

Corollary 2. If Po is the minimum value assumed 
by p, then p assumes the value Po except possibly on 
a set of dimensionality less than n and we can in each 
neighborhood find an A for which there is a neighbor­
hood for which Po invariants can be defined so that 
two A's in this neighborhood are B equivalent if and 
only if they have the same values for these invariants. 

SECTION 6 

We have seen that B equivalence relations can 
be specified by the equation 

exp (~ /lab,,)e = e', (6.1) 

(see Sec. 2). 
As indicated in the previous section, in general, 

the dimensionality of the set of e' is less than n. 
Thus given a e in the form (3.6) with e chosen so 
as to make p a minimum, there will be p functions 
</>'" of (3.10) such that two such e' will be equivalent 
if they have the same values of </>"'. [Each is equiva­
lent to a e" in the form (3.5) under an appropriate 
exponential transformation and Lemma 4.6 permits 

us to compound exponentials into a single exponen­
tial.] These p functions are then a set of invariants. 
However they are basically non unique because of 
the possible arbitrariness in the choice of e l , ••. , ev • 

(Since these are merely required to determine a 
manifold complementary to CRe , we may substitute 
for Cit .•. , ep any set 

P n 

e~ = L: a",,,e,, + L: b""e" (6.2) 
,,~l v+l 

provided that the determinant of the a"" matrix is 
not zero. The transformation rule for the new </>'" 
is readily determined in terms of the original set.) 
It is also true that these invariants are defined in 
a local manner and, while analytic extension is 
possible, this process presents grave computational 
problems. 

It seems desirable therefore to replace these in­
variants if possible by similarity invariants. Suppose 
for instance that we have a linear mapping of the 
vectors e onto n X n matrices a, e ~ aCe) in such 
a way that 

[ba(e)] = a(be). (6.3) 

This relation and the linearity of the mapping of 
e onto a shows that for an arbitrary polynomial 

P([b)a(e)] = a{P(b)e} (6.4) 

and by a well known limiting procedure 

expba(e) exp(-b) = exp([b)a(e)] = a(expbe). 
(6.5) 

Thus (6.3) implies that a (exp be) is obtained 
from aCe) by a similarity transformation using the 
matrix exp (-b). Furthermore this result implies 
that even when a number of exponentials are applied 
in sequence, the resulting matrix is still obtainable 
by a similarity from the original. Thus similarity 
invariants of the matrix aCe) are preserved when e 
is replaced by an equivalent e under the whole 
non local group and yield therefore invariants. 

Lemma 6.1. If we have a linear mapping of the 
vectors e onto matrices aCe) such that (6.3) holds, 
then (6.5) holds and all similarity invariants of aCe) 
are invariants of B equivalence in the global sense. 

Naturally one must not expect the similarity in­
variants to be complete. This is true even if we 
consider invariants for only those similarities 
associated with transformations in the form exp (b). 
For suppose 

a(e') = exp ba(e) exp (-b) = a (exp be) (6.6) 
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[the second equality follows from (6.5)] or 

aCe' - exp be) = O. (6.7) 

r n 

a' = aCe') = aCe) + .L x~aa + .L y',jaa, (7.4} 
0:=1 a=p+k+l 

where aa = a(e a). By the above construction 
Thus the first equality of (6.6) implies simply that 

e' = (exp b)e + e", 

where e" is such that a(e") = O. Hence: 

(6.8) 

Lemma 6.2. If the mapping e ~ aCe) is faithful; 
i.e., one to one, then equivalence under the similarities 
is the form exp (b) a exp (-b) for the aCe) determines 
the equivalence of the e. 

a(e a ) = 0 for r < a ::; p + k. (7.5) 

We recall that me has been defined as the set 
of b's for which be = O. We now consider a larger 

:~~~f~:s ~r;:~;e~~s~ ~~~ !~!~is set is termed 91;, 

ea+ p = bae (7.6) 

Let Q denote the set of e's for which aCe) = O. by (3.4) and bI , '" , bk are in 91; by the choice of 
e p , ••• , ep+k above. Thus [ef. (3.4)] 

SECTION 7 

The condition of Lemma 6.2 is too restrictive in 
general although there are certain interesting ex­
amples where it is fulfilled. However, to obtain 
precise information concerning the b equivalence 
situation, we apply an argument similar to the 
argument of Lemma 3.1. 

We consider a fixed c and the corresponding aCe) 
and define a transformation from the set of b's to 
the a's by means of the equation 

Tab = [a(c), b] = a' = a(bc). (7.1) 

Let p. denote the range of Ta. We recall that me 
consists of the vectors in the form bc. It is clear 
from (7.1) that p. consists of matrices in the form 
a(be). We can consider the set;)I' of those vectors in 
the form bc for which a(bc) = O. Thus ;)I' = Q. m. 
for Q as defined after Lemma 6.2 in the previous 
section. The vectors cp + I , •• , , en of (3.3) which 
form a basis for me can be chosen in such a way 
that Cp +1! ••• , ep+k form a basis for ;)I'. Then 

(7.2) 

bI , ." , bk , bn - p + I , •• , , b", (7.7) 

is a basis for 91; and the 

(7.8) 

determine a manifold bt complementary to 91;. Each 
b I: b can be written b = b' + b" where 

k m 

b' = .L M"b a + I: M"b a 
a=m-p+l (7.9) 

n-p 

b" = .L Mab a. 
a=-k+l 

We can now repeat the argument of Lemma 3.1 
relative to the a's rather than the e's but retaining 
the connections between e and a. Consider then the 
e' in the form (7.3) and the corresponding aCe') in 
the form (7.4). Consider also the corresponding 

r 

ve" = e + .L Z~Ca 
a-I 

p p+k 

+ .L z'~ea + .L z'~ea (7.10) 
Q:=r+l a=p+l 

are linearly independent. The vectors e1 , ••• ,Cp and 
determine a manifold Se complementary to m •. 
These can be chosen so that if Q is the set of vectors 

r 

aCe") = aCe) + I: z~a(ca). (7.11) 
e for which, aCe) = 0, then e r +1! ••• , Cp determine 
a complementary manifold for ;)I' relative to Q and 
cI , ••• , Cr determine a manifold complementary 
to that containing me and Q. Thus an arbitrary 
vector e' can be written 

r P 

c' = C + .L x~ca + .L X'~Ca 
0:=1 a-r+l 

l1+k n 

a-I 

Consider then the relationship 

exp (b"te" = e' (7.12) 

and the corresponding matrix equation 

exp b" a(U e") exp ( - b") 

= exp ([b")a(e")] = aCe'). (7.13) 

+ .L y~Ca + .L y'~Ca' 
a~p+l a-p+k+l 

(7.3) This last equation shows by (7.4), (7.9), and (7.11) 
that 

The first two sums are in Se, the last two in me; 
the second and third are in Q. 

Correspondingly, 

x~ = f ~(z~, ... ,z~, Mk+I, , Mn-p) 

a = 1, '" ,r (7.14) 
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y~' = g ~ (zi, ... , z~, J.l.k+ I, .,. , J.l.n-v) 

a=p+k+l,···,n. 

The Jacobian argument of Lemma 3.1 is now 
applicable and shows that Eqs. (7.14) can be in~ 
verted and thus 

a = 1, ... , r (7.15) 

a = k + 1, ... , n - p. 

But we can also consider e" as given by (3.5) 
and for this we will have 

r 

a(e") = aCe) + L: z"a(e a). (7.16) 
a-I 

Then (3.7) implies 

exp (%, J.l.ab,,)a(e") exp (-% J.l.ab a ) = aCe'), 

(7.17) 

and this again yields 

(7.18) 
, Z" J.lI, ... , J.l.k, J.l.k +1, .,. , J.l.n-v)· 

Now clearly (7.14) corresponds to the case 
J.lI = .,. = J.l.k = O. Since the Eqs. (7.14) can be 
inverted, it follows that for a neighborhood of 
these values of J.lI' ... , J.l.k it must be possible to 
solve (7.18) for z" '" , Z" J.l.k+l, ... , J.l.n-p' 

a = 1, ... , r, 

a = k + 1, ... ,n - p. (7.19) 

Now the Za, a = 1, '" , r cannot be regarded as 
invariants for the matrix aCe') since they depend 
on the quantities J.I." ••• ,J.lk which are not associated 
with this matrix. However, if we eliminate these 
quantities between these expressions, we will get 
r - k' expressions 

Z( "" ")-0 "ZI, ... , Zr, XI, ... , X" Yv+k+l, ... ,Yn -
(7.20) 

which are expressible purely in terms of matrix 
coefficients. We have k' ~ k. The similarity in~ 
variants must yield equations of this type when 
they do not yield expressions which are identically 

zero. One equates the invariant expression in terms 
of X' and y" to the corresponding expression in z. 

Notice that, in general, given aCe), a(e") will 
not be determined unless k' = O. This would happen 
if either k = 0 or the CPa in (7.19) do not contain 
J.lI, '" , J.l.k since (7.19) shows that the Za, which 
determine a(e") by (7.16), depend on J.l.1, ... , J.l.k 
which are not specified by aCe). These possibilities 
can be explored but we will not do so at present. 

Lemma 7.1. Let a linear mapping e -+ a (e) where 
a is an n X n matrix, such that (6.3) holds. Let Q 

denote the set of vectors e for which aCe) = O. Suppose 
e is given and me denotes the vectors in the form be. 
Let m:' denote the intersection of me and Q. m:' is 
the set of vectors in the form e' = be for which aCe') = O. 
Let k denote the dimensionality of m:' and p - r + k 
denote the dimensionality of Q. If e' is an arbitrary 
vector in a certain neighborhood of e [cf. (3.6)], then 
aCe') is equivalent under similarities determined by 
exponentials exp (b) to matrices aCe") determined by 
r constants ZI, ... ,ZT' There is a non~negative integer 
k' ~ k such that there are r - k' relations between 
the coefficients of the aCe') matrix and ZI, '" , Zr. 
[See (7.19) and (7.20) above.] The similarity in~ 

variants are either identically zero or yield relations 
of this character. (See the discussion after (7.20).) 
The matrix a(e") is determined by aCe') if and only 
it k' = O. 

Lemma 7.1 shows the limitations which appear 
when one endeavors to consider the matrices aCe) 
instead of e themselves. If we let q = p - r + k 
denote the dimensionality of Q, and q' = p - r + k', 
then instead of p invariants for the c's, we have 
p - q' relations on the elements of the a's. Since 
q' ~ q, if the dimensionality of Q is zero, we have 
equivalence. However the relations for the a ele~ 

ments obtained when they exist are useful in the 
global study of B equivalence. 

SECTION 8 

We consider the special case in which the A; 
and Bo's coincide. We have a basis for the set a, 
A" '" , Ant with 

(8.1) 

For the vectors e = {c l , ••• , Cn J, constituting an 
n~dimensional space e, we have a correspondence 
with the linear combinations of the AI, , An 

e,....., A = L c"A" = e·A. (8.2) 

We also have a correspondence with the n X n 
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matrices 

a = aCe) = {2: a;~{j} i, j = 1, ... ,n, (8.2') 
{j 

such that by (8.1) we have 

i(e·A e'·A] = {a(e')el·A. (8.3) 

Thus if A e·A, B = e' ·A, b = aCe') we have 

i[e·A B] = (be)·A. 

Hence by (8.3) 

{a(be)e"}·A = i[e"·A be·A] = i[e"·A i[e·A B]J 

= i[i[e"·A e·A] B] - i[i[e"·A B] e·Al 

= (b{a(e)}e")·A - ({a(e)b}e")·A 

= {[ba(e)]e"}·A (8.4) 

aCe) and its associated transformation by aCe). 
The associated structure is part of the Jordan 

structure of aCe). The Jordan structure of aCe) is 
not available, in general, since normally some 
characteristic roots of aCe) are complex. But certain 
constructions can be completed in the real field. 
Let cp(X) denote the minimal polynomial for aCe). 
This cp(X) is a factor of the characteristic polynomial 
for aCe), with leading coefficient one, characterized 
by the statement that cp!a(e)} = 0, but no proper 
factor of cp has this property. This cp(X) has real 
coefficients. [Note that since the elements of a are 
real, cp(a) = 0 implies $(a) = 0 and hence cp' = 
iCcp + $) is of the same degree as cp with leading 
coefficient one and such that cp'(a) = O. Thus 
cp = cp' which has real coefficients.] We can write 
cp(X) as 

cp(X) = X'if;(X) (8.10) 

This implies 

a(be)e" = [ba] e" 

where if; does not have X as a factor. Let ;m1 denote 
(8.5) the vectors e' such that 

for all e" and hence if; {a(e) }e' = 0 (8.11) 

a(be) = [bal. (6.3) and 9(1 denote the set for which 

Thus, if Ai = B., we have a correspondence e f"'-' aCe), 
of the type of Sec. 6. The set (',} consists of those e 
for which 

aCe) = O. (8.6) 

Now Eq. (8.3) implies 

a(e')e = -a(e)e'. (8.7) 

For a given e, the transformation Te has been defined 
for the set b = aCe') with range CRe included in e with 

T eb = e" equivalent to be = e". (8.8) 

But by (8.7) this could be stated 

T ea( e') = e" equivalent to - a( c) e' = e". (8.9) 

Thus CRe is also the range of aCe). 
In Sec. 3, a number of sets were mentioned. One 

of these is CRe which is also seen to be the range of 
the transformation aCe). Another is the set Se which 
is defined as complementary to CRe in e. We also 
have 9(e, the set of those b's for which be = 0 and 
a set b* complementary to 9(e in the set of b's. The 
set Se and b* are not uniquely determined, but, in 
this case, a specific choice can be made, in terms of 
the structure of the transformation associated with 
aCe). It will be convenient to denote both the matrix 

a(e)'e' = o. (8.12) 

Now ;m1 and ;)'t1 are supplementary. Furthermore 
aCe) has an inverse on ;m1 and ;m1 C CRe• We also 
have that aCe) takes ;)'t1 into a subset ;)'t~ of itself. 
Thus ;)'t~ = CRe·;)'t). We choose a Se so that Se EB 
;)'t~ = ;)'t1' Then 

(8.13) 

and 

(8.14) 

The set 9(e consists of those b = aCe') for which 
be = O. In view of (8.9), this is equivalent to 
a(e)e' = 0 and we let (\>0 consist of those e' for which 

a(e)e' = O. (8.15) 

Clearly, (\>0 C ;)'t1, by (8.12). Let (\>1 be comple­
mentary to (\>0 in ;)'tl' Let W = (\>1 EB ;mI' Now 
Wand (\>0 are complementary and thus if e' is in 
W, then a(e')e = -a(e)e" ,e o. Thus 0* can be 
taken as those b = a( e') for e' is in W. 

Lemma 8.1. For the case in which a = ill, a natural 
mapping e ~ aCe) of Sea. 6 is available. Further­
more, given e, the sets CRe and Se of Sec. 3, following 
(3.2), can be obtained by means of the sets ;ml and ;)'tl 
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[cf. (8.11) and (8.12)] as follows. Let ;IT~ = ffie• ;ITI' 

Then ffie = mti EB ;IT; and S. can be chosen as a 
complement to ;IT~ relative to ;ITI' 

The set We, which has been defined in (3.2) as the 
set of b's for which be = 0, consists of those b = a(e') 
for which a(e)e' = O. Let (Po consist of the e' for which 
a(e)e' = O. Then (Po C ;IT! and let (PI be comple­
mentary to (Po in ;ITI' Let 'W = (PI EB mtl C e. The 
set b*, which has been defined in (3.4) as a com­
plementary set for We can be taken as the set of b 
in form a(e') with e' in 'W. 

Now consider aCe) on ;ITI' Since aCe) is nil-potent, 
we can reduce aCe) on ;IT! to a Jordan normal form. 
This means we have a set of linearly independent 
vectors 

ei ;, i = 1, ... ,p, j = 0,1, ... ,Ji, (8.16) 

which constitute a basis for ;ITI and such that 

a(e)e i ; = ed-I, i = 1, .,. ,p, 

j = 1, ... ,ji (8.17) 

and 

a(e)eiO = 0, i = i, ... ,r. (8.18) 

The e;o can be chosen so that a subset determines 
<:.l [see (8.6) and (8.7)]. 

We also introduce vectors 

1. (8.19) 

which form a basis for mt l • 

Although the choice of the e i ; is not unique, in 
general, the ei; are easily constructed and hence 
permit a relatively simple statement of our results. 
We denote the linearly independent set of vectors 
(8.19) by I, and define other linearly independent 
vectors by 

II. eij , Ji ~ 0, j < ji 

III. e,j" i = 1, " . ,p (8.20) 
IV. eii , ji > 0, .> J_ 1 

V. eio ' i = 1, ... ,p 

Notice that II and III are disjoint and together 
determine ;IT I and that a similar statement holds 
for IV and V. Furthermore, the set II determines 
;IT~ by (8.17) and consequently III can be used to 
determine Se. (It may be mentioned that for every 
permissible Se a normal form of the above sort can 
be set up with the corresponding set III determining 

Se.) The set (Po is determined by the set V and a 
set (PI can be determined by IV. 

Lemma 8.2. The sets I and II determine ffie• We 
can take the set Sc as that determined by III. The 
set V determines a linear set of vectors e' such that 
a(e') is in We. The sets I and IV determine a linear 
set of vectors e' such that the set ot a(e') can be taken 
to be b*. 

This lemma translates the results of Lemma 8.1 
to the present situation. 

Theorem. Let sets of operators a and a set :D in 
Hilbert space be given tor which (8.1) and assumption 
I of Sec. 2 holds, with the Bi replaced by Ai and ill 
replaced by a. A correspondence e "" A ~ aCe) is 
specified by (8.2) and (8.2'). Consider then a given A 
and the corresponding e and a (e). Let q,(")..) = ").."if;(")..) 
denote the minimal polynomial for aCe) [cf. (8.10)]. 
Let mtl denote the null manifold of if;(a) and ;ITil 

the null manifold for a" [ct. (8.11) and (8.12)]. Let r 
denote the dimension of ;IT). Let er +1! ••• , en denote 
a basis for mtl [ct. (8.19)] and e;f, i = 1, ... , p, 
j = 0, 1, ... , ji denote a basis for ;ITI which corre­
sponds to the Jordan structure of a in ;ITI [cf. (8.20)]. 
We define 

Ci=ei·A, i=p+1,"',n 

Ed = ei ; ·A, i = 1, ... , p, j = 0, ... ,ji 

(8.21) 

(8.22) 

The C i and E i; are linearly independent and together 
constitute a basis for the set AI • ... , An. For each 
7J > 0 a neighborhood of A can be defined as the 
transformations in the form 

A' = A + 2: x,,~E"/3 + 2: y"C" (8.23) 

with X"f) and y" real and such that 

(8.24) 

Let A" denote a transformation in the form 

A" = A + 2: z"E"ja' (8.25) 
" 

Let B' denote a transformation in the form 

(8.26) 

and B a similar transformation without the restriction 
(3 > O. Then there exists an 7J > 0 such that for every 
A' of (8.23) there exists a B' and A" such that on :D 

exp B' A" exp (-B') = A' (8.27) 
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Also there is an '112 > 0, with the property that if B 
is such that 

then there exists a B' such that on 5) 

exp BA exp (-B) = exp B' A exp (-B') (8.29) 

Let A be chosen so that p is a minimum [cf. (8.20)]. 
Then the '11 which determines an A neighborhood 
[cf. (8.23) and (8.24)] and the '112 which determines 
a B neighborhood [cf. (8.26) and (8.28)] can be chosen 
so that if there is A', A" in the A neighborhood [cf. 
(8.23) and (8.25)] and a B in the B neighborhood 
for which 

exp BA" exp (-B) = A', (8.30) 

then there is also a B' [cf. (8.26)] for which 

exp (B')A" exp (-B') = A'. (8.31) 

If 

exp (B)A exp (-B) = A' (8.32) 

then aCe) and aCe') are equivalent under a similarity. 
If k is the dimensionality of e, the set of e for which 
aCe) = 0, then there exists a k' such that 0 ::::; k' ::::; k 
such that there are p - k' invariants of B equivalence 
which depend only on the components of the matrix 
aCe) and these must contain all similarity invariants 
of the matrix aCe). 

We next show: The set of matrices aCe') with e' 
in ;}tj is closed under the operation of forming the 
commutator. 

Proof. We can characterize the set of e' in ;}tj 

by the property that there exists a positive integer 
s' such that 

CD"a(e')(a(e)])" = O. (8.33) 

For by (6.3) and (8.5) 

a{a(e')e} = [a(e') , aCe)] = -a{a(e)e'} 

and consequently (6.3) yields 

(8.34) 

CD"a(e')(a(e)])" = (-l)"a{a(e)"e'). (8.35) 

Thus if e' I:: ;}tit (8.10) implies (8.33) for s' 2:: s. 
Now the set of e' which satisfy (8.33) is a linear 
set. It includes ;}tj. Now if it were a proper linear 
extension of ;}til it would have an intersection with 
mLj which contains a non-zero e'. Since aCe) takes 
mL j into itself and has an inverse on mLiI a(e)" e' 
is not zero for e in mLj and for every s'. By (8.6) 

and (8.7) e'mLj consists simply of the zero vector 
and thus a(a(e)" e') >= O. Hence (8.35) and (8.33) 
yield a contradiction which shows that ;}tl is charac­
terized by (8.33). 

It is a simple consequence of the Jacobian identity 
that 

([tW, b"](a]t 

= ~ (:)([)"b'(a]v([r-"b"(a]r- a (8.36) 

(cf. Weyl, p. 70). This implies that if (8.33) holds 
for b' = aCe') and s' and for b" = a(e") and s", 
then it holds for [b', b"] and s = s' + s". Since the 
set of aCe) is closed under commutation, [aCe'), a(e")] 
must be in the form a( e*) for which (8.33) holds 
and hence e* must be in ;}tj. Consequently the 
a( c') with e' in ;}tj are seen to form a Lie sub­
group. This Lie subgroup will be called the zero 
group for aCe) (cf. Weyl). 

In the particular case in which the aCe) are semi­
simple, and a is chosen so that p is a minimum, 
the zero subgroup will be Abelian, e will be {O I 
and k = 0 Ccf. Weyl, p. 86.) 

Corollary. If the set of aCe) is a semi-simple Lie 
algebra and A is chosen so that p is a minimum, 
then the I:a z"E aj a coincides with I:a ZaE ,,0 and 
this set constitutes an Abelian ring which contains A. 
In this case, k = 0 and every invariant is expressible 
in terms of the components of aCe). 

This means that every operator of the neighbor­
hood in the given set can be formally rotated into 
an operator which commutes with the original A. 
If A and the rotated A' have a common set of 
characteristic vectors, the variation in the charac­
teristic values between these two operators is de­
termined by the invariants. This difference is in a 
special case in quantum mechanics the variation 
of the energy due to the perturbation. 

SECTION 9 

There are two relatively straightforward examples 
available to illustrate the theory. These are based 
on the Hilbert space £2 of summable squared func­
tions f(x) defined for - co < X < co. We introduce 
the operators q and p by the equations 

qf = xf(x) , pf = i df/dx. (9.1) 

For the present we will ignore domain questions 
which have been thoroughly explored in other 
contexts; i.e., we will just proceed formally. 
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Example 1 is obtained by taking Ao = 1 (the 
identity) Al = q, A2 = p. Then i[AIA2] = Ao 
and of course i[AoAd = i[AoA21 = o. We obtain 
a set of Bo's by letting A; = B;. If e = {co, CI, C2} 
denotes a vector with three components, A = e·A, 
and B = JLoAo + JLIAI + JL2A 2, then 

for 

JL2 0 0 

b = -JLI 0 O. (9.3) 

0 0 0 

Consider now a e for which c~ + c; > O. Then 
in terms of Sec. 3, <ftc = keD and we have a com­
plementary set to <ftc determined by el and e2' We 
can choose b* as the multiples of bl which corresponds 
to the B for which JL2 = CI and JLI = -C2 [see (9.3)]. 
Notice that 0 = b~ = b~ = .... It is immediately 
apparent that the set of e' equivalent to e is given by 

e' = e exp JLb l = !co + JL(c~ + c;), CI , C2}' (9.4) 

Thus two, A and A' are B equivalent if and only 
if they differ by a multiple of AD. The coefficients 
CI and C2 are B invariants. 

Example 2. Let 

Al = S-!( _p2), A2 = S-!q2, Aa = tqp + ii. (9.5) 

We then have 

i[AIA2] = Aa, i[AaAI] = Alt i[A2 A a] = A 2. (9.6) 

Thus we can use for B I , B 2 , B~ the corresponding 
A,'s. If we correspond to B, the matrix b by the 
equation 

[e·A B] = (b·e)A (9.7) 
then 

0 0 1 

AI~al 0 0 0, 

0 -1 0 

0 0 0 

A2 ~ a2 = 0 0 -1, (9.S) 

1 0 0 

-1 0 0 

Aa ~ aa = 0 1 O. 

0 0 0 

This is a case where we may take aCe) equal to 
the corresponding b. (see Sec. 8). 

o 
aCe) = 0 (9.9) 

Clearly aCe) = 0 implies e = O. Thus every in­
variant function is a function of the matrix elements 
and every similarity invariant of aCe) is an equiva­
lence invariant. The characteristic polynomial of 
aCe) is 

-x - Ca 0 CI 

la(e) - XI 0 C3 - X -C2 

C2 -CI -X 

_Xa + (c~ + 2CI C2)X. 

We have therefore the invariant 

.1(e) = c~ + 2c1C2' 

(9.10) 

(9.11) 

Notice that if .1 ;'" 0, 0 is a simple root. Thus the 
range of aCe) which is also <ftc is two dimensional. 

Furthermore if .1(e) ;'" 0, e is not in the range 
of aCe). For suppose we can find an x, y, z such that 
e = aCe) {x, y, z} or 

(9.12) 

If we multiply these equations by C2, CI, and Ca, 

respectively, and add, we obtain c~ + 2CIC2 = O. 
Thus e is not in the range of a( e) and the set {ke} 
of multiples of e is a complementary manifold to 
<ftc. Our result in Sec. 3 shows that there is a neighbor­
hood of e such that for every e' in this neighborhood 
we have e' equivalent to (1 + z)e and if the neighbor­
hood is taken small, z will be small. Because of the 
invariant character of .1, we must have 

.1(e') = (1 + Z)2 .1(e) . (9.13) 

Thus the e' with .1(e') = .1(e) in this neighborhood 
have z = 0 or z = - 2. But the latter possibility 
is excluded if the neighborhood is small enough. 
Hence, if .1(e) ;'" 0 then there is a neighborhood of 
e, such that all e' with .1(e') = .1(e) in this neighbor­
hood are equivalent to e. Thus if we consider the 
connected sheet of the surface .1 (e') = .1 which 
contains e, all these e' are equivalent e. It is also 
true that every e' equivalent to e must be connected 
to it by a path consisting of equivalent e". Thus by 
these rather simple arguments, we have established 

Lemma 9.1. If .1(e) ;'" 0, the set of e' equivalent 
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to c form the connected sheet of the surface A(c') = A(c) 
which contains c. 

We must still examine the case A(c) = O. The 
argument of (9.12) in this case shows that we can 
consider, in general, one equation to be a conse­
quence of the other two if c :;.£ O. Now let c :;.£ 0 
and suppose for definiteness that Cl is not zero. 
Then, by using Eqs. (9.12), we can find three 
vectors Co, Cll C2 with properties 

Co = c, a(c)co = 0, a(c)cl = Co, a(c)c2 = Cl' (9.14) 

In particular if we choose Cl and C2 with first 
component zero, we obtain 

(9.15) 
c2 {O, -l/cl , O}. 

Equations (9.14) imply that a(c) has a nil-potency 
of three and hence its range CRe is two dimensional 
and the multiples {ZC2} of C2 form a complementary 
set. 

Again our basic equivalence result shows that 
there is a neighborhood of c such that every c' 
in this neighborhood is equivalent to a C" in the 
form 

C" = c + zC2 = lel' C2 - Z/Cl, cal· 

Since A(c) = 0, A(c") = -2z. Hence if c' in this 
neighborhood has A(c') = 0, then Z = 0 and c' 
is equivalent to c. Thus if A(c) = 0 and Cl :;.£ 0 
there is a neighborhood of c such that all c' with 
A(c') = 0 in this neighborhood are equivalent to c. 

If A(c) = 0 and Cl = 0, then Ca = 0 and c = 
{O, c2 , 0) with C2 not zero. We can apply an argument 
similar to the above with Co = C, Cl = {O, 0, 1) 
and C2 = {-1/ c2 , 0, 0 ). We obtain a neighborhood 
whose elements c' are equivalent to vectors 

C" = c + zC2 = {-z/c2 , C2, 0) (9.16) 

and the previous argument clearly applies. Thus 
we have 

Theorem. For example 2, the set of c' equivalent 
to c form the connected sheet of the surface A(c') = A(c) 
which contains c. If A = c~ + 2C l C2 is positive, the 
surface is simply connected. If A < 0, the surface 
consists of two disjoint sheets. If A = 0, removing 
c = 0 divides the surface into two disjoint sets which 
are the nappes of a cone. 

One can readily see that c~ + 2Cl C2 = a2 > 0 
is a hyperboloid of revolution of one sheet while 
c~ + 2ClC2 = - a2 is a hyperboloid of revolution 
of two sheets. One also has c; + 2ClC2 = 0 is a cone 
with apex at· the origin. 

The above discussion of the second example has 
been directed toward illustrating the previous 
theoretical results. One could also calculate the 
results directly and this calculation would specify 
the unitary transformations exp (iB) which yield 
the equivalence. These calculations however are 
quite lengthy and yet do not reveal the structure 
of the equivalence as well as the above discussion. 
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A new procedure is given for calculation of lower bounds to the eigenvalues of self-adjoint operators. 
Computation of the lower bounds is reduced to the solution of linear algebraic problems. 

I. INTRODUCTION 

I N this paper we give a new procedure for the 
calculation of lower bounds to eigenvalues. We 

modify the method of intermediate problems l based 
on a comparison of operators2 by introducing a 
second projection. Our procedure makes possible 
the determination of the lower bounds from finite, 
linear, algebraic computations. The inner products 
which appear are just those which are needed in 
the method of truncation.3

•
4 Parts of the work 

presented here were previously summarized.s 

II. INTERMEDIATE OPERATORS 

We suppose A to be a self-adjoint operator in a 
separable Hilbert space .i) with the inner product 
(u, v). We assume A is bounded below and that the 
initial part of its spectrum consists of eigenvalues 
of finite mUltiplicity before the first limit point of 
the spectrum. We denote the ordered eigenvalues 
by All A2 , .,. , and the corresponding ortho-normal 
eigenvectors by Ul l U 2 , •• , • If the spectrum of A 
contains limit points we denote the first by A*. We 
assume further that A may be decomposed as the 
sum of two operators 

A=AO+A', (1) 

in which A 0 is a self-adjoint operator and A' is a 
non-negative symmetric operator. We also require 
that the initial spectrum of A 0 consists of at least a 

* This work was supported in part by the Department 
of the Navy under Contract NOrd 7386 with the Bureau 
of Naval Weapons, and in part by the Advanced Studies 
Branch of the Wright-Patterson AFB under Contract 
AROF 140071. 

1 A. Weinstein, Mem. sci. math. No. 88, (1937). 
2 N. Aronszajn, Proceedings of the Symposium on Spectral 

Theory and Differential Problems (Oklahoma A & M, Still­
water, Oklahoma, 1951) (reprinted in 1955), p. 179. 

3 N. W. Bazley and D. W. Fox, J. Research Natl. Bur. 
Standards 6SB, 105 (1961). 

• N. W. Bazley and D. W. Fox, Phys. Rev. 124483 (1961). 
• N. W. Bazley and D. W. Fox, Am. Math. Soc. Notices 

8, 151 (1961). 

finite number of known eigenvalues A~, A~, ... with 
corresponding known ortho-normal eigenvectors u~, 
u~, ., .. We denote the first limit point of the spec­
trum of A 0 by A:. Denoting the domains of A, A 0 , 

and A' by DA, DAo, and DA ., respectively, we have 
DA = DA • (\ DAo. Since A' is non-negative and 
DA C DAo we have 

(2) 

Consequently I the ordered eigenvalues of A ° and A 
satisfy the inequalities, 6 

z=1,2, .. ·, (3) 
and 

A: ::; A* . (4) 

In order to improve the rough lower bounds 
given by (3) to the eigenvalues of A, we construct 
a sequence7 IA k) of self-adjoint operators that 
satisfy the inequalities A 0 

::; A k ::; A k+ 1 ::; A so 
that their eigenvalues give improved lower bounds. 

To construct the operators A k we introduce 
temporarily the inner productS [u, v] defined by 
[u, v] = (A'u , v) on the elements of D A •• Let pI< 
be the projection with respect to this inner product 
on the span of the first k vectors of a given sequence 
IPI' P2, ... } of linearly independent elements of 
D A" The projection pk has the explicit representation 

k 

pkv = L [v, Pi]biiPi, 
i.i=1 

(4) 

where bii are the elements of the matrix inverse 
to that with elements [Pi' p;]. For any vector v 
in D A • the operator A'pkv is given by 

k 

A'pkV = :L: (v, A'Pi)biiA'Pi' (5) 
i,i-l 

6 If A ° has but n eignevalues before A*o, then we also 
have that A*o ~ Ai for every i > n. 

7 Here we follow the construction of Aronszajn.2 

8 We assume here that A' is positive definite; the extension 
to the semidefinite case is easily made. 

469 
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Since pk is a projection we have 

° S [pkV, v] S [PHIV, v] s [v, v]. (6) 

It is clear from (5) that A'pk may be extended by 
continuity to all of ,po There it is a symmetric 
operator of finite rank and from (6) satisfies 

° S A'pk S A'pHI SA'. 

The operators A k are now defined by 

Ak = A O + A'pk; 

(7) 

(8) 

they are clearly self-adjoint, have domains D A" equal 
to D A', and satisfy the desired inequalities, 

(9) 

Their eigenvalues X~ satisfy the parallel inequalities, 

(14) 

It follows that these operators have domains D A I." 

equal to D A • and satisfy the inequalities 

A O 
- l' S A I

•
k S A I +1.k S Ak S A. (15) 

Their eigenvalues X; ,k satisfy the parallel inequalities 

(16) 

Conditions sufficient to insure the convergence 
of the eigenvalues of A k to those of A have been 
given by Aronszajn.2 These conditions also suffice 
to ensure the convergence of the eigenvalues of 
A I,k to those of A k when the q's are complete in 5). 
Thus under these assumptions the eigenvalues of 
A I,k converge to those of A as land k become large. 

(10) IV. DETERMINATION OF THE SPECTRUM OF Al.k 

The difficulties in the determination of the 
spectrum of A k have been discussed elsewhere.2

•
3 

In order to overcome these difficulties we introduce 
here smaller operators A I.k of which the spectra 
can be determined by finite algebraic computations. 

III. INTRODUCTION OF A SECOND PROJECTION 

For each positive number 1', the operator A k 

may be rewritten 

Ak = [A O 
- I'J + [A'pk + I'J. 

Since A'P· + l' is greater than 1', we may introduce 
for each l' and k a new inner product (u, v) defined by 

(u, v) = ([A'P' + I']u, v) (11) 

on the elements of ,po Let QI be the projection with 
respect to this inner product on the span of the 
first l vectors of a given sequence {qI' q2, ... } of 
linearly independent elements of ,po It follows by 
arguments similar to those used in establishing (7) 
that for fixed k and l' 

Os [A'P· + I']QI S [A'pk + I']Q!+I S A'P· + 1'. 
(12) 

The operators [A'P' + I']QI are bounded, sym­
metric, and of finite rank. They have the explicit 
representation 

[A'pk + I']Q lu 
I 

= E (u, [A'pk + I']qm)cmn[A'pk + I']qn, (13) 
m.n=l 

where emn are elements of the matrix inverse to that 
with elements ([A'P' + I']qm, q,,). We now define 
the operators A I,k by 

In general, the determination of the spectrum 
of A I,k for arbitrarily given elements qIJ q2, ... , q I 
is as difficult as that for Ak itself. However, the 
operator A I,k has been constructed so that a "special 
choice"a,9 of the q's is always possible. 

In fact, since [A'pk + 'Yr I may be regarded as an 
explicitly known operator IO on ,p, we may make the 
choice of elements 

i=I,2, .. ·,l. (17) 

With this it follows from (13) and (14) that the 
operator A I,k has the form 

I 

A l,kU = [A 0 - l' Ju + E (u, u~)emnU~, (18) 
m,n-l 

where the emn are now elements of the matrix inverse 
to that with elements (u~, [A'pk + lTIU~). 

We observe that the subspace ~ of ,p spanned 
by u~, ug, ... , u~ now reduces the operator A l'k, 

and that A! "u equals A °u - I'U for u orthogonal 
to ~. Since this is true, A I,k has the same spectrum 
as A 0 

- l' on this orthogonal complement. The 
spectrum of A I ,k is completely determined by finding 
its eigenvectors of the form 

I 

U = E t3iU? (19) 
i=l 

This leads to the algebraic eigenvalue problem 
I 

E t3i[(A~ - 1') Oii + eii - X 0;;] = 0, 
'1.=1 

j = 1,2, .. , , l. (20) 

9 N. W. Baz!ey, J. Math. Mech. 10,289 (1961), 
10 See Sec. V. 
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The eigenvalues A: ,k are found by ordering those 
found from (20) with A~+l - 'Y, A~+2 - 'Y, .... 
These give improved lower bounds according to (16). 

V. THE OPERATOR [A'Pk + 'Y]-l 

An expression for [A'pk + "ttl can be obtained 
from its spectral resolution. In fact, from the 
expression, 

k 

[A'pk + 'YJv = L (v, A'Pi)bi;A'p; + 'YV, (21) 

it is clear that the subspace of ~ spanned by A'Ph 
A'P2' ... , A'Pk reduces A'pk + 'Y. Consequently 
A' pk + 'Y has 'Y as an eigenvalue of infinite multi­
plicity with characteristic subspace all vectors 
orthogonal to A'Ph ... , A'Pk. The remaining 
eigenvalues, J.l1 + 'Y, J.l2 + 'Y, '" ,J.lk + 'Y, all greater 
than 'Y, and the corresponding normalized eigen­
vectors, VII v2, .,. , Vk, are obtained by putting 

expression (26) requires the inversion of a k X k 
matrix for each value of 1'. 

VI. DEPENDENCE ON 'Y 

In this section we consider the dependence of the 
operator A I ,k on the parameter l' when the elements 
qi are chosen according to (17). First we show that 
A I ,k is monotonically increasing in "t on the space 
~ spanned by u~, u~, ... , u~. In fact, on ~ this 
operator may be represented by the matrix AO -
'YI + C, where AO is the diagonal matrix of eigen­
values of AO, I the identity, and C the matrix intro­
duced in Eq. (18). To demonstrate the monotonicity 
we show that the matrix, 

is positive, or equivalently that 

- dC- I ld1' ~ C- 2
• (28) 

k 

V = L diA'Pi, 
Since C is inverse to the matrix having elements 

(22) (u~, [A'Pk + I'r1u~), it follows that 

and lead to the algebraic system 
k 

o = L d;[(A'Pi, A'p;) - J.I(A'p;, Pi)], 
i-I 

j=1,2,···,k. (23) 

Hence 

(A'pk + 'Yr 1u 

(dC- 1Id'Y)ij = -(u~, [A'pk + 1'r2u~) = -(q;, qj)' 
(29) 

The inequality between quadratic forms correspond­
ing to the matrix inequality (28) may be written 

I I 

L a/Xj(qi, qj) ~ L: a/xj(q;, u~)(u~, qj). (30) 
".i-l i.i.m-l 

Setting v equal to L:=l aiqi, (30) becomes 
I 

= ~ Cu, Vi)V; + ! [ - ~ ( .).J £.J + u £.J u, v, v, . 
i-I J.I. 'Y l' i~I 

(24) (v, v) ~ L(v,u~)(u~,v), (31) 

The matrix emn of (18) is just that inverse to the 
matrix with elements 

! {am .. - ± ~+i (u~, Vi)(V;, u~)}, (25) 
l' i-I fJ,i l' 

where the v;'s and J.I;'S are determined from (22) 
and (23). 

An alternative expression for the matrix given in 
(25) was suggested to the authors by W. Borsch­
Supan. It is 

~{amn - itl (u~, A'p;) di;C'Y)(A'P;'U~)}' (26) 

where dij('Y) is the matrix inverse to that with 
elements (A'p;, A'p;) + I'(A'Pi, Pj). This expression 
follows directly from (25) or from initial considera­
tions. The expression (25) requires the explicit solu­
tion of the algebraic eigenvalue problem (23); the 

which is Bessel's inequality. 
The monotonicity of A I ,k on ~ implies that the 

ordered eigenvalues of the matrix problem (20) are 
also monotonically increasing in 1'. Examination of 
the matrices involved also shows that as'Y approaches 
zero these eigenvalues approach A~, A~, '" , A~, 
and as 'Y approaches infinity they approach the 
Rayleigh-Ritz upper bounds to the operator A ° + 
A'pk obtained with the trial vectors u~, u~, '" , u~. 

Since A I ,k equals A ° - l' on the orthogonal 
complement of ;m, it is there monotonically de­
creasing in'Y and has eigenvalues A~+l - 'Y, A~+2 -
1', .... Thus for each land k, the best value of 'Y 
for the estimation of A. (II ~ l) is that value for 
which A~+l - "lis equal to the 11th eigenvalue of the 
matrix problem (20). Suitable choices of l' may he 
obtained from other (possibly experimental or non­
rigorous) estimates of A •. 
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A Note on Perturbation Theory in Nearly Periodic Systems 
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It is shown that for a particle in periodic or nearly periodic motion, an integrated form of the 
equations of motion may be the better starting point for an approximate calculation of the orbit. 
The motion of a charged particle in a static, inhomogeneous magnetic field is used to illustrate how 
this approach avoids the difficulty of the spurious secular terms to all orders of the approximation. 

INTRODUCTION 

SINCE there exists no general method capable 
of yielding exact solutions to nonlinear dif­

ferential equations, one is usually forced to employ 
approximate methods. One nonlinear equation 
frequently encountered in physics is the simple 
harmonic oscillator equation with a small nonlinear 
term added. The solutions to such equations cannot 
differ much from those of the corresponding linear 
equation, i.e., they must be periodic or nearly 
periodic. With the nonlinear term small, it would 
seem natural to try a solution in the form of a 
power series in the parameter of smallness and to 
solve the resulting equation order by order, as was 
done by Poisson and by Poincare. 1 The zeroth order 
term would be the solution of the linear equation, 
which is harmonic in time, t, i.e., of the form sin wt. 
The difficulty with this approach is the appearance 
in the nth order of the series of so-called secular 
terms of the form t sin wt, terms which seem to 
grow indefinitely, but which in fact arise from an 
expansion of terms periodic in time. The astronomers 
Gylden and Lindstede found a way to eliminate 
such secular terms in each order of the expansion, 
and applied their method to problems in celestial 
mechanics. More recently Krylov and Bogoliubov3 

have adapted this procedure to the theory of non­
linear oscillations. 

The purpose of this note is to point out that in 
dealing with motion which is periodic or nearly 
periodic, an integrated form of the equations of 
motion may be the better starting point for an 
approximate calculation of the orbit. An example 

I H. Poincare, Les methodes nouvelles de la mecanique 
celeste (Gauthier-Villars, Paris, 1892), Vol. I. 

2 A. Lindstedt, Mem. Acad. Imperiale Sci. St. Peters bourg 
31 (1883). 

3 N. Krylov and N. Bogoliubov, Introduction to Non­
Linear Mechanics (Kiev, U. S. S. R., 1937), in Russian; 
English version by S. Lefschetz (Princeton University Press, 
Princeton, New Jersey, 1943). 

is given below to illustrate how this approach 
avoids the difficulty of spurious secular terms. 

MOTION IN THE MAGNETIC FmLD: B(x, y)e. 

1. General Results 

Let us consider the motion of a nonrelativistic 
particle of mass m and charge q in the static, inhomo­
geneous magnetic field, B = B(x, y)e z, where ez is 
the unit vector in the z direction. We shall not be 
concerned with the motion along the z direction, 
which is unaffected by the magnetic field. Intro­
ducing the Larmor frequency, n(x, y) = qB(x, y)/mc, 
the equations of motion take the form: 

i = n(x, y)y, 

fj = - n(x, y)x, 

(1) 

(2) 

where the dot represents the time derivative. 
Alternatively the orbit, xCt'), yet'), of the particle 
which at time t' = t has the position x, y and the 
velocity X, y, may be obtained from the integral 
equations: 

{' dt" n I x( t"), y( t") } x( t") 

= x sin r(t') + y{l - cos r(t') l, (3) 

{' dt"n/x(t"), y(t") ly(t") 

= y sin r(t') - xlI - cos r(t')}, (4) 

where 

r(t') = {' dt" n / x(t") , y(t"»). (5) 

The integrals in Eqs. (3)-(5) are along the 
(unknown) particle orbit xCt"), y(t"). 

Let us now restrict ourselves to the case 

(6) 

472 
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where no is a constant and In 1(x, y)1 « no for all 
X, y. While n 1 is small in magnitude, no restriction 
is placed on its derivative, i.e., n 1 may vary rapidly 
over distances of the order of the Larmor radius. 
Approximate solutions to the equations of motion of 
charged particles in slowly varying electric and 
magnetic fields have been developed by Alfven4 

and more recently by Bogoliubov and Zubarev5 

and by Kruska1.6 In these treatments the assump­
tion is made that the magnetic field may be repre­
sented by: B(r) = B(ro) + (r - ro)' VB(ro), over 
distances from ro greater than the Larmor radius. 
We do not restrict ourselves in this way here. 

If we base our perturbation theory on Eqs. (1) 
and (2), secular terms of the form t sin not and 
t' cos not show up in the n'th order. These may of 
course be eliminated by the method of Krylov and 
Bogoliubov.3 However, if we proceed from the 
integral equations (3) and (4), it is possible to 
develop a systematic approximation in which 
spurious terms never appear. With Eq. (6) we may 
rewrite Eqs. (3) and (4) as follows: 

no{x(t') - x} = i; sin T(t') + y{ I - cos T(t') I 

- {' dt"Odx(t") , y(t")} 

no{x.(t') - X} = X sin T.(t') + yll - cos T.(t')} 

- j" dt"nt!Xn-l(t") , Yn-t(t")} 

X [x cos Tn_l(t") + Y sin Tn-l(t")], (12) 

OO{Yn(t') - y} = ysin Tn(t') - xII - cos Tn(l') I 

- {' dt"Ot!xn-I(t"), Yn-t(t") I 

X [y cos Tn-t(t") - xsin Tn_l(t")], 

no(t' - t) 

+ j" dt"0t!xn - 1(t"), Yn-l(t") I· 
t , 

(13) 

(14) 

We see that xn(t') and Yn(t') are expressed as periodic 
functions of Tn(t') plus integrals involving 0 1 , These 
integrals will be periodic in time only if n 1 is itself 
a periodic function. In general the orbit is not 
truly periodic, but since the integrands in Eqs. 
(12)-(14) are bounded functions of til, the corre­
sponding integrals cannot increase faster than 
linearly in time. The possibility of a term linear in 
(t' - t) corresponds to the well-known drift of 
charged particles in inhomogeneous magnetic fields. 
Such "secular" terms are real; however, the non-

X [i; cos T(t") + Y sin T(t")] , 

Oo{y(t') - y} = ysin T(t') - x{I - cos T(t')} 

- j" dt" Od xCt") , y(t")} 

(7) physical secular terms of the form C sin Oat, n > 1 
never appear. This is what we intended to show. 
From Eqs. (12) and (13) it is clear why terms of 
the form t" sin Oat must show up in a solution which 
is a power series in n1, since such a solution would 
involve an expansion of sin Tn and cos Tn. 

X [P cos T(t") - i; sin T(t")]. (8) 

In the last terms of Eqs. (7) and (8) we have inserted 
the expressions for x(t') and yet'), which result upon 
differentiating Eqs. (3) and (4) with respect to t'. 
To the zeroth order in 0 1 Eqs. (7) and (8) yield the 
circular orbit xo(t'), YoCt'): 

no{xo(t') - xl = xsin TaCt') + y{l - COS TaU')}, (9) 

2. First-Order Results 

It is perhaps of interest to study the first-order 
orbit, x1(t'), Yl(t'), in some detail. For simplicity we 
shall henceforth assume that n1 depends on only one 
space variable, say x. Let us also introduce the 
cylindrical velocity coordinates, v and cf>, 

x = v cos cf>, y = vsincf>, (15) 

no{Yo(t') - y} = ysin To(t') - x{1 - cos To(t')}, (10) and the center of gyration, Xc, Yc, 

TO(t') = Oo(t' - t). (11) 

The form of Eqs. (7) and (8) immediately suggests 
the following n'th order approximation, xn(t'), Yn(t'), 
to the orbit: 

4 H. Alfven, Cosmical Electrodynamics (Clarendon Press, 
Oxford, England, 1950). 

6 N. Bogoliubov and D. Zubarev, Ukrain. Mat. Zhur 7, 
5 (1955). Translation by B. D. Fried available as a Space 
Technology Laboratories Report (1960). 

6 M. Kruskal, Proceedings of the Third International 
Conference on Ionization Phenomena in Gases (Venice, 1957), 
or AEC Report NYO-7903 (1958). 

x. = X + p/no, Yc = Y - XI 00 , (16) 

in terms of which the zeroth-order orbit may be 
rewritten as follows: 

Oo{xo(t') - Xc} = vsin [no(t' - t) - cf>], (17) 

no{Yo(t') - Yc} = v cos [Oo(t' - t) - cf>J. (18) 

Turning to the first-order orbit, let us first examine 
Tl, which we write: 
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where by Eq. (14) 

.67,(t') = {' dt"Q,{xo(t") I. 

side of Eq. (24) is periodic in time. In order to 
evaluate the other term, we again Fourier decompose 

(20) Q,(x), substitute for xo(t") and yo(t") from Eqs. 
(17) and (18), and integrate over t": 

We now Fourier analyze Q,(x), substitute for 
xo(t") from Eq. (17), and carry out the integration 
over t". The result is: 

.67,(t') = r: dkQ,(k)eikX<{(t' - t)Jo(~~) 

+ ~ J,,(~~)e-in¢(inQo)-'(einnO("-t) - I)}, (21) 

where Q,(k) is the Fourier transform of Q,(x) and 
where we have used the standard symbols, I n , for 
Bessel's functions. The sum in Eq. (21) is periodic 
in t', whereas the first term is linear in time. Thus 
we have found a first-order frequency shift from 
120, given by: 

.612 = f'" dkQ,(k)eikx<Jo(kv). 
_'" 120 

(22) 

Employing a well-known integral representation for 
J 0, the integration over k may be carried out, 
yielding: 

.612 = 71"-' 10" dorMxc + vQ~' cos 0), (23) 

which illustrates that .612 is just the average of 
Q,(x) over the zero-order orbit. 

The expression for y,(t') is obtained from Eq. 
(13) : 

Qo(y,(t') - y,) = v cos 17,(t') - ¢I 

(24) 

- {' dt"Q,{xo(t") IYo(t") 

= v r: dkQl(k)eikX+(t' - t)Jl(~~) 

+ L J~(~v)(nQo)-'e-i""(l - einnO(t'-t»} , (25) 
n;><!O IlliO 

where J~(z) == (dldz)J,,(z). All terms in Eq. (25) 
are periodic in time, except the first, which represents 
a drift in the y direction with a velocity, Vd, given 
by: 

Vd = ivQ~' r: dkQl(k)eikX<Jl(~~) 
= vQ~'7r-' 10" dO cos OQ,(xc + vQ~' cos 0). (26) 

A similar calculation of x,(t') shows it to be periodic 
in t', or, as expected, that there is no drift in the 
x direction when 12, is independent of y. 

Finally we note that if Q,(X) varies slowly over 
distances of the order of the Larmor radius, vlQo, 
Eq. (26) may be approximated by: 

(27) 

which is the usual first-order orbit theory result. 4 
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Some model Hamiltonians are proposed for quantum-mechanical many-body systems with pair 
forces. In the case of an infinite system in thermal equilibrium, they lead to temperature-domain 
propagator expansions which are expressible by closed, formally exact equations. The expansions 
are identical with infinite subclasses of terms from the propagator expansion for the true many-body 
problem. The two principal models introduced correspond, respectively, to ring and ladder summations 
from the true propagator expansion, but augmented by infinite classes of self-energy corrections. 
The latter are expected to yield damping of single-particle excitations. The eigenvalues of the ring 
and ladder model Hamiltonians are real, and they are bounded from below if the pair potential obeys 
certain conditions. The models are formulated for fermions, bosons, and distinguishable particles. 
In addition to the ring and ladder models, two simpler types are discussed, one of which yields the 
Hartree-Fock approximation to the true problem. A novel feature of all the model Hamiltonians 
(except the Hartree-Fock) is that they contain an infinite number of parameters whose phases are 
fixed by random choices. Explicit closed expressions are obtained for the Helmholtz free energy of 
all the models in the classical limit. 

1. INTRODUCTION 

ADIFFICULTY in calculating the statistical be­
havior of many-body systems is that some 

quantities of interest may not have convergent 
perturbation expansions. If the system is infinite in 
size, this can occur even when the density of particles 
is very low and the interparticle forces are very 
weak. The situation is already present in the clas­
sical theory. Consider a gas of classical particles 
which interact by a repulsive, short-range pair­
potential A V (x). If the pressure, expressed as a 
function of density and temperature, is expanded 
in powers of the strength parameter A, the expansion 
has zero radius of convergence. l This suggests that 
a similar situation may exist in the quantum­
mechanical case. 

N onconvergence of interaction-strength expans­
ions is not necessarily a disaster. In the classical 
example just cited, the expansion almost certainly 
is asymptotic about A = 0, and we may hope that 
this is true also in some quantum-mechanical cases. 
However, many physical problems of interest do 
not exhibit weak interactions. Moreover, certain 
properties of a quantum-mechanical many-body 

* This work was supported by the Air Force Office of 
Scientific Research. 

lOne way to obtain this result is the following. Take 
X < 0 (pure attractive potential). Then every diagram in 
the irreducible cluster expansion for pressure gives a negative 
contribution. The total number of diagrams of order n 
increases with n faster than any exponential, and a con­
sequence is that the pressure comes out negatively infinite 
no matter how small 1>.1 is. (Physically, this means the system 
will collapse.) On the other hand, for >. > 0, the pressure 
must approach the perfect gas value as 1>.1 --> O. Therefore 
the pressure is a nonanalytic function of >. at >. = O. [Cf. T. D. 
Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957).] 

system may not have even asymptotic expansions 
as power-series in A. An example is the one-particle 
momentum distribution O'(k) , normalized to unity. 
For an infinite system, a finite change in O'(k) from 
its form for uncoupled particles means that an 
infinite number of particles are displaced from the 
momentum levels they would occupy if they were 
not coupled. In order to form such a state from the 
uncoupled state, the interaction Hamiltonian must 
act an infinite number of times; that is, infinite 
orders of perturbation theory are involved. We 
expect on physical grounds that the change in O'(k) 
goes to zero as A does. However, we cannot presume 
that it must go to zero as some integral power of A. 

In recent years, several formalisms for handling 
perturbation expansions in the quantum-mechanical 
many-body problem have been proposed which are 
related to methods previously used in quantum 
electrodynamics.2

-
lo They produce great simplifi­

cations in manipulations and permit one to carry 
out various formal summations of infinite classes 

2 T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 
351 (1955). 

3 E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958). 
4 C. Bloch and C. De Dominicis, Nuclear Phys. 7, 459 

(1958). 
6 E. S. Fradkin, Nuclear Phys. 12,465 (1959). 
6 A. Abrikosov, L. P. Gor'kov, and 1. E. Dzyaloshinskii, 

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 900 (1959) [transla­
tion: Soviet Phys.-JETP 9, 636 (1959)]. 

7 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 
(1959). 

8 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 
(1960). 

9 D. N. Zubarev, Uspekhi Fiz. Nauk. 71, 71 (1960) 
[translation: Soviet Phys.-Uspekhi 3, 320 (1960)]. 

10 Extensive further bibliography is given in references 
7 and 9. 
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of terms from the perturbation expansions. These 
formalisms are a natural choice for investigating 
quantities, such as u(k), which may not have con­
vergent or asymptotic expansions. However, it can 
be difficult to know in advance what summations 
should be carried out in given cases. With sufficient 
ingenuity, it is possible to sum certain divergent 
series so as to obtain almost any answer whatever. 
It is difficult to guess in advance whether adding 
further infinite classes of terms to a known expansion 
will improve the answer or make it worse. 

In the present paper we shall describe a pro­
cedure intended to pick out perturbation-term sum­
mations for which certain characteristics are pre­
dictable in advance. We shall formulate model 
Hamiltonians such that the complete perturbation 
expansions to which they lead are formally identical 
with certain infinite subclasses of terms from the 
corresponding perturbation expansion for the true 
Hamiltonian. The model Hamiltonians are Hermi­
tian, conserve momentum, and have eigenvalues 
which are bounded from below if the pair potential 
obeys certain restrictions. The predictable charac­
teristics of the model solutions are, first, some 
general consistency properties which follow auto­
matically from the fact that the solutions describe 
actual Hamiltonians exactly. These include positive­
definiteness of the one-particle energy-momentum 
distribution function, for example. The further pre­
dictable characteristics are those which follow from 
the boundedness and conservation properties. 

In common with the true many-body Hamiltonian, 
our models (with one exception) are not diagonaliz­
able by known means. They are soluble only in 
the sense that they yield formally closed integral 
equations for the propagators that determine the 
mean energies, mean occupation numbers, etc., which 
are of statistical-mechanical interest. A feature of 
the models is that they contain infinite numbers of 
parameters whose values are chosen at random. We 
shall therefore call them stochastic models. The 
random parameters will be described in Secs. 2 
and 3. 

We shall present two principal types of stochastic 
models, ladder and ring. They correspond, respec­
tively, to summations of familiar infinite classes of 
ladder or ring diagrams from the perturbation series 
for the true Hamiltonian. At the same time, they 
include certain infinite classes of self-energy cor­
rections to these diagrams. The corrections are of 
a type expected to contribute to the damping of 
elementary excitations. In addition to the ladder 
and ring models, we shall introduce two simpler 

types. One yields the Hartree-Fock approximation 
to the true problem (and contains no random 
parameters). The other also includes the Hartree­
Fock diagrams, but with iterated self-energy cor­
rections. The eigenvalues of this last model are 
not bounded from below for any pair potential, and 
its validity therefore is quite doubtful. 

The models which are described in the present 
paper yield closed equations only for infinite systems. 
We shall develop each type of model in two forms: 
for indistinguishable particles (fermions and bosons) 
and for distinguishable particles. The analytical 
treatment will begin with the distinguishable particle 
models. They admit more immediate physical in­
terpretations. We shall apply to them the Ursell­
Mayer irreducible cluster expansion method and 
thereby obtain an explicit closed expression for the 
Helmholtz free energy of each model in the classical 
limit. For the fermion and boson models, we shall 
use a temperature-domain propagator formalism of 
the type originated by Matsubara2 and developed 
further by Fradkin,5 Abrikosov et al.,e Luttinger 
and Ward, 8 and others. The distinguishable and 
indistinguishable particle models turn out to give 
formally identical thermodynamics in the classical 
limit. Thus, our classical results for the Helmholtz 
free energy provide some insights into the behavior 
of the fermion and boson models. 

In the paper which follows,l1 we develop more 
general models which yield closed equations what­
ever the size of the system. We shall apply them to 
nonequilibrium as well as equilibrium statistical 
mechanics. For an infinite system in equilibrium, 
the generalized models yield the same final equations 
as the models of the present paper. However, they 
provide a neater and more satisfactory derivation 
of these equations. We do not start with the general 
treatment in the present paper because it requires 
a more elaborate formalism and therefore does not 
provide as direct an introduction to the use of the 
stochastic models. 

The derivation of our closed model equations 
involves a deep-lying convergence question which 
is described in Sec. 5.1. We make no attempt to 
answer this question in the present paper. In the 
following paper, we offer what we hope is a satisfy­
ing, although nonrigorous, resolution. 

2. MODELS FOR DISTINGUISHABLE PARTICLES 

2.1. Nature of the Models 

Let us consider a system of N similar but dis­
tinguishable particles (of unit mass) which interact 

11 R. H. Kraichnan, J. Math. Phys. 3, 496 (1962). 
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through a pair potential Vex). The total Hamil- Then the reality condition and (2.5) imply 
tonian may be written 

H = ! 2: p! + ! 2:' V(Xn - xm) 
n n.m 

(n, m = 1,2, ... ,N), (2.1) 

where 1:' means that n = m is omitted in the sum. 
Here pn and Xn are the momentum and position of 
the nth particle. We shall adopt the artifice of 
confining the system in a cubical cyclic box of 
volume Q. That is, we restrict Vex) to the form 

Vex) = 1: Vk exp (tk·x) , (2.2) 
k 

where k takes all the values allowed by cyclic 
boundary conditions on the walls of the box, and 
we require that the SchrOdinger wave function be a 
cyclic function of the coordinates of each particle. 
In the classical case, we assume that a particle which 
exits through any wall of the box simultaneously 
re-enters, with the same momentum, through the 
opposite wall. We shall eventually be interested 
in the limit N -t ro, Q -t ro, with N IQ finite. 

We require that Vex) be real and have reflectional 
symmetry. These conditions imply 

Vex) = V(-x), Vk = V-k, Vk = V:. (2.3) 

Except where we specify otherwise, we shall assume 
that Vex) is a smooth, bounded function such that 

! Vk ! = O(Q-l), 

jVki ~ O(k-2) , 

Q -t ro (all k) , 

k-t roo 

In particular, this implies that f Vex) d3x and 
f [V(X)]2 d3x exist for Q -t ro, where the integration 
is over the whole box. 

We shall call (2.1) the true Hamiltonian, and 
refer to the statistical mechanical problem associated 
with it as the true problem. 

Now let us consider model Hamiltonians of the 
form 

H = ! 2: p;, + ! 1:' Vn''''(xn - xm), (2.4) 
n n,m 

where vn.m(x) is a pair potential which may be 
different for each pair of particles nand m. We 
require that vn.m(x) be real, and we replace (2.3) by 

(2.5) 
Let us write 

vn.m(x) = 2: v~·m exp (tk·x) (2.6) 
k 

and define the parameters t:Pn .m;k by 

(2.7) 

¢n,m;k = CPm,n:-k- (2.8) 

The true problem, of course, corresponds to 
t:Pn.m;k = 1 for all n, m, and k. In the models with 
which we shall be concerned here, all the t:Pn.".:k 

will be assigned unit modulus (except in the Hartree­
Fock model where most of them will vanish). How­
ever, for each triad n, m, k the phase of t:Pn.m:k 

will be assigned by a random choice, subject to 
(2.8), and to additional constraints which differ 
for each model. As we shall see, the models so 
produced have certain properties in common with 
the true Hamiltonian but lead to a statistical 
mechanics that can be expressed in closed form in 
the limit Q -t ro. 

2.2. Ladder Model 

Let us specialize t:Pn.m:k to the form 

t:Pn.m:k = exp (-tk·dn • m), du • m = -dm.n , (2.9) 

where the d n •m are constant, real vectors. This 
clearly satisfies (2.8). Now, for each pair n, m let 
us give the three vector-components of dn •m values 
chosen at random within the interval (0, L), where 
L = Qt. The choices are to be completely inde­
pendent for pairs which are not identical. In the x 
representation, we have 

(2.10) 

which permits a very simple interpretation of this 
model: The pair potential has the same shape as in 
the true problem, but the particles now collide with 
ghosts of each other, displaced by the randomly 
chosen vectors d u •m • For reasons which will appear 
later, we shall call this the ladder model. 

An important feature of the ladder model is 
immediately apparent from (2.10). If Vex) is non­
negative for all x, then vn.m(x) also has this prop­
erty. It follows that in this case the expectation of 
H in any quantum-mechanical state is non-negative, 
or, in other words, that all the eigenvalues of H 
are non-negative. 

At this point, we want to make as clear as pos­
sible the precise sense in which our model is sto­
chastic. The values of the d n •m are chosen at random 
[subject to (2.9)]. Once chosen, however, they are 
fixed, and we work thereafter with the definite 
Hamiltonian embodying these values. In particular, 
the same choice of the dn •m will be employed for 
every member of the canonical or grand canonical 
ensemble which we use in describing the statistical 
mechanics of the system. The principal deductions 
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h m ,L, DO 
(0.) (b) (e) 

FIG. 1. Some irreducible cluster diagrams. 

we shall make about the statistical mechanics of 
the model will be valid only for typical assignments 
of values for the dn ,m, a situation which is familiar 
in stochastic problems. [Thus dn ,,,, = 0 (all n, m) 
is a possible result of a random assignment of 
values, but it is not typical. The probability of 
this assignment vanishes with extreme rapidity as 
N ---t co.J Instead of restricting ourselves to typical 
assignments, we could equivalently employ a sta­
tistical distribution of assignments and make our 
deductions about averages over the distribution. 
Such a procedure would have some formal ad­
vantages, but we feel that the analysis will be clearer 
if we do not introduce this additional kind of average. 

We wish now to investigate the equilibrium 
thermodynamics of our model in the classical limit. 
The virial expansion of the Helmholtz free energy 
per particle for the true problem may be written 

'" 
A = ..10 - {3-I L (a + I)-Ip"B". (2.11) 

,,-1 

Here AD = {3-1 {In [p(211"li2{3)i] - I) is the Helm­
holtz function for free particles, p is N IQ, B a is 
the Mayer irreducible cluster integral for a cluster 
of a + 1 particles, and {3 = llkT, where k is Boltz­
mann's constant and T is absolute temperature. 
Equation (2.11) is formally exact in the limit Q, 

N ~ co. In the true problem it makes no difference, 
of course, which of the N particles are assumed to 
be in the cluster for which B" is calculated; the 
interaction of all pairs is identical. If the derivation 
is retraced with a model potential vn,m(x), it is 
found that (2.11) is still valid provided that Ba 
is reinterpreted in the following way: It is the 
average value of the cluster integral when the latter 
is calculated for all possible choices of the a + 1 
particles from among the N particles in the system.12 

Let us write 

f(x) = exp [-{3V(x)] - 1, 

r·m(x) = exp [_{3vn,m(x)] - 1. (2.12) 

Then the model cluster integral BI [Fig. lea)] is 

12 See the Appendix. 

BJ = N-2 W I L' ii f'"'(xn - x m ) d3Xn d3x m , (2.13) 
n.m 

where the integrations are over Q, and we have 
replaced N(N - 1) by N 2 in anticipation of the 
limit N ~ co. In the ladder model we have 

f,m(x) = f(x - dn,m)' 

Therefore, since Vex) is cyclic, we find 

(2.14) 

which is identical with the result for the true 
problem. 

Let us now assume that Vex) has a finite range To 

and is negligible for \x\ > To. (Here x is measured 
modulo displacement by a cyclic period.) The next 
irreducible cluster integral [Fig. 1 (b)] is 

B2 = N- 3 Q-2 L' ffJ f,m(xn - XmW',I(X", - XI) 
n.m,l ., 

X fl,n(x i - xn) d
3x .. d3Xm d3XI' (2.15) 

Contributions to this integral can arise only from 
points which simultaneously satisfy 

\x .. - Xm - d .. ,m\ :$ To, /x", - Xl - d"',I/ :$ To, 

\XI - X" - d l ... / :$ rOo (2.16) 

However, since the d" ,m have been fixed by random 
choices, and have values which range over the 
entire cyclic volume, it will be impossible to satisfy 
(2.16) for most triads n, m, l. In fact, given a typical 
assignment of the d's, it is clear that (2.16) can be 
satisfied only for a fraction of all triads which 
is of order T~/Q. It follows that B2 vanishes as 
r~/Q in the limit Q ~ co, N ~ co. Similar considera­
tions show that any given B" (a > 1) also vanishes 
in the limit. The contribution to B a of each ir­
reducible cluster diagram with a + 1 particles and 
'Y links vanishes as (r~/Qr-". Actually, the condition 
we placed on Vex) is stronger than needed to obtain 
this result. It is sufficient that f(x) be bounded and 
that f II(x)\ d3 x be finite in the limit. 

On the basis of the preceding paragraph, let us 
assume that the total contribution to (2.11) from 
all Ba (a > 1) vanishes in the limit. This is a non­
trivial assumption. It involves a deep-lying con­
vergence question which we shall discuss, in its 
quantum-mechanical form, in Sec. 5.1, and at length 
in the following paper. The essential point is that 
the number of irreducible diagrams of order a is 
enormous for ex ,...." O(N). For the present, we shall 
simply adopt the assumption. An equivalent assump-
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tion will be implicit in the discussion of the further 
classical models of Sec. 2. Retaining, then, only BI 
in the limit, we have 

(2.17) 

where -2a({3) is the right side of (2.14). The cor­
responding equation of state is 

(2.18) 

where we define the pressure by the relation p = 

/ (aAjap)/J' 
Equations (2.17) and (2.18) exhibit several 

properties of interest. First, we note that if Vex) 
is non-negative everywhere, then A - Ao is non­
negative for all {3 and goes to zero as {3 ~ <Xl. This is 
consistent with our previous finding that the model 
potential energy is always non-negative for such 
V(X).13 The present result provides some reassurance 
as to the validity of our formal procedures. A second 
property shows up most clearly if we take Vex) to 
be a hard-sphere potential of range roo Then we have 
a({3) = i7rr~. Now if we increase p without limit, 
we see that, in contrast to the true problem, the 
ladder model exhibits no saturation; the free energy 
a.nd pressure continue to rise smoothly. 14 

A third fact of interest is that if Vex) is negative 
anywhere, we have (3-la({3) ~ - <Xl as {3 ~ <Xl. 

Thus we have A ~ - <Xl for any p, which indicates 
that there is no lower bound to the potential energy 
per particle. Furthermore, we have (apjap)~ < 0, 
for any given p, if the temperature is low enough. 
This suggests that the system then would be un­
stable to collapse, and, since there is no saturation, 
that the collapse would be catastrophic once it 
occurred. IS In the case of potentials with an at­
tractive part, the ladder model offers the possibility 
of a valid approximation to the true problem only 
above a critical temperature for each p. It should be 
viewed with suspicion even above this temperature. 

It is clear from (2.17) and (2.18) that the ladder 
model represents an extremely rudimentary approxi­
mation to the classical true problem. The interest 
of these results lies in the fact that they represent 
classical limits for the fermion and boson ladder 
models which we shall introduce in Sec. 3. These 

IS As {3 -> 00, we have Ao -> 0, and at zero temperature 
A becomes just the potential energy per particle. 

J4 The following may make clear how this can happen. 
Take n finite (but » ToS) and place an arbitrarily large 
number of particles into the cube in any desired positions Xn • 

Whatever the number of particles, and whatever their 
positions, it is clear that for every pair n, m there will be 
many possible choices of dn.m such that IXn - Xm - dn.ml > To. 

,. This statement must be carefully qualified. See the 
Appendix for a discussion of the condition (dp/dp)tJ < O. 

models are nontrivial. A similar interest attaches 
to the further classical results to be presented in the 
remainder of Sec. 2. 

2.3. Ring Medel 

Instead of adopting (2.9), let us now specialize 
¢n.m;k to the form 

(2.19) 

(2.20) 

where the 8n ;k are real phases. Again we see that 
(2.8) is satisfied. Let us give the 8n ;k values chosen 
at random in the interval (0, 27r). The choice is to 
be made independently for each pair of indices n, k, 
subject only to (2.20). We shall call the result the 
ring model, for reasons which will become clear 
shortly. It represents a rather more drastic muti­
lation of the true Hamiltonian than does the ladder 
model. Because the phases 8n ;k fluctuate randomly 
as k changes, the present vn.m(x) are strange po­
tentials which spread out irregularly over the entire 
cyclic cube. 

The ring-model Hamiltonian also has a bounded­
ness property in common with the true Hamiltonian, 
but a different one than we noted for the ladder 
model. Let us formally define a self-interaction 
potential by extending (2.6), (2.7), and (2.19), with­
out change, to the case n = m. Then we may rewrite 
the model interaction Hamiltonian in the form 

(2.21) 
n.m 

where the summation now admits n = m. Using (2.6), 
(2.19), and (2.20), we find 

Hi = ! L VkPkP;' - !NV(O), (2.22) 
k 

where 

Pk = L exp [i(k,xn + On;k)]' (2.23) 

Now suppose that Vk is non-negative for all k. 
Then Lk VkPkPt is a non-negative operator, and 
it follows that the expectation of the potential 
energy per particle in any quantum-mechanical state 
is bounded from below by - tv (0). 

In the true problem all the 8n ;k are zero, and Pk 

is a density-operator Fourier component, as intro­
duced by Pines and Bohml6 and others. In the ring 
model, we may call Pk an effective density component. 

The conditions Vex) ~ 0 (all x) and V k ~ 0 
(all k) are not mutually exclusive, but they do not 

16 D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952). 
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imply each other. The bounds we have derived 
therefore suggest that the ladder and ring models 
have inequivalent domains of validity. Consider, for 
example, the modified Coulomb potential 

Vk = sr l 411'e2 exp (-a Ikl)k-2 (lkl2:: l/l), 
(2.24) 

(Ikl < l/l), 
where a and l provide, respectively, a short-range 
and long-range cutoff. Vk is non-negative and YeO) 
is finite. Thus the ring model Hamiltonian has a 
finite lower bound per particle and may be expected 
to yield healthy results. On the other hand, Vex) 2:: 0 
is not satisfied for large x, and we cannot make a 
similar prediction for the ladder model. 

If we let l ~ CX), then YeO) approaches a finite 
limit, and we conclude that the long-range character 
of the Coulomb potential should not pose difficulties 
for the ring model. In the limit a ~ 0, however, 
we have -! YeO) ~ - cx). In the true problem, 
the Vk for very high k give a purely repulsive 
contribution to V (x) and cannot actually cause Hi 
to be unbounded from below. In the ring model, 
however, the very high k give rise to attractive 
as well as repulsive regions in the vn.m(x), because 
of the fluctuating phases of the v~,m. Thus we may 
anticipate trouble in the limit a ~ O. We shall see 
shortly that it actually occurs, at least in the clas­
sical case. 

The Ba may be evaluated for the ring model by 
expanding the r·m(x) as power series in -(3, ex­
panding the vn.m(x) in Fourier series, and then 
performing the space integrations. We thereby find 

Bl = fm-2 L' [- v~,m + !( _(3)2 L v~·mV~km 
n,m k 

+ (1/3!)(-{3)3 L v~·mv~;mV"-k"'-k· + " .J. (2.25) 
k.k' 

By (2.19) and (2.20), we find 

Thus the first two terms on the right side of (2.25) 
are unaffected by the averaging over nand m. 
All the higher terms, however, involve phases which 
fluctuate randomly as nand m are varied, except 
when all the summed indices k, k', '" are either 
equal and opposite in pairs or zero. The consequence 
is that none of the higher terms makes a contri­
bution to Bl in the limit N ~ co, Q ~ cx). 

We shall illustrate by considering the term con­
taining (_{3)3. The random phase of the summand is 

(On;k + Om;k) + (On;k' + Om;-k') 

+ (On;-k-k' + Om;k+k')' 

By (2.20), this expression vanishes for k = 0, k' = 0, 
or k + k' = O. However, it follows readily from the 
restrictions on Vex), stated after (2.3), that the 
total contribution to Bl from these restricted wave­
vector combinations vanishes in the limit. For the 
remaining wave-vector combinations, the phase of 
the summand changes at random with change of 
nand m. For a given k and k', the averaging over 
nand m therefore reduces the contribution to Bl 
by a factor '" N- 1 = 1/ v' (N2

) from its value 
in the true problem. The consequence is that the 
total contribution of the (_{3)3 term vanishes in 
the limit. Similar arguments show that all the higher 
terms vanish also. Thus we have 

(2.26) 

where we note Vk = V -k' In obtaining (2.26), we 
use the fact that the expansion of f''''(x) in powers 
of -{3 is absolutely convergent for all (3, if Vex) 
obeys the restrictions imposed after (2.3). 

The higher B a may be evaluated by similar 
analysis. The result is that the only irreducible 
Mayer diagrams which give nonvanishing contri­
butions in the limit are the ring diagrams, the first 
three of which are shown in Figs. l(b) and l(c). 
The surviving contributions from the ring diagrams 
give 

Ba = ! L (_{3t+ 1 Qa(Vkt+l (a 2:: 2). (2.27) 
k 

The surviving contributions arise as the products 
of the terms 0: - {3 in the expansions of all the f 
factors occurring in the ring diagram integrands. 
To see how they survive, consider Fig. 1 (b). The 
surviving contribution from this diagram is 

!N- 3 2:' L (_{3)3Q2V~''''Vk'z Vi'·, 
n.m.l k 

and the phase of the summand is 

(8n ;k + Om;-k) + (8m :k + 8Z:-k) + (OZ;k + 8n ;-k), 

which vanishes by (2.20). 
Inserting (2.26) and (2.27) in (2.11), and per­

forming the sum over a,17 we find 

(2.28) 

It is of interest to compare (2.28) with the well-

17 E. W. Montroll and J. E. Mayer, J. Chern. Phys. 9, 
626 (1941). 
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known result 

A - Ao = -!p{3-1Qfo - !({3pflQ-1 

. L: [-pQjk - In (1 - pQfk) - !/Q2f~], (2.29) 
k 

where ik is defined by 

f(x) = L: fk exp (tk ·x), 
k 

which Montroll and Mayer11 obtained by summing 
all the ring diagrams for the true problem. We shall 
find that (2.28), and not (2.29), represents the 
classical limit of the quantum-mechanical ring sum­
mation to be carried out in Sec. 4.18 

From (2.28), we see that A - Ao is bounded 
from below (V k 2: 0) by 

-! L: Vk = -!"V(O) , 
k 

which agrees with the rigorous bound we have 
previously found for the ring-model potential 
energy. As in the case of the ladder model, this 
provides some reassurance as to the validity of our 
formal procedure. It is clear that if Vo = 0, then 
A - Ao will actually approach the absolute lower 
bound as i3 -+ co. (The In term in (2.28) gives a 
vanishing contribution in this limit.] 

If Vk is given by (2.24), we find that A - Ao 
converges in the limit l -+ co and/or (3 -+ co. This 
supports our anticipation that the long-range part 
of the potential should not pose difficulties for the 
ring model. It should be noted that the derivation 
of (2.28) with potential (2.24) requires that l be 
kept finite until after the limit Q -+ co is taken. 
Otherwise, the assumption Vk = O(Q-l) is violated 
for very low k. 

If now we take a = 0, we find A - Ao -+ - co as 
{3 -+ co. Thus, as we anticipated might be so, the 
ring model is not an admissible approximation in 
this case. The situation may be substantially im­
proved in the quantum theory, however. 

2.4. Random-Coupling and Hartree-Fock Models 

We wish now to examine two simpler distin­
guishable-particle models. In common with the 
ladder and ring models, they are of interest because 
their classical thermodynamics represents limits for 
corresponding fermion and boson models. 

Let us now specialize CP",m;k to the form 
18 Our result also resembles (except for the term !pflVo) 

the classical limit of a quantum-mechanical ring summation 
given in reference 3 [Eq. (5.14) of that reference]. However, 
that summation is based on an activity rather than a density 
expansion. It corresponds to a sum of pure ring diagrams 
from the primitive (reducible) classical cluster expansion. 

(2.30) 

with 

8,.,m;k = - 8,..".;-k, (2.31) 

where the /}".m;k are real phases. Again (2.8) is 
satisfied. Let us give the 8,..m;k values in the interval 
(0,211') determined by independent, random choices 
for all the combinations of indices, subject only to 
(2.31). We shall call this the random-coupling model. 

There appears to be no lower bound to the po­
tential energy per particle in the random coupling 
model if we take the limit N -+ co. Consequently, 
we cannot be sure that the model has any thermo­
dynamic validity. We shall return to this question 
in a moment. 

The B a for the random-coupling model may be 
determined by the same formal procedure as we 
used for the ring model. The result is that BI has 
the value (2.26) and that all the higher Ba vanish 
in the limit N -+ co, Q ~ co. The results for A 
and pare 

(2.32) 

and 

(2.33) 

If (2.17) is expanded in powers of -(3, and then 
expressed in terms of Fourier coefficients, it is easy 
to verify that (2.32) represents that part of (2.17) 
which is also contained in (2.28). That is to say, 
the only contributions to A which survive in the 
random-coupling model are those which survive in 
both the ladder and ring models. 

From (2.33) we see that if p and (3 are high enough 
we have (8P/8p)p < 0, regardless of the form of 
Vex). The instability to collapse, thereby indicated/5 

is associated with the lack of a lower bound to the 
model potential energy. However, if p and {3 are 
low enough, (2.33) suggests that the random­
coupling model may have a stable thermodynamics. 
We choose to regard that indication with caution. 

Our final model is the Hartree-Fock model, which 
we construct by taking 

(k ~ 0). (2.34) 

This is a zeroth model in the sense that there are 
no randomly chosen parameters at all. It corre­
sponds simply to having each particle move in the 
uniform potential obtained by averaging the true 
fields of the other particles over all possible con­
figurations. Only Bl is nonvanishing in the limit 
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!2 --t 00, and we have 3.2. Ladder Model 

A - Ao = tpQVo. (2.35) To construct the fermion or boson ladder model, 

3. MODELS FOR FERMIONS AND BOSONS 

3.1. Nature of the Models 

The models described in Sec. 2 involve interaction 
potentials which are different for different pairs of 
particles. They are therefore meaningless for in­
distinguishable particles. In order to construct 
stochastic models for fermion and boson systems, 
let us replace (2.1) by the second-quantized true 
Hamiltonian 

H = Ho + Hi, (3.1) 

(3.2) 

Here q~ and qk are fermion or boson creation and 
destruction operators for momentum k, €k is the 
free-particle energy tk 2

, and we take Ii = 1. The 
commutation relations are 

(3.3) 

where the plus sign is for fermions and the minus 
for bosons. 

As the general model interaction Hamiltonian, 
we take 

Hi = t L: Vk-s%prs Ok+p.r+.q~q;qrq., (3.4) 
Itprs 

where the ~prs are c-number parameters which 
playa role analogous to that of the cf>n,m;k' We leave 
Ho unaltered. In correspondence to (2.8), we impose 
the conditions 

(3.5) 

The first of these relations ensures the Hermiticity 
of Hi' The second is suggested by the invariance of 
(3.2) to the 'particle exchange' (k, s) ~ (p, r). 

We shall obtain the fermion and boson versions 
of the ladder, ring, random-coupling, and Hartree­
Fock models by making specialized stochastic assign­
ments of values to the %prs' The cf>kprs will all have 
unit modulus in the models we shall examine here, 
except in the Hartree-Fock model, where most of 
the ~pra will vanish. In Sees. 4 and 5 we shall 
develop an appropriate propagator formalism for 
the fermion and boson models and find closed equa­
tions which determine the propagators for each 
model. We shall put off until Sec. 6 a demonstration 
of the relations among the fermion, boson, and 
distinguishable-particle models. 

we take 

%prs = exp [i( - epk + ers)], (3.6) 

with 

(3.7) 

We then determine the real phase ekp for each pair 
k, p by a random choice in the interval (0, 271'). 
The choices are all independent, subject only to (3.7). 

Let us define the quantities 

x(x', x) = n-1 L: qrq. 
rs 

X exp [i(r·x' + s·x + ero)], 

/(x', x) = n- 1 L: q!q; 
rs 

X exp [-iCr·x' + s·x + ers)]. 

(3.8) 

In the true problem (all er • = 0), x(x', x) is simply 
the two-particle amplitude t/;(x')t/;(x) , where t/;(x) 
is the destruction field in x space. We may call 
x(x', x) the effective two-particle amplitude in the 
ladder model. By straightforward Fourier analysis, 
we find 

Hi = t II vex - x,)xt(x" x)x(x', x) d3x d3x'. (3.9) 

If V (x) 2: 0 for all x, Hi is a positive-definite 
operator, and it follows that the eigenvalues of H 
are all non-negative. This is the same bound which 
we obtained in Sec. 2 for the distinguishable­
particle ladder model. 

It is not obvious that the present model will be 
an admissible approximation to the true problem 
if Vex) is a hard-sphere potential, although this was 
clearly the case for the distinguishable-particle 
ladder model. A sufficient condition for admis­
sibility would appear to be that the relation 

x(x', x) ! 4» = 0, (!x - x'! :S To), (3.10) 

where To is the hard-sphere diameter, be satisfied 
for as rich a manifold of states <I> in the model as 
in the true problem. We have not investigated this 
question. 

3.3. Ring Model 

To construct the fermion or boson ring model, 
we take 

(3.11) 
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where 

(3.12) 

We fix the real phases Oks by random choices in the 
interval (0,211'), subject only to (3.12). 

In analogy to (2.23), let us introduce the effective 
density-component operators 

(3.13) 

By (3.12), they satisfy Pm = P~m' It follows from 
(3.3) and (3.12) that for either fermions or bosons 
the ring model Hi may be rewritten 

Hi = ! L: Vk~Pk - ! V(O)N, (3.14) 
k 

where 

As in (2.22), we note that the first term on the right 
side of (3.14) is a positive-definite operator if Vk ~ 0 
for all k. It follows that the fermion and boson ring 
models exhibit the same lower bound on H as did 
the distinguishable-particle ring model. 

A third model, which has no analog in the dis­
tinguishable case, may be constructed by taking 

¢kprs = exp [i(Okr + Ops)] (3.15) 

and requiring the Okr to obey (3.12). We may call 
this the exchange model. Hybrid models may also 
be constructed, by taking ¢kprs as a linear com­
bination of the forms for the ladder, ring, and ex­
change models. We shall not discuss these cases 
in this paper. 

3.4. Random-Coupling and Hartree-Fock Models 

To construct the fermion and boson versions of 
the random-coupling model, we take 

(3.16) 

with 

OkPrB = -Osrpk, Okprs = Opksr, Okprs = Opkrs, (3.17) 

and fix the phases Okprs by independent random 
choices for each combination of indices (k, p, r, s), 
subject only to (3.17). As in the distinguishable­
particle random coupling model, there appears to 
be no lower bound on the potential energy per 
particle when the system is infinite. This suggests 
that results obtained from the random-coupling 
model be viewed with skepticism. It perhaps should 
be pointed out that our random-coupling models 
are unrelated to the random-phase approximation 

employed by Pines and Bohm 16 and others. We 
make no assumption about the phase correlations 
among the dynamic variables. 

The fermion or boson Hartree-Fock model is 
given by the assignment 

IPkPpk = ~kp = 1, IPkprs = 0 

(k ;¢ r or s). (3.18) 

This model contains no randomly chosen param­
eters. We shall see in Sec. 5 that it yields simply the 
Hartree-Fock approximation to the true problem, 
in the limit Q ----7 00. 

4. TEMPERATURE-DOMAIN PROPAGATOR 
FORMALISM 

The equilibrium statistical mechanics of the 
fermion and boson models can be investigated most 
neatly by means of the temperature-domain propa­
gator formalism and its associated diagram tech­
nique. 2

•
5

•
6

•
8 Since our models differ from the true 

Hamiltonian only by the replacement 

the existing techniques may be taken over with 
only minor and obvious changes. We shall sum­
marize the resulting formalism in the present 
section.19 

Let us define the temperature-domain propagator 
Sk(U, u') by 

Sk(U, u') = -(l'[qk(u)q~(u')]) (u, u' real), (4.2) 

where 

qk(U) = eUHq,..e-UH, (4.3) 

The ordering operator T is defined by 

l'[qk(u)q~(u')] qk(U)q~(u') (u > u'), 

T[qk(U)q~(u')] =Fq~(U')qk(U) (u ::; u'). 
(4.4) 

In (4.4) and in all subsequent expressions where a 
plus-minus or minus-plus sign occurs, the upper 
sign refers to fermions and the lower to bosons. 
The brackets ( ) denote an average over the grand 
canonical ensemble. For any operator B, 

(B) = Tr {e-~rH-~N)BI/Tr {e-~(H-~N)l, (4.5) 

where N is defined below (3.14) and fJ. is the chemical 
potential. 

The propagator has a Fourier expansion of the 

19 Our treatment is based principally upon reference 8, 
but our notation does not agree completely with that of any 
of the references cited. (The latter differ substantially among 
themselves.) 
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FIG. 2. (a) A vertex. (b) A labeled vertex. 

., 
f)-I L Sk(ta) exp [g'a(U' - U + o)J, 

(4.6) 

where 

p. + i7r(2a + 1),8-1 (fermions), 
(4.7) 

(bosons), 

and a takes all integer values. The quantity 0 is an 
infinitesimal real, positive number. We shall call 
Sk(ta) a propagator also, and we shall call ta an 
'energy.' 

The complete thermodynamic behavior of the 
system can be obtained from Sk(ta)' The mean 
number of particles at a given temperature and 
chemical potential is 

N(f), p.) = 2: Nk , 
k 

(4.8) 

where the Nk == (Nk) are the mean occupation 
numbers. The mean energy also has a direct ex­
pression. Using (3.1), (3.3), (3.4), and (4.3), we find 

± L [aSk(u, u')/au'L,_u = (Ho) + 2(H,), (4.9) 
k 

and we note that (Ho) = ±Lk Ej.Sk(U, u). Then 
it follows from (4.6) that the mean energy E(f), p.) 
is given by20 

E(f). p.) = ±!f)-l L (~k + ta)Sk(ta) exp (tao). (4.10) 
k,a 

The entropy, pressure, and other thermodynamic 
quantities can be found from N(f), p.) and E(f), p.). 
[Alternatively, the thermodynamic potential may 
be obtained from SkU'a) by an integration over an 
interaction strength parameter. 8] 

The propagator for free particles is 

S~O)(!;'a) = (ra - ~krl. (4.11) 

20 See N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 
489 (1959). 

The coupled-particle propagator SkU'a) may be 
expressed in terms of S~O) (r a) by a linked-diagram 
expansion constructed according to the following 
rules: 

1. Call the diagram part shown in Fig. 2(a) a vertex. 
A vertex consists of two solid-line junctions connected by a 
dashed line. 'Line' hereafter will mean solid line except 
where noted. 

2. For each positive integer n, take n vertices and join 
incoming with outgoing lines in pairs so as to form, just once, 
all possible distinct, linked diagrams wIth just one incoming 
and one outgoing external line. Linked diagrams are those 
which do not consist of disconnected parts. External lines 
are those which leave or enter the diagram. In reckoning 
distinctness, the n original vertices are considered indistin­
guishable and the two solid-line junctions in any vertex 
are considered indistinguishable. However, incoming lines 
are distinct from outgoing lines. Examples: Figs. 6(a) and 
8(a) are distinct, but Figs. 6(a) and 9(a) are not.21 

3. Label the external lines with momentum k. Label the 
internal lines with momenta k', k", .. , . In addition. associate 
the 'energy' 10 with the external lines, and 'energies' la', 
10", ... with the internal lines. 

4. With each line, external or internal, associate a factor 
SP(O)(lb), where p is the momentum labeling the line and 
lb is the associated 'energy.' Special case: Include an additional 
factor exp (lbo) if the beginning and termination of the line 
are in the same vertex. 

5. With each vertex, at which are joined lines with 
momentum labels p, q, r, s and respective 'energies' lb, Ie, 
I d, I, as shown in Fig. 2(b), associate a factor 

Note: This rule is ambiguous with respect to the exchange 
(p, s) ;:= (q, r). By (2.3) and (3.5), however, the factor called 
for by the rule is invariant in value under the exchange. 

6. For fermions only: Associate with each diagram a 
factor (_1)1, where l is the number of closed solid-line loops 
in the diagram. 

7. To form the contribution of a given diagram, mUltiply 
together all the factors introduced by rules 4, 5, and 6 and 
then sum over all the momenta k', k", ... and 'energies' 
la', 10", ... associated with the internal lines. 

8. To form Sk(ra), first sum the contributions given by 
rule 7 for all the diagrams admitted by rule 2. Then add 
the contribution Sk(O)(la), which is associated with the 
zeroth order (n = 0) diagram Fig. 3(a). 

We shall call the expansion for Sk(to) generated 
by rules 1-8 the primitive linked-diagram expansion. 
A more compact expansion, which we shall call the ir­
reducible linked-diagram expansion, may be con-

21 If the vertices and junctions were considered distinguish­
able, one would obtain, for each of our distinct diagrams, a 
total of 2"n! diagrams, all of which would give identical 
contributions to Sk(la). If one counts these diagrams sep­
arately, which we do not do, the contribution per diagram 
obtained by our rules 1-7 must be multiplied by 1/2nn! 
The latter procedure is adopted in reference 8. 
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structed by replacing rules 2 and 4 with the following 
altered rules: 

2'. Retain only those diagrams admitted by rule 2 which 
do not contain self-energy parts. We shall call these irreducible 
diagrams. (A self-energy part is a part of a diagram which 
contains at least one but not all the vertices and which is 
connected to the rest of the diagram by just one outgoing 
and one incoming line.) 

4'. In rule 4, replace each factor SproleS-b) by a factor 
Sp(rb). Exception: With the outgoing external line associate 
the factor Sk(O)(ra) as before. 

The primitive diagram expansion gives Sk(5"a) as 
an infinite sum of integrals (we consider the case 
n -7 (0) over the known quantities S~O) (5".). In 
contrast, the irreducible expansion is really an 
infinite-series integral equation for Sk(5".). A con­
venient way to express the irreducible expansion 
is as follows: We define Mk(t.) by 

(4.12) 

Then the irreducible linked-diagram expansion for 
Mk(t.) is the same as that for Sk(5".) except for the 
changes expressed by the following further rule 
alterations: 

4/f. In rule 4', omit entirely the factors for the two 
external lines. 

8'. In rule 8, omit the contribution of the zeroth-order 
diagram. 

The use of the rules will be illustrated by the 
examples treated in Sec. 5. If we take cPJ.prs = 1 
for all k, p, r, s, then the rules we have given yield 
the established propagator expansions for the true 
problem. 

5. PROPAGATOR EQUATIONS FOR THE MODELS 

5.1. Underlying Assumptions 

We shall now show that our fermion and boson 
models lead to closed integral equations for Sk(5".) 
in the limit n -7 00 with fixed p. or p. We wish first 
to state clearly the assumptions which underlie the 
analysis: 

1. As in Sec. 2, we restrict Vex) to be a smooth, 
bounded function such that IVkl ::; 0(k-2

), k -7 00. 

2. We assume that all the sums over intermediate 
momenta which occur in any given order of the 
primitive linked-diagram expansion converge at 
infinity. More precisely, we assume that, for given 
k and a, the contributions to SkCt.) which involve 
intermediate momenta higher than some given 
momentum kmax vanish as kmax -7 00. Moreover, we 
assume that they vanish in a manner independent 

of 0 as 0 -7 00. We believe that this assumption 
actually follows from assumption 1, but we shall 
not try to prove this here. 

3. As in Sec. 2, we assume that Vk = 0(n-1
) 

for all k as n -7 00. This means that for long-range 
potentials a cutoff length l must be employed as in 
(2.24). We take the limit l-7 00 only after the limit 
n -7 00 has been performed. 

4. For every k and a we assume that S~O)(t.) 
approaches a limit independent of n as n -7 00 

with p constant. This excludes from our present 
considerations boson systems below the Einstein­
Bose condensation temperature. 

5. The final assumption involves a deep-lying 
convergence question corresponding to that which 
arose in Sec. 2. We shall see, for each of the models, 
that large classes of diagrams give a vanishing con­
tribution to SkCt.) in the limit n -7 00, up to any 
given order of diagram. On this basis, we shall 
assume that these classes do not contribute when 
summed to all orders. It will not follow from our 
analysis that this is actually so. The reason is that 
the diagrams of order N( = pn) and higher are 
enormous in number for large 0, and it will not be 
clear that cancellations due to the randomness of 
the c/Jkprs will suppress the contribution of these 
diagrams as they do contributions of finite order. 

The necessity for assumptions 3 and 4 will be 
eliminated by the generalized treatment given in 
the following paper. There we construct models for 
systems of any size and obtain closed propagator 
equations without taking the limit n -7 00. The final 
equations are identical with those to be derived 
here, and they justify the latter in cases where 
assumptions 3 and 4 are not satisfied. In particular, 
they establish the closed model equations for con­
densed boson systems. The generalized treatment 
provides much neater derivations of all the results 
to be obtained in Sec. 5. We do not employ it at 
the outset because it requires an unfamiliar and 
more elaborate formalism. 

Assumption 5 also is best examined by the 
methods of the following paper. The approach to 
this question adopted there is to consider the 
propagators in the real-time domain, rather than 
the temperature domain, and to regard them as 
the limits of more general quantities (correlation 
and Green's functions) which are defined for non­
equilibrium as well as equilibrium. Linked-diagram 
expansions exist which give the evolution of the 
correlation and Green's functions forward in time 
from a given initial statistical state. As in the 
present case, these expansions can be formally 
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FIG. 3. The zeroth 
and first-order dia­
grams for Sk(l.). 

summed and expressed by closed equations for 
each of our models. 

A new feature, however, is that the evolution in 
time can also be examined by an alternate method 
which seems genuinely independent of perturbation 
expansions. One can replace the exact differential 
equations of evolution by corresponding difference 
equations involving small time increments. In con­
trast to a perturbation expansion (which is akin 
to a Taylor series) such a procedure should converge, 
as the increment size is decreased to zero, whenever 
the differential equations themselves are meaning­
ful. This permits an examination of assumption 5 
from a new point of view. Although the analysis 
we shall present in the following paper is not rigorous, 
we feel that it provides substantial support for the 
validity of our closed model equations. 

5.2. Hartree-Fock and Random-Coupling Models 

The derivation of closed propagator equations is 
simplest for the Hartree-Fock model. Consider the 
primitive linked-diagram expansion for Sk(t.). There 
are two distinct first-order diagrams, and they are 
shown in Figs. 3(b) and 3(c). By the rules of Sec. 4, 
the contributions of these diagrams involve the 
factors cPkPpk and cPkpkp, respectively, but no other cP 
factors. Therefore, by (3.18), their contributions are 
identical in the Hartree-Fock model and in the true 
problem. 

However, consider Fig. 4(a). The contribution of 
this second-order diagram to the primitive expansion 
for Sk(to) is 

1=(3-2 L: ¢kpracPsrpk Vk- B V.-k L: S~O\ta)S~°>Ctb) 
p8 be 

p 

~ 
I r I 
I I 
I I 
I I t-I I 

~ 
. 0( • k( 5 k k 

(a) (b) 

where r = k + p - S, d = a + b - c, by mo­
mentum and 'energy' conservation. By (3.18), the 
only surviving terms in the sum are those for which 
either S = k, r = p or r = k, S = p. Thus, there 
is only one free intermediate momentum, which 
we may take as p. Now as n ---t OJ, the number of 
allowed momenta p in any given volume of mo­
mentum space is a: n. It then follows from assump­
tions 2, 3, and 4 of Sec. 5.1 that the contribution 
(5.1) vanishes as n- 1

• 

If similar considerations are applied to the rest 
of the primitive linked diagrams, it is possible to 
verify the following result: The only diagrams which 
survive in the limit a ---t OJ are those for which 
momentum conservation alone assures that the cP 
product given by the rules of Sec. 4 consists wholly 
of factors of the form cPpqqp or cPpqpq' Such diagrams 
give the same contribution as they do in the true 
problem. For every other diagram of finite order, 
(3.18) so restricts the summations over intermediate 
momenta that the result vanishes as some positive 
integral power of 0-1. 

It is easy to see from the rules of Sec. 4 that 
the higher surviving primitive diagrams, which we 
have just specified, are simply those which can be 
obtained from Figs. 3(b) and 3(c) by repeatedly in­
serting these first-order diagrams into themselves 
and into each other as self-energy parts. An example 
is shown in Fig. 5. Now let us invoke assumption 5 
of Sec. 5.1. It then follows that Figs. 3(b) and 3(c) 
are the only diagrams which survive in the ir­
reducible expansion for Sk(t.) in the limit n ---t OJ. 

We may see this by noting that the primitive ex­
pansion can be recovered from the irreducible ex­
pansion by taking every factor S which occurs in 
the latter and replacing it by its own primitive ex­
pansion. If diagrams other than Figs. 3(b) and 3(c) 
occurred in the irreducible expansion, then it is 
clear that the primitive expansion for Sk(to) thus 
recovered would contain diagrams other than those 
we have specified. 

Using the rules of Sec. 4 to evaluate the contri­
bution to Mk(t.) of the two surviving irreducible 
diagrams, we find 

Mk(t.) = (3-1 L: (± Vo - Vk-p)Sp(tb) exp (tb 0), 
pb 

(5.2) 

where we have noted (2.3). The first term on the 
right side of (5.2) arises from Fig. 3(b) and the 
second from Fig. 3(c). Upon inserting (5.2) into 
(4.12), we obtain a closed integral equation for 

FIG. 4. The second-order irreducible diagrams for Sk(l.). Sk(to) for the Hartree-Fock model. Equation (5.2) 
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may be rewritten in the form 

Mk(s.) = L: (Vo 1= Vk_p)Np, (5.3) 
p 

where we use (4.8). The parts of this result involving 
Vo and Vk - P are, respectively, the direct and ex­
change parts of the effective potential which is 
obtained in the usual Hartree-Fock approximation 
to the true problem. 

Let us consider next the random-coupling model. 
By (3.16) and (3.17), we find 

<Pkppk = 1, <Pkprs<Psrpk = 1, 

<Pkprs<Psrkp = 1. (5.4) 

It then follows from the rules of Sec. 4 that Figs. 
3(b), 3(c), 4(a), and 4(b) all survive in the primitive 
expansion for Sk(S.) and give the same contributions 
as in the true problem. 

However, consider Fig. 6(a). The contribution 
which it makes to the primitive expansion for Sk(S.) 
is of the form 

X Or+s.r'+s' Or'+s'.p+k 

X V k - s V._ s • Vs'-k L: 
(energies) 

(product of S(O) factors). (5.5) 

There is an identity among the conservation condi­
tions given by the three Kronecker symbols. Conse­
quently there are three independent intermediate 
momenta, which we may take as p, 5, and Sf. For 
special values of these momenta, the <P product is 
unity by (5.4). However, in correspondence to the 
result noted above for the Hartree-Fock model, it 
is easy to see that these special values give a vanish­
ing contribution to Sk(!;.) when n ----> (x). Except for 
these restricted momentum values, the <P product 
will have a phase which, by (3.16) et seq., fluctuates 
at random with change of p, 5, and 5'. 

Now let us divide the momentum space into 
small regions, of 'volume' ~, such that S~o) (!;b) 
exhibits negligible change if p varies within a given 
region. By assumption 4 of Sec. 5.1, this should be 
possible in the limit n ----> (x). Now as n ----> (X) , the 
density of allowed modes in momentum space is "'-' n. 
Hence, in the summation over momenta in (5.5), 
the number of terms for p, 5, and Sf within given 
small regions will be "'-' (n~)3. Let us consider the 
contribution from those terms in which the phase 
of the <P product fluctuates at random with change 
of p, s, and s'. As we have just noted, these consti-

FIG. 5. A primitive diagram which survives in the Hartree­
Fock model. 

tute all but a negligible fraction of the terms. Be­
cause of the phase-fluctuation, the total contribution 
of these terms will be down by a factor "'-' (n~)-t 
from the value it would have in the true problem. 
Since this factor vanishes as n ----> (X) , it follows from 
assumptions 2 and 3 of Sec. 5.1 that the contribution 
to Sk(!;a) from Fig. 6(a) vanishes in the limit. Our 
argument, of course, assumes a typical assignment 
of values to the randomly chosen parameters Ok!>rs 

(cf. the discussion in Sec. 2.2). 
Similar analysis may be applied to the higher 

diagrams in the primitive expansion for Sk(S.), The 
result is that the only diagrams which survive are 
those for which momentum conservation alone as­
sures that the <P product consists entirely of factors 
and/or factor-pairs of the forms shown in (5.4). 
Any other diagram gives a contribution which 
vanishes as some negative power of n as n ----> (x). 

The surviving diagrams can be seen to be those 
which can be constructed from Figs. 3(b), 3(c), 4(a), 
and 4(b) by inserting these same four diagrams 
repeatedly as self-energy parts, in correspondence 
to the situation for the Hartree-Fock model. It 
follows from this that the only surviving diagrams 
in the irreducible expansion for Sk(!;a) are Figs. 

~ 
I r I 1"" I 
I I I 
, , I 
I I I 

! ~ , ~ 'kfc 
s s· 

(a.) 

k $ .s' .5" k 

(b) 

FIG. 6. The third-order and fourth-order ladder diagrams. 
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FIG. 7. The third-order and fourth-order ring diagrams. 

3(b), 3(c), 4(a), and 4(b). Again, assumption 5 of 
Sec. 5.1 is implicit in the argument. 

Combining the contributions of the four surviving 
irreducible diagrams according to the rules of Sec. 4. 
we find 

Mk(r.) = L (Vo =f Vk_p)Np =f (3-2 L Vk-.(Vk- S 
p psbc 

=F Vp_.) Sp(rb) S.(rc)Sk+p-.(ra+b-c) , (5.6) 

where, again, we note (4.8). 
If the third of constraints (3.17) were relaxed in 

assigning random values to the OkprB! we would 
obtain a version of the random-coupling model in 
which the exchange diagram Fig. 4(b) did not 
survive. The corresponding expression for Mk(r.) 
would not include the term in (5.6) which in­
volves Vp _ s ' 

5.3. Ring and Ladder Models 

The results described above for the Hartree-Fock 
and random-coupling models may be summarized 
very simply: The only diagrams which survive in 
the irreducible expansion for Mk(ra) are those for 
which the associated rP product has the value one 
for all values of the intermediate momenta allowed 
by momentum conservation. The contributions of 
the surviving diagrams have precisely the same form 
in the models as in the true problem. This general 
result is also true for the ring and ladder models 
under the assumptions of Sec. 5.1. Analysis similar 
to that we have described shows that the irreducible 
diagrams in which the rP product can exhibit a 
randomly fluctuating phase give vanishing contri­
butions in the limit Q -7 co. We shall now identify 
the surviving irreducible diagrams in the ring and 
ladder models and construct the corresponding closed 
expressions for Mk(r.). 

It follows from (3.11) and (3.12) that the first 
three of relations (5.4) are satisfied in the ring 
model. Thus the irreducible diagrams Figs. 3(b), 3(c), 
and 4(a) survive. However, the rP product associated 
with Fig. 4(b) is 

rPkprsrPsrkp = exp [i(Oks + Opr) + i(Osp + Ork)]' (5.7) 

The random phase of this product does not vanish 
when p, r, and s are constrained by momentum 
conservation alone. Consequently, the diagram does 
not survive. The further irreducible diagrams which 
do survive in the ring model are the infinite class 
of ring diagrams, whose first two members are 
shown in Fig. 7. (If the incoming and outgoing 
external lines are joined together, these diagrams 
from symmetrical rings.) The rP products associated 
with the successive ring diagrams have the phases 

[(Ok. + Opr) + (Orp + Op'r') + (Or'p' + Oak)], 

[(Oks + Opr) + (Orp + Op'r') 

+ (Or'p' + Op"r") + (Or"p" + Osk)] , 

which all vanish, by (3.12). 

(5.8) 

It may be seen from the rules of Sec. 4 that the 
ring diagrams give a set of contributions to Mk(r.) 
which resemble a geometric series. They may be 
summed easily by the usual methods for such series. 
If we include also the contributions from Figs. 3(b), 
3(c), and 4(a), the final result for Mk(r.) is 

Mk(r.) = VoN - (3-1 L V,-.(ra-c)S.(rc) exp (tc 0), 
so 

(5.9) 

where N = Lp N p, and V'-s(ta-c) is defined by 

V~(rd) = Vq ± (3-1 L VqSp(tb)Sp+q(tb+d) V~(td)' 
pb 

(5.10) 

The term in (5.9) proportional to N arises from the 
Hartree-Fock diagram Fig. 3(b). To verify the 
remainder of the result, we may solve (5.10) by 
iteration to yield V'-s(ta-c) as a power series in 
Vk - s and then substitute into (5.9). The first term 
Vk _. in the series gives the contribution of Fig. 3(c), 
and the higher terms give those of Fig. 4(a) and the 
successive ring diagrams. [The factor exp (rco) is 
superfluous for the second- and higher-order con­
tributions; it does not affect their values.] 

Equation (5.10) may be rewritten as 

V~(td) = Vq[l =F (3-1 L VqSp+q(tb+d)SoCtb)r 1
• 

pb 

(5.11) 
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We note that the potential components for different 
values of q are not explicitly mixed in this expres­
sion, a fact which recalls the classical ring results 
obtained in Sec. 2.3. We may call V~(rd) an 'effective 
potential' for the ring model. In field-theoretic 
terminology, it is a kind of vertex operator. From a 
particle viewpoint, we may consider k - sand 
ra-c in (5.9) as a momentum and 'energy' which are 
taken from the incoming particle, transmitted along 
a chain of intermediate particles, and finally returned 
to the original particle to complete the ring. 

It is of interest to compare the ring summation 
represented by (5.9) and (5.10) with that given by 
Montroll and Ward.3 The latter appears to cor­
respond to a summation over ring diagrams for the 
primitive linked-diagram expansion. It omits the 
iterated self-energy corrections which our model 
includes. 

It follows from (3.6) and (3.7) that all of the 
relations (5.4) are satisfied for the ladder model. 
Hence the irreducible diagrams Figs. 3(b), 3(c), 
4(a), and 4(b) all survive. The further irreducible 
diagrams which survive are the infinite classes of 
ladder diagrams and exchange ladder diagrams. The 
first two members of each class are shown in Figs. 
6 and 8, respectively. It follows from (3.6), (3.7), 
and the rules of Sec. 4 that the cp products associated 
with corresponding diagrams in the two classes 
have the same value. For the successive diagrams 
in either class, these products have the phases 

[( - 8pk + Ors) + (- Ora + Or'o') + (- Or'o' + Opk)], 

[( - 8pk + 8ra) + (- 8r• + 8r, • .) 

+ (- 8r,0' + 8r,,0") + (- 8r,,0" + 8pk)] , (5.12) 
, 

which vanish identically. The ladder and exchange 
ladder diagrams exhaust the higher irreducible 

(a) 

p 

r' 

k s' 

(b) 

s' 

I r" 
I 
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I 

5" 
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k 

FIG. 8. The third­
order and fourth­
order exchange lad­
der diagrams. 

(o.l 

(b) 

FIG. 9. (a) A 
diagram redundant 
with Fig. 6(a). (b) 
A diagram redun­
dant with Fig. S(b). 

diagrams which survive in the ladder model. [It 
should be noted that according to the rules of Sec. 4, 
diagrams like Fig. 9 (a) and Fig. 9 (b), which are 
topologically identical with Figs. 6(a) and 8(b), 
respectively, are not to be counted separately.] 

The contributions of the ladder and exchange 
ladder diagram sequences can easily be summed in 
closed form, in a similar fashion to the ring diagrams. 
If we include also the contributions from Figs. 
3(b), 3(c), 4(a), and 4(b), the final result for the 
ladder model is 

Mk(?'a) = ±,8-1 E [Vkppk(?'.+b) 
pb 

=F Vkpkp(ra+b)]Sp(rb) exp (rb 0), 

where V~r.(ra+b) is defined by 

(5.13) 

Vkprs(?'a+b) = Vk- o - ,8-1 E Vk- o, V~'r'rs(ra+b) 
.' c I 

(5.14) 

with r = k + P - sand r' = k + p - s'. If (5.14) 
is expanded by iteration and the result for Vkpro(ra+b) 
is substituted into (5.13), one obtains the explicit 
contributions from all the diagrams which survive 
in the ladder model. The nonexchange contributions 
all arise from the factor Vkppk(ra+b) in (5.13), and the 
exchange contributions from the factor VkpkP(ta+b)' 
The quantities Vkpr.(r.+b) may be regarded as de­
fining an effective potential for the ladder model. 
It is easily seen that they satisfy 

(5.15) 

If the symmetry constraint (3.7) is relaxed in 
assigning random values to the phases 8kp , an ab­
breviated ladder model results in which none of 
the exchange diagrams survive. The abbreviated 
model violates the second of conditions (3.5), and 
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amples of higher 
primitive diagrams 
contributing in the 
ring model (a) and 
the ladder model 
(b). 

n consequence it requires an elaboration of our 
diagram formalism: The two junctions which make 
up a vertex must be distinguished. We shall not 
discuss this model further here. 

Equations (4.12), (5.9), and (5.10) constitute a 
closed set of integral equations which determine 
8k (!a) for the ring model. Similarly, (4.12), (5.13), 
and (5.14) constitute a closed set for the ladder 
model. These equations incorporate extensive classes 
of terms from the primitive diagram expansion for 
8k (!a) in the true problem. They include all primitive 
diagrams which can be obtained from the surviving 
irreducible diagrams by repeatedly inserting these 
irreducible diagrams into themselves and each other 
as self-energy parts. Examples of complicated 
primitive diagrams included in the ring and ladder 
models are shown in Figs. 10 (a) and lOeb), re­
spectively. 

Note added in proof. The propagator equations 
obtained above for the Hartree-Fock, ladder, and 
ring models are equivalent to approximations pro­
posed recently by G. Baym and L. P. Kadanoff 
[phys. Rev. 124, 287 (1961)], who were guided by 
a requirement that energy, momentum, and angular 
momentum be conserved under weak coupling to 
external systems. In the present approach, these 
properties follow from the fact that a model Hamil­
tonian is treated with formal exactness. One can 
see immediately from the generalized formulation 
in the following paper that the invariance properties 
of the true Hamiltonian are preserved in the models. 
When the model Hamiltonians are bounded from 
below, one expects in addition that the equations 
yield non-negative one-particle energy and momen­
tum distribution functions. 

6. RELATION BETWEEN DISTINGUISHABLE AND 
INDISTINGUISHABLE PARTICLE MODELS 

. We wish now to establish a correspondence be­
tween the models formulated in Sees. 2 and 3 and 
thereby verify that the thermodynamic relations 
obtained in Sec. 2 are at least formal classical limits 
for the fermion and boson models. The correspon­
dence is already suggested by the identity of the 
lower bounds on the ring and ladder model Hamil­
tonians which we found in the two cases. Our 
procedure here will be to formulate the distin­
guishable-particle problem in terms of second­
quantized fields, one for each particle. Then we shall 
appeal to two assumptions: the thermodynamic 
equivalence of canonical and grand canonical en­
sembles for infinite systems, and the equivalence 
of distinguishable and indistinguishable particles in 
in the classical limit. 

The Hamiltonian of a system of H distinguishable 
but similar particles interacting through the pair 
potential Vex) may be written 

H = L: L: fJr.q~(n)qk(n) + Hi, (6.1) 
n k 

(n, m = 1,2, .,. ,H). (6.2) 

Here we have introduced a separate second-quan­
tized field [labeled (n)] for each particle, and we 
restrict the system to those states which are eigen­
states with eigenvalue one for all the '-umber 
operators 

N(n) = L: Nk(n) = L: q!(n)qk(n)' (6.3) 
k k 

The commutation relations are 
t 

[qk(n) , qp(m»). = onm Okp' (6.4) 

The restriction of each field to one-particle states 
makes the choice of plus or minus commutator 
immaterial. 

Let us consider the limit H ~ (Xl with {3 and 
p = H In constant. We shall assume in this limit 
that the canonical ensemble for our system gives 
the same thermodynamics as a grand canonical 
ensemble in which all states of the second-quantized 
fields are admitted. The latter ensemble is chosen 
so that 

(N) = L: (N(n» = H, (6.5) 
n 

where 

(N ) 
- ~Tr {-{J(H-PN)N }/Tr { -(JCH-pN)} 

(n) - . e (n) e • (6.6) 
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We should note that (6.5) implies f.1. ---+ - 00 when 
Z\, ---+ 00 with constant p and (3, as may readily be 
verified for free particles. The consequence is that 
the one-particle distribution function takes the 
Maxwell-Boltzmann form in the limit, as it must 
for consistency. We may also note that the variance 
«N(n) - 1)2) vanishes in the limit. 

N ow let us replace (6.2) with a model H" 

Hi = ! L L Vk- sc7>kprs Ok+p, r~sg~(n) g;(m) gr(m) gs(n), 

nm kprs (6.7) 

where the cf>kprs are the same parameters as in Sec. 3. 
The thermodynamics of the model system may be 
obtained by a propagator formalism very similar 
to that of Sec. 4. Let us write 

Sk(U, u') = L Sk(n)(U, u') 
n 

and then define Sk(L) = Ln Sk(n) (ra) in terms 
of this Sk(U, u') by (4.6). Again, it will not affect 
the final results whether the fermion or boson case 
is taken. With these definitions, we find that (4.8) 
and (4.10) hold also for t.he present system, ,,,ith 
Nk == Ln Nk(n)' (Of course, for given p and (3, the 
chemical potential f.1. will be very different in the 
present case than in Sec. 4, as we have noted above.) 

Let us write 

(6.9) 

Then the primitive linked-diagram expansion for 
Sk(ra) is given by the rules of Sec. 4 provided the 
following changes are made: 

(a) Give each line a particle label as well as a 
momentum label. Associate with each line a factor 
of the form (6.9). 

(b) With each vertex, bearing momentum labels 
p, q, r, s and particle labels n, m, m', n' as shown in 
Fig. 11, associate a factor 

(c) Sum the final result over all values of all the 
particle labels, including those on the external lines. 

The principal difference between the results of 

~ (~ 
P'~b'~s,~e 

I 
I 
I 
I 

FIG. 11. A labeled vertex for 
the second-quantized distinguish­
able particle system. 
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FIG. 12. Some diagrams for the system of distinguishable 
particles. 

this expansion and that of Sec. 4 is that now the 
contributions of all diagrams with particle exchange 
vanish in the limit lv' ---+ 00, Q ---+ 00, as we would 
expect. The formal reason this happens is that the 
factors of the form onn' severely restrict the sum­
mations over particle labels in the exchange dia­
grams. In the diagrams without exchange, each 
closed loop represents a separate intermediate 
particle which interacts with the incoming particle 
or with another intermediate particle. Examples are 
shown in Fig. 12. 

Suppose that we now determine the ¢kprs by (3.6) 
and (3.7), the conditions for the fermion or boson 
ladder model. It is clear from Sec. 5.3 that if similar 
analysis is carried out for the present case, the 
surviving diagrams will be all those which arise from 
the irreducible diagrams Figs. 3(b), 4(a), and the 
ladder sequence illustrated in Fig. 6. As we h::we 
just noted, there are no exchange contributions for 
the present system, and consequently the exchange 
ladder sequence of Fig. 8 gives nothing. 

Let us compare this result with what we get from 
the distinguishable-particle ladder model of Sec. 2. 
We replace (6.7) by the interaction Hamiltonian 

Hi = ! L L Vk-scf>n,m;k-s 
nm liprs 

_ t t 

. Ok+p, r+sgk(n) gp(m) gr(m) gs(n), (6.10) 

where the cf>n m-k-s are given by (2.9) et seg. It is 
clear that the' only change in the expansion for 
Sk(ra) is that the factor cf>pqrs V p - s in rule (b) above 
must be replaced by the factor cf>n,m;p_.Vp_ s •

22 We 
readily find that precisely the same diagrams survive 
in the present case as for the previous ladder model. 
We shall illustrate the equivalence by two examples. 

22 We may formally extend the ?e~nition of the .cPn,m;1< 
to include the case n = m, as we did III Sec. 2.3. T!llS case 
represents a vanishing contribution here, in the limit N ..... 00. 
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Consider first the diagram of Fig. 12(c) and equip 
it with momentum labels as in Fig. 6(a). Its contri­
bution contains the factors 

V k - S V s - s ' VS'-k exp I-i[(k - s) 

+ (s - s') + (s' - k)] ·dn.ml, (6.11) 

according to our rules and to (2.9). The phase of 
this expression is identically zero,and consequently 
the contribution survives when it is summed over 
the particle labels nand m in accord with rule (c). 
Next, however, consider the ring diagram Fig. 12(d), 
with momentum labels as in Fig. 7(a). Its contri­
bution contains the factors 

(6.12) 

where q == k - s and we have used the momentum 
conservation relations. The phase of this expression 
fluctuates at random as we sum over all values of 
n, i, and m, so that the contribution does not survive 
in the limit if ~ co, Q ~ co. (The contribution from 
the special value q = 0 also vanishes in the limit.) 

The equivalence of the distinguishable and indis­
tinguishable ring, random-coupling, and Hartree­
Fock models may be verified in a similar fashion. 
We shall give one further illustration: Consider 
again Fig. 12(d), with momentum labels as in Fig. 
7(a), but now fix the tPn.m:k by relation (2.19) for 
the ring model. The contribution from this diagram 
now contains the factors 

Vq Vq Vq exp !i[(On:q + Ol:-q) 

+ (Ol:q + Om:-q) + (Om:q + On:-q)]), (6.13) 

and we see from (2.20) that the phase vanishes. 
We have seen that the thermodynamics of our 

second-quantized distinguishable-particle system is 
formally the same in the limit if ~ co, Q ~ co 

whether the models of Sec. 2 or those of Sec. 3 are 
used. Our argument was based on the equivalence 
of canonical and grand canonical ensembles for the 
system, and also implicitly made use of assumption 
5 of Sec. 5.1, which underlies all our work. Now let 
us make the further assumption that in the classical 
limit (sufficiently high temperature and low density) 
the thermodynamics of fermion, boson, and distin­
guishable particle systems become identical in the 
true problem (all tP's = 1), provided the same values 
of p and (3 are taken in each case. We have seen that, 
except for exchange diagrams, the models of Sec. 3 
select precisely the same diagrams from the true­
problem expansion for Sk(ta) in all three cases: 
fermion, boson, and distinguishable-particle. How­
ever, the exchange diagrams do not contribute in 

any event in the classical limit. It then follows from 
all this that the models of Sec. 2, applied to a dis­
tinguishable particle system, should give the same 
thermodynamics in the classical limit as the models 
of Sec. 3, applied to fermions and bosons. It follows 
that the classical results of Sec. 2 for A should 
represent classical limits of the ring, ladder, random­
coupling, and Hartree-Fock models for fermions or 
bosons. 

It may also be possible to investigate the relation 
between our two kinds of models by using the 
formalisms of Montroll and Ward3 or Lee and 
Yang,23 neither of which require second quantiza­
tion. In the method of Lee and Yang, the thermo­
dynamics of distinguishable (Maxwell-Boltzmann) 
particles is expressed in terms of a "binary kernel" 
which is determined from the ordinary two-particle 
matrix elements 

(k, p !Hil s, r) = Vk - s Ok+p.r+s' (6.14) 

Then an algorithm is used to obtain results for 
fermions or bosons. To attempt an expression of 
our models in this formalism, we would replace 
(6.14) by the model matrix element 

(k, p IHil s, r)n.m = tPn.m:k-s V k - s Ok+p.r+s 

for the Sec. 2 models, or by 

(k,p IHil s,r)n.m = tPkprsVk-s ~+P.r+. 

(6.15) 

(6.16) 

for the Sec. 3 models. Here nand m denote the pair 
of particles for which the matrix element is evaluated. 
We have not explored this procedure. 

Recognition of the thermodynamic results of Sec. 2 
as classical limits for the fermion and boson models 
may provide some useful insights into the behavior 
of the latter. For example, the lack of saturation 
found in the classical ladder model suggests that a 
similar lack characterizes the fermion and boson 
ladder models. However, the correspondence be­
tween the Sec. 2 and Sec. 3 models also leads to a 
rather discouraging general observation. It points 
out how modest are the presently feasible quantum­
mechanical diagram summations compared to known 
classical ones. Our fermion and boson ladder and 
ring summations, carried out in Sec. 5.3, are more 
comprehensive than those usually employed; they 
include infinite classes of self-energy corrections 
which usually are omitted. Nevertheless, we have 
seen that the ladder summation corresponds in the 
classical limit to just one term in the Mayer irreduci­
ble cluster expansion. Similarly, our ring summation 

23 T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959); 
117,22 (1960). 
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represents only a partial contribution from each 
term of the classical irreducible ring diagram se­
quence. The familiar Montroll-Mayer summation 
(2.29) appears to correspond, in the quantum­
mechanical case, to retaining both ladder and ring 
summations, together with the self-energy cor­
rections of all orders obtained by repeatedly in­
serting the retained irreducible diagrams as self­
energy parts. 

7. DISCUSSION 

In the present paper we have obtained formally 
exact closed equations which express the statistical 
mechanics of a class of Hermitian, momentum­
conserving model Hamiltonians for infinite many­
body systems. The potential value of these equa­
tions lies largely in the fact that certain of· the 
models, the ring and ladder models, share important 
boundedness properties with the true many-body 
Hamiltonian: The eigenvalues of the ladder-model 
Hamiltonian are non-negative if the pair potential 
Vex) is purely repulsive, and those of the ring­
model Hamiltonian are bounded from below if Vex) 
is bounded and has a non-negative Fourier transform. 

These properties suggest that the ring and ladder 
models, with appropriate Vex), should have a 
meaningful statistical mechanics even in the zero­
temperature limit. Moreover, the structure of the 
models is such that they embody some important 
qualitative dynamical features of the true many­
body system. For example, we may expect that dis­
sipative damping of single-particle excitations sur­
vives in the models. This is particularly clear in the 
distinguishable-particle formulation of the models: 
each particle interacts individually with every other 
particle. A similar situation exists for the fermion 
and boson models, but there it is more natural to 
think of interaction among individual momentum 
modes rather than among individual particles. 

The remarks just made suggest that the ladder 
or ring models may be appropriate for investigating 
whether the sharp Fermi surface of an infinite system 
of uncoupled fermions at zero temperature persists 
when the particles are coupled. Similarly, the model 
solutions may be of aid in deciding whether singular 
occupancy of the zero-momentum state, which 
characterizes an infinite free-boson system at very 
low temperatures, persists when the particles are 
coupled. (We anticipate here the extension of our 
analysis to low-temperature boson systems which 
will be carried out in the following paper.) The 
natural way in which the effective density com­
ponents Pk appear in the ring model suggests that 

it may be appropriate for investigating phonon-like 
excitations and other collective phenomena. 

However, any confidence which our rigorously 
bounded model Hamiltonians may inspire in a given 
problem does not automatically extend to the closed 
equations which we have derived for the model 
propagators. First we must establish that these 
equations are exact descriptions of the models in 
actuality, as well as formally. This has not been done 
in the present paper. As we discussed in Sec. 5.1, 
a fundamental convergence question relating to 
extremely high-order diagrams is involved. We shall 
state this question more precisely in Sec. 4 of the 
following paper,ll using generalized stochastic models 
which yield our formally closed equations for finite 
as well as infinite systems. In Sec. 7 of that paper, 
we shall outline what we hope is the basis for a 
satisfying justification of our closed model propa­
gator equations. 

The analysis in the following paper is concerned 
almost exclusively with the indistinguishable-particle 
models, and we shall not attempt there to offer 
explicit justification for the assumptions which 
underlie the classical results of the present Sec. 2. 
However, we have already found a degree of sup­
port for these results: The closed expressions for 
the Helmholtz free energy obtained in Sec. 2 re­
produced precisely the rigorous lower bounds on 
the ring and ladder model potential energies. 

Our third model, the random-coupling model, 
exhibited no lower bound on the potential energy 
per particle in the limit of an infinite system. The 
results of Sec. 2.4 suggest that this is the case 
whatever the form of Vex). Consequently, we must 
expect the random-coupling model not to give 
sensible statistical-mechanical results at zero tem­
perature in either the classical or the quantum­
mechanical case.24 

The indicated failure of the random-coupling 
model at zero temperature may point a moral. We 
have seen in Sec. 5 that this model corresponds to 
taking just the lowest few diagrams in the irredu­
cible diagram expansion of the propagator for the 
true many-body Hamiltonian. The failure of the 
model suggests that a term-by-term treatment of 
the irreducible diagram expansion for the true 
problem may not be justified at very low tempera-

24 This does not necessarily exclude the random-coupling 
model for condensed boson systems. The classical equation 
of state (2.33) suggests admissibility at any given p and (3 
provided Vex) is weak enough. Thus the model may be 
admissible quantum-mechanically even below the A-point, 
if Vex) is weak enough. We regard this argument with strong 
suspicion. 
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tures, and that results obtained from such a treat­
ment should be viewed with caution. 

A general question raised by the present paper 
is whether there exists an infinite sequence of sto­
chastic models which correspond to more and more 
comprehensive (but summable) classes of terms 
from the linked diagrams expansion for the true 
many-body problem. We have so far not succeeded 
in constructing substantially more elaborate models 
than those presented here. An obvious next step is 
to seek a model that combines both ring and ladder 
summations so as to correspond to the classical 
Montroll-Mayer ring-diagram summation. On the 
basis of a preliminary investigation, we offer the 
following opinion: If such a model can be con­
structed within the general formal framework of 
Sec. 3.1, it probably can be achieved only by allowing 
the parameters ¢kr,rs to have stochastically distri­
buted moduli as well as phases. The difficulty is 
not in writing propagator equations which yield the 
desired summations but in realizing the correspond­
ing model Hamiltonian. 
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APPENDIX 

We wish to discuss here t,vo topics which arose 
in Sec. 2: the derivation of (2.11) for the classical 
models, and the significance of the condition 
(apjap)/l < ° for the models. 

Equation (2.11) for the true problem usually is 
derived on the basis of the grand canonical ensemble 
and rigid-wall boundary conditions. It then is form­
ally exact in the limit a --Jo 00. [See, for example, 
T. L. Hill, Statistical Mechanics (McGraw-Hill 
Book Company, Inc., Ne,,, York, 1956), Chap. 5.) 
However, with our cyclic Vex) the factoring of 
reducible cluster integrals into irreducible integrals 
is exact for any a. Consequently, (2.11) is formally 
valid for any a, with the grand canonical ensemble. 
In the limit N --Jo 00, a --Jo 00 it is usually considered 
immaterial whether the grand canonical or canonical 
distribution is used, and we shall assume that this 
is so here. 

In the case of our models, a grand canonical 
ensemble can be formed by considering each of the 
N particles in the canonical ensemble as a separate 
species and taking an activity such that the mean 
total number of particles over the grand ensemble 

is N. [In doing this, we may extend (2,;'j)-(2.8) 
to include the case n = m, so as to allow interaction 
among particles of the same species.) The derivation 
of (2.11) in the limit N --Jo 00, a --Jo 00, with Ba 
interpreted as in the text, then depends upon two 
facts. First, a reducible cluster integral involving 
any given a + 1 particles factors exactly into ir­
reducible cluster integrals. As in the true problem, 
this is true for any a because vn.m(x) is cyclic. 
Second, if B a is averaged over all N choices of the 
species of anyone of the particles in the cluster, 
then (in the limit N --Jo 00, [2 --Jo (0) the result is 
the same for all choices of the species of the other 
particles, except for a set of choices of relative 
measure zero. This can be seen for each of the 
models by analysis similar to that used in the text 
to evaluate the B a' We shall not give here a detailed 
derivation of (2.11) for the models. It is straight­
forward once the two facts just stated are established. 

As in the true prohlem, we assume in the text 
that the final averages for an infinite system are 
independent of whether the grand canonical or 
canonical ensemble is used. The canonical ensemble 
is taken in Sec. 2 because it makes the discussion 
simpler. In the quantum-mechanical treatment of 
Sec. 6, the grand ensemble is employed. 

The derivation and analysis of (2.11) for the 
models takes a much more elegant form if one uses 
the generalized models described in Appendix A 
of reference 11. Then, with the grand ensemble, the 
formulation in terms of averaged irreducible clusters 
is exact for all Nand a. 

The statement in the text that (apjap)/l < ° 
implies instability must be carefully qualified. 
Actually, the condition (apjap)/l < 0, or even p < 0, 
does not necessarily imply instability for any of 
our models, if p is defined as /(aAjap)/l' This is 
because of the peculiar way in which the potentials 
vn.m(x) are constructed. The simplest illustration 
is provided by the Hartree-Fock model as described 
by (2.34) and (2.35). Suppose that we have Vo < 0, 
so that the potential energy per particle (which is 
just A - Ao for this model) decreases without limit 
as P increases; that is, as we pack more particles 
into a fixed volume a. By (2.3.5), we have p < ° 
and (apjap)/l < 0, if p is high enough. However, 
since each particle moves in a uniform potential, 
the potential energy is independent of configuration, 
for given Nand [2, and the system is not unstable. 
Instability arises only if, as we pack the N particles 
into a closer configuration, we decrease correspond­
ingly the volume of the cyclic cube. Then, since 
Vo a: a-I, the potential energy becomes increas-
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ingly negative and the system can collapse ca­
tastrophically. 

It is likely that the relation (ap/ap)~ < 0 has a 
similar interpretation for all the models treated in 
this paper. This condition need not imply instability 
if Q is fixed, which it must be as we have defined 
the models. However, if we were to allow Q to vary 
in accordance with the actual gross volume occupied 
by the particles, there would be instability. Having 
Q vary would actually be a physically appropriate 
procedure, as the Hartree-Fock example suggests. 
For this reason, we consider (ap/ap)~ < 0 to be 
an instability indication in making a physical 
interpretation of our models. 

It should be noted also that the lack of a lower 
bound on the potential energy of a system does not 
preclude a stable thermodynamics. If the density­
of-states (T(E) (where E is the total energy) decreases 
faster than exponentially as E -+ - co, a stable 
thermal equilibrium can exist for all finite {3. If the 

decrease is slower than exponential, equilibrium will 
be impossible at any {3, while, if the decrease is ex­
ponential, equilibrium can exist only if (3 is less 
than a critical value. 

We wish finally to note the conclusion of L. Van 
Hove [Physic a 15, 951 (1949)] that (ap/ap)~ < 0 
cannot be an exact theoretical result for a gas of 
pairwise-interacting particles. Although it seems 
assuredly valid for actual physical systems, Van 
Hove's result does not appear to be applicable here. 
Our models violate an assumption basic to his 
analysis: The vn.m(x) are defined in such a way 
that is is not possible to divide the system into 
effectively noninteracting macroscopic sub-volumes. 
(Van Hove's result clearly is not valid for the 
Hartree-Fock example discussed above.) It should 
be stressed, however, that the results obtained in 
Sec. 2 are not rigorously justified by the analysis 
we have presented. As we have noted, there IS a 
fundamental convergence question involved. 
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In a preceding paper [J. Math. Phys. 3, 475 (1962)], some model Hamiltonians were proposed for 
quantum-mechanical many-body systems with pair forces. For infinite systems in thermal equilibrium 
they. led to temperature-~omain propagator expansions which were formally summable and ex~ 
presslble by closed equatIOns. These expansions were identical with infinite subclasses of terms 
from the propagator expansion for the true many-body problem. The two principal models cor­
res~ond~d to ring- and ladder-diagram summations from the true propagator expansion, augmented 
by mfinlte classes of self-energy corrections. The model Hamiltonians were called stochastic because 
they contained parameters whose phases were fixed by random choices. In the present paper, more 
general models are formulated which yield formally summable propagator expansions for finite 
systems. The analysis is extended to correlation and Green's functions defined for nonequilibrium 
ensembles. The nonequilibrium treatment is developed in the Heisenberg representation in such a 
way that unlinked diagrams do not arise. A basic convergence question associated with the formal 
c~osed equ:;tions f~r the model p:opagators and. correlation functions is examined by means of finite­
~hfference mtegratlOn of the HeISenberg equatIOns of motion. This procedure appears to converge 
mdependently of whether the perturbation expansions for the propagators and correlation functions 
converge. It yields substantial support for the validity of the formal closed model equations. 

1. INTRODUCTION 

I N the preceding paper l (cited herein as I), some 
so-called stochastic-model Hamiltonians were de­

veloped for fermion or boson many-body systems 
with pair forces. The models yielded temperature­
domain particle propagators whose linked-diagram 
expansions could be formally summed and expressed 
by closed integral equations. The model propagator 
expansions were identical with infinite classes of 
terms from the propagator expansion for the true 
many-body Hamiltonian. The model Hamiltonians 
were called stochastic because they contained in­
finite numbers of parameters whose phases were 
fixed by random choices. Certain of the models, 
called the ladder and ring models, had important 
boundedness properties in common with the true 
many-body Hamiltonian. For this reason, it was 
felt that they might represent useful approximations 
to the behavior of the true system, particularly at 
low temperatures. 

The models described in I led to closed propagator 
equations only in the limit of an infinite system. 
In the present paper, we develop more general 
models which yield formally summable propagator 
expansions for systems of any size. With the new 
formulation, no special considerations are required 
to treat boson systems at very low temperatures, 

* This work was supported by the Air Force Office of 
Scientific Research. 

1 R. H. Kraichnan, J. Math. Phys. 3, 475 (1962). 

a case which was excluded in I. Moreover, the entire 
procedure of obtaining the closed propagator equa­
tions can be carried out in a neater and more satis­
factory fashion. In the limit of an infinite system, 
the final propagator equations obtained from the 
old and new models are identical. 

The models employed in I were constructed by 
altering, in a stochastic fashion, the true inter­
actions among the momentum modes of a second­
quantized fermion or boson field. Corresponding 
models for distinguishable particles were constructed 
by altering the interaction among pairs of particles 
in a way that was different for each pair. In the 
present paper, we start with a collection of M 
similar fermion or boson systems, where before we 
treated a single many-body system. The M systems 
are assumed to occupy the same space but not to 
interact. The particles in each system are distin­
guishable from those in all the other systems. As 
a preliminary to constructing stochastic models, we 
introduce a collective description: We define M 
quantized fields which are linear combinations of 
the quantized fields of the M many-body systems. 
Then we alter in a stochastic fashion the true 
dynamical couplings among the collective fields. As 
a result of the alteration, the individual systems 
in the collection, which are independent in the true 
problem, turn out to be dynamically coupled in 
the models. The eventual closed equations for 
particle-propagators are obtained by considering a 

496 
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grand canonical ensemble of collections and taking 
the limit M ~ co. 

We shall be principally concerned only with 
fermions and bosons in the present paper. For 
completeness, however, we shall describe in Ap­
pendix A the corresponding models for distinguish­
able particles. 

The derivation of the closed propagator equations 
for the models, both in I and in the present paper, 
involves a fundamental convergence question con­
cerning the contribution of classes of infinite-order 
diagrams. No attempt to resolve this question was 
made in 1. In the second part of the present paper, 
we investigate the convergence question by extending 
the analysis to systems not in statistical eqUilibrium 
and treating equilibrium as a limiting case. The 
non equilibrium formalism which we use is a direct 
adaptation, to second-quantized fields, of a method 
previously developed for the theory of turbulence.2 

Instead of the temperature-domain particle propa­
gators, we employ correlation and Green's functions 
which are defined for time-dependent statistical 
ensembles where no temperature exists. In the limit 
of thermal equilibrium, these quantities are related 
by analytic continuation to the temperature-domain 
propagators. 

As we shall see, there exist both primitive and 
irreducible linked-diagram expansions which give 
the evolution of the correlation and Green's func­
tions forward in time from a given initial instant. 
I t is convenient to develop the expansions in the 
Heisenberg representation. Then, unlinked diagrams 
do not arise, and therefore need not be eliminated. 
As in the equilibrium case, the stochastic model 
Hamiltonians yield irreducible linked-diagram ex­
pansions which are formally summable and ex­
pressible by closed integral equations. 

In the time-dependent treatment, however, the 
validity of the formally closed equations can be 
examined by methods which do not involve perturba­
tion analysis. Our procedure is to replace the exact 
Heisenberg equations of motion by corresponding 
difference equations involving small time-incre­
ments. Evidence is presented that this procedure 
should yield convergent results for the correlation 
and Green's functions, as the increment size is 
decreased to zero, independently of whether the 

2 R. H. Kraichnan, J. Math. Phys. 2,124 (1961); Erratum, 
3, 205 (1962). The formalism to be developed in the present 
paper is less general than in this reference because we shall 
not discuss cases where the quantized field f(x) has nonzero 
expectation (f(x». Adaptation of the more general for­
malism may prove desirable for treating condensed boson 
systems. 

perturbation expansions for these functions converge. 
The finite-difference approach yields what we regard 
as substantial support for the validity of the formal 
closed model equations. It should be stressed at 
the outset, however, that our analysis is neither 
complete nor rigorous and therefore is not conclusive. 

The nonequilibrium reducible and irreducible 
linked-diagram expansions apply to the true Hamil­
tonian as well as to the models considered here. 
Apart from nonequilibrium situations as such, they 
may prove to be a useful tool in the equilibrium 
limit. There, the expansions deal in a consistent 
fashion with the propagators in the real time or 
real frequency domains, without the necessity of 
representing these quantities as analytic continua­
tions of propagators with imaginary time or complex 
frequency arguments. 

2. GENERALIZED STOCHASTIC MODELS FOR 
FERMIONS AND BOSONS 

2.1. Collective Representation of a Collection of 
Systems 

Let us consider a system of fermions or bosons 
with Hamiltonian 

(2.1) 

where q;. and qk are fermion or boson creation and 
destruction operators for a particle of momentum k, 
the Ek are the free-particle energies, Vk is a Fourier 
component of the pair potential, and the sum­
mation is over all momenta allowed by cyclic bound­
ary conditions on the walls of a box of volume 
Q = L3. We take 1i = 1. This is identical with the 
Hamiltonian 1:(3.1), 1:(3.2).3 We shall continue to 
call it the true Hamiltonian. As in I, the pair poten­
tial in x space is given by 

Vex) = L Vk exp (t'k·x) (2.3) 
k 

and obeys 

Vex) = V( -x), Vk = V -k, 17k = V: (2.4) 

We require further that Vex) be finite everywhere 
and that 

k ~ co. (2.5) 

~ow, instead of a single many-body system, let 

3 The notation I: (3.1) denotes Eq. (3.1) of 1. Such notation 
will be used throughout the present paper. Sections and 
figures in I will be denoted in the forms I: Sec. 3 and I: Fig. 2. 
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us consider a collection of M similar systems de­
scribed by the individual second-quantized fields 

if;[n!(x) = Q-t I: qk[n] exp (zk·x) 
k 

(n = 1,2, ... ,M). (2.6) 

Let the true total Hamiltonian for the collection of 
systems be 

(2.7) 

+ .!2"V 0 t t .L.,., k-s k+p, r+sqk[n] qp[n] qr[n] qs[n]' 
kprs 

We shall take the commutation rules as 

(2.8) 

Thus the individual systems exist in the same box 
but otherwise are entirely independent.4 In (2.8), 
and throughout the paper, the upper sign of a 
double sign refers to fermions, and the lower to 
bosons. 

As a preliminary to constructing stochastic models, 
we shall express JC in terms of collective fields which 
are linear combinations of the 1P[n](x). Let us re­
strict M to the form 1lI = 28 + 1, where 8 is a 
positive integer. We define the collective fields 
1P,,(x) by 

1P,,(x) = M-~ I: exp (i21ran/M) 1P[n] (x) , 
(2.9) 

where 

a = -S, ... , -1,0,1, ... , S. 

We shall call a a collective index. 5 By using the 
identities 

M- 1 I: exp [i21r(a - iJ)n/M] = oa~, 
n 

~r' I: exp [i21ra(n - m)/M] = Onm, 
(2.10) 

a 

we may invert (2.9) and obtain 

if;[n](x) = M-! L e)<:p (-i21ran/M)if;,,(x). (2.11) 
a 

4 The present procedure should not be confused with 
that used in I: Sec. 6. There, each second-quantized field 
represented a single particle instead of a whole many-body 
system. 

fi In order to minimize confusion in expressions with 
mUltiple indices, we shall denote individual-system quantities 
by square-bracketed italic indices and collective-field quanti­
ties by unbracketed Greek indices throughout this paper. 
Momenta and 'energies' will be denoted by unbracketed 
Latin indices, as in I. 

Collective destruction and creation operators qka 
and q~a may be defined by 

(2.12) 

with a corresponding relation for q~a. These operators 
satisfy 

qka = .Llr! L exp (i21ian/M)qk[nJ, 
(2.13) 

It is clear from this that the transformation to the 
collective fields represents a complex rotation in 
the space of the qk[n]' By (2.8), (2.10), and (2.13), 
the commutation rules in the collective representa­
tion are 

(2.14) 

Let us adopt the cyclic convention 

a == a + lVI, n ==n +M (2.15) 

for collective indices and individual-system labels. 
This clearly is consistent with (2.9)-(2.11). Then, 
by using (2.13) and (2.10), we may rewrite JC in 
the form 

(2.16) 

t t 
X o"+~,~+).qk,,qp~qr~qs)., (2.17) 

where O,,+~,~+). is to be interpreted by the cyclic 
convention. We see from (2.17) that the collective 
fields, in contrast to the individual-system fields, 
are dynamically coupled by the interaction Vex). 

It is clear from the definitions, and also from an 
examination of (2.14) and (2.17), that the momenta 
k and the collective indices a have some formal 
properties in common. In particular, the factor 
oa+~,~+). in (2.17) gives a conservation property 
analogous to momentum conservation. The under­
lying similarity may be expressed as follows. Con­
sider the case where Q is very large, so that each 
many-body system, described by a field 1P [n! (x), is 
effectively composed of many spatially localized sub­
systems. Then the Fourier components qka, con­
sidered as functions of k, provide a collective 
description of the sub-systems in x space. On the 
other hand, suppose we take 1lI large instead of Q 

large. Then the qka, considered as functions of a, 
provide a collective description in "n space. ,,6 

6 See Sec. 3 of reference 2 for a discussion of the physical 
significance of this similarity in a classical context. 
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2.2. Formulation of Models 

In order to construct stochastic models, we re­
place (2.17) by the more general form 

Xi = lilr1 L L Vk-s<PaP", 
afJp.A kprs 

t t 
X Ok+p.r+s oa+p,"+Xqkaqppqr"qs,' (2.18) 

The c number coefficients <PaP", playa role analogous 
to that of the <Pkprs in 1:(3.4). We impose upon 
these coefficients the Hermiticity and symmetry 
constraints 

(2.19) 

Then we make stochastic assignments of values to 
the <PaM so as to obtain the several stochastic 
models. We give below the prescriptions which yield 
the present analogs of the ladder, ring, random­
coupling, and Hartree-Fock models defined and 
discussed in 1. In each model, the form of <PaP", is 
identical with that of <Pkprs in I :Sec.3. 

Ladder 1.11odel 

Take 

(2.20) 

(2.21) 

Determine the real phases (JaB by independent 
random choices in the interval (0, 21r), subject only 
to (2.21). 

Ring 1.);1odel 

Take 

(2.22) 

(2.23) 

Determine the phases OaX by independent random 
choices subject only to (2.23). 

Random-Coupling Model 

Take 

Determine the phases (J apo, by independent random 
choices subject only to (2.25). 

H artree-Foek Model 

Take 

<PaP", = 0 

(a ;t. p. or A). (2.26) 

There are no random parameters. 

The models obtained by the prescriptions just 
given are stochastic in the same sense as discussed 
in 1:Sec.2.2. The values of the <PaPo' are determined 
by random choices. Once obtained, however, the 
values are fixed, and we work thereafter with the 
definite Hamiltonian embodying these values. To 
obtain an insight as to the physical interpretation 
of the present models, it is of value to transform 
(2.18) back to the individual-system representation. 
We find 

Xi = t L L Vk-sA[nmm'n'] 
nmn'm' kprs 

t t 
X Ok+P,Hsqk[n]Qp[m]qr[m,]qs[n'] ' (2.27) 

where 

X exp [i21r(-na - m{3 + m'p. + n'A)jMJ. (2.28) 

When all the <PaP., = 1, it follows from (2.10) that 

Then X reduces to (2.7), giving us back the true 
problem in which the individual systems are dy­
namically independent. In the models, however, 
A tnmm'n' 1 is not diagonal, and the systems in the 
collection are coupled. They exchange particles as 
well as energy and momentum. We see from (2.27) 
that the elementary interaction is a collision in 
which a pair of particles from systems n' and m' 
are destroyed and a pair in systems nand m created. 

2.3. Bounds on the Ladder and Ring Model 
Hamiltonians 

Bounds on the eigenvalues of X for the ladder 
and ring models may be derived in close analogy 
to 1:Sec.3. In the case of the ladder model, let us 
define the effective two-body amplitudes 

x.(x', x) 

= M-~ L o"+",1f"(x')1f,(x) exp (i(J.,) , (2.29) 
.x 

where (2.15) is to be used in interpreting o.+}..". 
Then, noting (2.12), we may write (2.18) for the 
ladder model in the form 

Xi = t L , 

(2.30) 

It is clear from (2.30) that Xi is a non-negative 
operat.or if Vex) = \v(x) I everywhere. It then 
follows that the eigenvalues of X are all non-negative 
in this case. 
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In the case of the ring model, we define the ef­
fective density components Pk. by 

p,(x) = LPk.exP(t"}t·x), (2.31) 
k 

Then, using (2.14) and (2.23), we find 

Xi = t L L VkP~.Pk. - t V(O);)l, (2.33) 
k 

where ;rr, the operator for the total number of 
particles in the collection, is defined by 

;)l = L N", = L N[nl! 

Na = L q~aqka, 
k 

N[n] = L q~[n]qk[nl' 
k 

(2.34) 

If Vk = IVkl for all k, then the first term on the 
the right side of (2.33) is a non-negative operator, 
and the energy per particle in any eigenstate of ;)l 
is bounded from below by -t V(O). 

3. PROPAGATOR EXPANSIONS FOR THE MODELS 

In analogy to I:Sec. 4, let us define the tempera­

where SkU'a) is the true propagator, as defined in I, 
for anyone of the systems in the collection. This 
follows immediately from the independence of the 
individual systems. In this case, we find 

(3.7) 

where we have used (2.13) and (2.10). 
In correspondence to 1:(4.8) and 1:(4.10), the 

mean number of particles and the mean energy in 
the collection may be expressed for the models in 
the forms 

;rr({3, /1-) = ±(3-1 L Ska aCta) exp (ta 0) 
aka 

and 

e({3, /1-) = ±i{3-1 L (€it + ta)SkaaCta) exp Cta 0) 
aka 

Equation (3.9) may be derived in the same way 
as 1:(4.10). The mean number of particles per system 
and the mean energy per system are then given by 

ture-domain propagator Sk[nml (u, U') by 

Sk[nm](U, U') = -<Tqk[n](U)q~[m](U'», (3.1) N({3, /1-) = M-
1
;rr({3, /1-), E({3, /1-) = M- 1 e({3, /1-). 

(3.10) 
where, for any operator B, 

B(u) = exp (uX)B exp ( -uX) , 

Bt(u) = exp (uJC)B t exp (-uX). (3.2) 

The ordering operator T is the same as in I, and the 
brackets denote an average over a grand canonical 
ensemble of collections of systems: For any B, 

(B) = Tr {exp [-{3(X - /1-;)l)JB} 

ITr {exp [-{3CX - /1-;)l)J}. (3.3) 

Let us also define the propagator in the collective 
representation by 

SkaP(U, u') = -<Tqka(U)q~p(u'». (3.4) 

'Energy'-domain propagators Sk[nm] (ta) and Ska/l(ta) 
may be defined in terms of Sk[nm](U, u') and 
Ska/i(U, u') by means of relations of the form 1:(4.6). 

For free particles (Xi = 0), it follows from (2.8), 
(2.14), and (2.16) that 

SklnmJ(ta) = OnmS~O)U;a), 

Skaita) = Oa/lS~O)(ta), 
(3.5) 

where S~O)(ta) is given by 1:(4.11). For the true 
Hamiltonian (all cf>a/l~].. = 1), we have 

For the true problem (all cf>kprs = 1 in I and all 
cf>a/i~].. = 1 in the present case), N({3, /1-) and E({3, /1-) 
are exactly the same functions of (3 and J.l here as in 1. 

Let us now consider the primitive linked-diagram 
expansion for the model Ska/l(ta)' First of all, it is 
easy to verify that 

Sk",ita) = Oa/lSkaa(ta)' (3.11) 

This follows immediately from (3.5) and the presence 
of the conservation factor Oa+/l'~+A in (2.18). Because 
of the similarity of the ways the momenta k and 
the collective indices a enter X, the primitive linked­
diagram expansion for Skaa (ta) is given by rules 
which are obvious generalizations of rules 1-8 of 
I:SecA. We shall state here only the changes which 
are required in the rules of I: 

Rule 3. Label the external lines with collective 
index a as well as momentum k. Label the internal 
lines with collective indices a', a", '" as well as 
with momenta k', k", .... 

Rule 5. With each vertex labeled as in Fig. 1 
of the present paper, associate a factor 



                                                                                                                                    

STOCHASTIC MODELS FOR MANY-BODY SYSTEMS. II 501 

Rule 7. Sum over all the intermediate collective 
indices a', a", ... as well as over all the intermediate 
momenta and 'energies.' 

According to the present rules, the contribution 
of any diagram to SkaaCt.) has the following form. 
It consists of a product of V and S (0) factors, summed 
over momenta and energies, which is mUltiplied by 
a product of ¢' s, summed over collective indices. 
The latter summed product contains the entire 
dependence of the contribution upon the cf>'s and 
upon a. The summed product of V and SiO) factors 
is identical with the contribution which the diagram 
makes to SkCt.) in the true problem, where SkCt.) 
is defined as in 1. In order to express this result 
compactly, let us write Sk(t.) for the true problem 
in the form 

ro 

Sk(t.) = S~O)Cra) + L: L: rn;p(k, a). (3.12) 
n=1 p 

Here r n;,,(k, a) is the contribution from a particular 
distinct linked diagram with n vertices. The index p 
takes the values 1, 2, ... , R(n), where R(n) is the 
number of distinct linked diagrams with n vertices; 
it labels the R(n) diagrams according to any con­
venient scheme. We may now \vrite the primitive 
linked-diagram expansion for the model propagator 
Skaa(t.) as 

SkaaCra) = S~O)(ra) 
00 

+ L: L: Cn;p(a)rn;p(k, a), (3.13) 
n=l p 

where Cn;,,(a) denotes the summed cf> product 
associated with the pth distinct diagram with n 
vertices. The rn;,,(k, a) in (3.13) are precisely the 
same quantities as in (3.12). 

We may illustrate the results stated in the last 
paragraph by considering the contributions to 
Ska a (t.) made by two simple primitive diagrams. 
Let us assign the value p = 1 to the diagram of 
Fig. 2(a). Then the rules for constructing diagram 
contributions give 

r l ;I(k, a) = ±(rl L: VoS~O)(~a)S~O)(rb) 

~ y 
P,.B·~s), 

I 
I 
I , 

{c'~~d 
~ r~ 

pb 

FIG. 1. A labeled vertex. 

(3.14) 

k,o(. k,o!. 
(a.) ( b) 

FIG. 2. (a) The diagram associated with CI'I(a); (b) the 
diagram associated with C2;2(a).' 

(3.15) 

Let us assign the value p = 2 to the diagram of 
Fig. 2(b). Then the rules give 

r 2 ;2(k, a) = (3-2 L: Vk - s Vs_pS~O\~.)S~O)(rb) 
psbc 

x S~O\L)S~~)p_s(r a+b-c) S~O\L), 

C2;2(a) = M- 2 L: oa+f3.~+xcf>af3~xcf>x~af3' 
(:JJ,l'A 

(3.16) 

(3.17) 

Equations (3.15) and (3.17) illustrate a general 
property of the Cn;,,(a). The number of M- 1 factors 
is always equal to the number of free indices in the 
summation. Hence in the true problem (all cf>af3~X = 1), 
we have Cn;,,(a) = 1 for all nand p, as we must for 
consistency. 

Let us now consider the limit M ~ co, which 
represents an infinite collection of many-body 
systems. We keep J.I. fixed as we take the limit. For 
the true problem, N({3, J.I.) and E({3, J.I.) are then 
independent of M, as we have noted previously. 
It will appear from what follows that N({3, J.I.) and 
E({3, J.I.) for the models are independent of M in 
the limit. The present limit M ~ co plays the same 
role as the limit Q ~ co (infinite volume) did in I. 
We found the following general result in I: For 
any given model, a given diagram survived in the 
limit Q ~ CJ) if and only if the associated ¢ product 
had the value one for all values of the intermediate 
momenta permitted by momentum conservation. 
The corresponding result in the present case is 
that a given diagram survives in the limit M -'> co 

if and only if the associated ¢ product [i.e., the 
summand of Cn;,,(a)] has the value one for all 
values of the intermediate collective indices per­
mitted by collective-index conservation. For each 
surviving diagram we therefore have Cn;,,(a) = 1, 
as in the true problem. The demonstration of the 
present result is neater than that in I because the 
entire collective-index dependence of each diagram 
contribution is contained in the ¢ product, whereas 
in the former treatment the ¢ factors, S(O) factors, 
and V factors all depended on the intermediate 
momenta. 
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The correspondence behveen the survival of 
diagrams in the old treatment and the present 
should become clear upon comparing the following 
two examples with the corresponding examples in 
I:Sec.5.3. For the ladder model, we have 

C2;2(a) = M-2 2: exp [i( - Opa + Oa+P-U) 
p). 

(3.18) 

where we have used (2.20) and (2.21). Thus this 
diagram survives and gives the same contribution 
as it does in the true problem. For the ring model, 
however, we have 

(3.19) 

by (2.22). Except for special values of the indices 
(3 and A, the phase of the summand does not vanish 
as a result of (2.23). Consequently, for a typical 
assignment of the phases (j a~ by random choices, 
we have C2;2(a) -'> 0 as M -'> ro, and the diagram 
does not survive. The detailed reasoning follows 
that in I. 

Similar analysis may be applied to any diagram 
of any finite order. It may thereby be verified that 
the surviving diagrams for each of our present 
models, in the limit lYf -'> co, are precisely the same 
as those for the model of corresponding name in 
I:Sec.5, in the limit g -'> co. This is a consequence 
of the fact that the rules for diagram-contributions 
in the two cases yield ¢ products with the same 
structure. 

We shall now make a fundamental assumption 
which corresponds to assumption 5 of I:Sec. 5.1. 
We assume that diagram classes which do not 
survive in any finite order make no contribution to 
SkuCSa), in the limit M -'> co, when they are summed 
to all orders. The implications of this assumption 
will be discussed in Sec. 4, and in Sec. 7 we shall 
outline a partial justification. 

Since the diagrams we have identified as surviving 
all have C"",(a) = 1, an immediate consequence of 
our assumption is that Skaa(Sa) is independent of 
a in the limit. Thus we may define Sk(Sa) for the 
models by 

Sk(Sa) = SkaaCSa) (M -'> co). (3.20) 

Then, by (2.13), (3.11), and (2.10), we have 

Sklnml(Sa) = O"mSk(Sa) CM -'> co). (3.21) 

In the true problem, these relations hold for any ill. 
Let us now consider the irreducible linked-diagram 

expansions for Sk(Sa), as defined by (3.20), and for 
Mk(sa), as defined in terms of this Sk(Sa) by 1:(4.12). 
These expansions are obtained by amending the 
rules for the primitive diagram expansion with 
rules 2',4',4", and 8' of I:Sec.4. Since each Skaa(Sa) 
is independent of a in the limit M -'> co, it follows 
that the entire collective-index dependence of any 
diagram-contribution in the irreducible expansions 
is contained in the associated ¢ product and there­
fore is given by the same quantity C,,;p(a) associated 
with that diagram in the primitive expansion. From 
this it follows that the survival rules for diagrams 
in the irreducible expansions are precisely those for 
the primitive expansion: A diagram survives if and 
only if the summand of C,,;p(a) has the value one 
for all values of the intermediate collective indices 
permitted by collective-index conservation. This 
same conclusion may also be reached by reasoning 
of the kind employed in I:Secs. 5.2 and 5.3 con­
cerning recovery of the primitive expansion from 
the irreducible expansion. 

The results stated in the preceding paragraphs 
may be combined to give the following conclusion: 
In the limit 1.11 -'> co, only those classes of terms 
survive, in the irreducible expansions for Sk(Sa) or 
Mk(Sa) , ,vhich were identified as surviving for the 
corresponding models in I:Sec. is. In each model, 
the surviving terms are identical in form with the 
corresponding terms in the irreducible expansion 
for the true problem. Thus, for each of our present 
models, we are led to precisely the same final closed 
equations for Sk(Sa) as we obtained in I:Sec. 5. 
The essential difference is that now these equations 
are obtained for finite g. Assumptions 3 and 4 of 
I:Sec. 5.1 have not been made here. An important 
consequence is that our present results apply to 
boson systems at low temperatures. A further 
advantage of the present procedure IS that the 
double limiting process employed in I for long­
range potentials is now unnecessary. 

4. CONVERGENCE PROPERTIES OF THE MODEL 
PROPAGATOR EXPANSIONS 

For each stochastic model, let us divide all the 
primitive linked diagrams into two classes, wanted 
and unwanted. Wanted diagrams are all those which 
we identified in Sec. 3 as surviving in the limit 
M -'> co. The ¢ products associated with them have 
the value one for all values of the intermediate 
collective indices permitted by collective index 
conservation. Consequently, we have C,,;p(a) = 1 
for these diagrams. The unwanted diagrams are all 
the others. The ¢ products associated with them 
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have stochastic phases for all but special values 
of the intermediate collective indices. Consequently, 
we have Cn;p(a) -'> 0 (M -'> co) for any given 
unwanted diagram. We shall examine very soon 
the strength with which the unwanted Cn:p(a) 
vanish in the limit. 

The fundamental assumption made in Sec. 3 con­
cerning the contribution from all unwanted diagrams 
may be expressed in the form 

'" 2:: 2::' Cn;p(a)rn;p(k, a) -'> 0 (M -'> co» (4.1) 
n=l 1) 

where 2::; denotes a summation over unwanted 
diagrams only. The essential point in (4.1) is that 
we must take the limit n -'> co before the limit 
M -'> co. If we did not, we would not be employing 
the full, formally exact perturbation series for the 
model, and, consequently, we would be unable to 
assert that the results embodied the boundedness 
properties of the model Hamiltonian. We wish to 
make it clear in the present section that the validity 
of (4.1) is far from obvious. We shall, in fact, obtain 
the negative result 

'" L: 2::' ICn;p(a)rn;p(k, a)1 = co (any M). (4.2) 
n=l p 

This result does not mean that (4.1) cannot be true. 
However, it shows that (4.1) can hold only if there 
are cancellations among the contributions from 
different diagrams. We shall not attempt to investi­
gate the latter question directly. Instead, we shall 
present in Sec. 7 some evidence for the validity 
of (4.1) which is not based on perturbation theory. 

In order to establish (4.2), we must estimate 
three things: the strength with which the unwanted 
Cn;p(a) vanish for large M, the number R'(n) of 
distinct unwanted diagrams for large n, and the 
magnitude of the true-problem diagram contri­
butions rn;p(k, a) for large n. Let us consider the 
Cn;p(a) first. In every Cn;p(a), the number of in­
dependent, summed indices given by index-con­
servation and the number of M- 1 factors are both 
equal to n. The cp product which comprises the 
summand of any Cn;p(a) has unit modulus for all 
of our models but the Hartree-Fock. For that model 
the cp product is either zero or one. It follows that, 
for all the models, the Cn;p(a) all satisfy 

(4.3) 

There are two types of contrihutions to the 
unwanted Cn;p(a). First, in each of the models, there 
are certain restricted values of the intermediate 
collective indices for ,vhich the cp product is identi-

cally one (cf. the discussion in I:Sec. 5.2). We may 
estimate this contribution as follows. In every 
model we have CPaaaa = 1. Hence the term in the 
sum with all collective indices = a has the value 
M-n

, which then constitutes a lower bound to the 
magnitude of the contribution. An upper bound 
may be given in the form K1J.r\ corresponding to 
the restriction of just one of the intermediate indices 
to K special values. 

The second type of contribution comes from the 
terms in the sum which have stochastic phases. 
It arises in all the models but the Hartree-Fock. 
There are lYr terms, each of unit modulus, in the 
sum which (when multiplied by lVrn) comprises 
Cn.p(a). If the phase of each term were fixed by an 
independent random choice, then, for a typical set 
of choices, the result would be 

Cn;p(a) = M-no[v(Mn
)] = O(M-nI2

). 

In general, however, the 11r phases are not com­
pletely independent. The independent choices are 
of the O(M2) linearly independent 8all or 8all (ladder 
or ring model) or the O(M3

) linearly independent 
8all#~ (random-coupling model). In consequence, the 
contribution to Cn;p(a) from the stochastic-phase 
terms may vanish either more or less strongly than 
M-nI2

• Furthermore, if the unwanted primitive 
diagram contains a wanted diagram as a self-energy 
part, variation of the intermediate indices corre­
sponding to this self-energy part will not give any 
change in the phase of the cP product. This will 
result in Cn;,,(a) vanishing less strongly. 

On the basis of the preceding paragraphs, we shall 
assume the following asymptotic behavior for the 
unwanted Cn;p(a): 

lYf -'> co ) 

M -'> co. 

(4.4) 

(4.5) 

Two restrictions on the validity of these relations 
should be noted. We assume a typical assignment 
of the independent random phase-parameters in 
asserting (4.4). (Cf. the discussion in I:8ec. 2.2.) 
In obtaining the lower bound (4.5), we have ignored 
the contribution to Cn;p(a) from the terms with 
stochastic phases. However, there may be some 
special combinations of values for n, p, and a such 
such that the nonstochastic contribution to Cn;p(a) 
is very nearly canceled by the stochastic-phase 
contribution, with the result that (4.5) is violated. 
For a typical assignment of phase parameters, these 
cases constitute a set of relative measure zero in 
the limit M -'> co . We shall ignore them in dis­
cussing (4.2). 
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VVVV 
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k,oC. k ~ , 
FIG. 3. Incomplete linear diagram with four vertices. 

In order to bound R'(n), the number of unwanted, 
distinct linked diagrams with n vertices, we consider 
a special class of linked diagrams, which we shall 
call linear diagrams. Let us form an incomplete 
diagram with n vertices, as illustrated in Fig. 3 for 
the case n = 4. To form the linear diagrams, we now 
connect the free outgoing lines with the free incoming 
lines in all possible ways. There are n! ways of doing 
this, and each gives a distinct linear diagram. Now 
we note that the linear diagrams are a very re­
stricted class of all the distinct linked diagrams. 
Hence, for large n, we have R(n) » n!. Moreover, 
we note that the unwanted linked diagrams consti­
tute most of the linked diagrams for large n, no 
matter which of our models we take. The wanted 
diagrams in each case are very special classes. Conse­
quently, 've may safely assume the bound 

R'(n) > n! (n -} 00). (4.6) 

We have finally to estimate the rn;p(k, a) for large 
n. On the basis of (2.5), 1:(4.11), and 1:(4.7), we 
assume that for any given nand p the summations 
over intermediate momenta and intermediate 'ener­
gies' converge at infinity (cf. assumption 2 of 
I:Sec. 5.1). It follows that rn;,,(k, a) can be bounded 
in the fashion 

Ib(k, aW < Irn;p(k, a)1 < IB(k, a) In (n -} 00), (4.7) 

where b(k, a) and B(k, a) are parameters inde­
pendent of nand p. In general, we wiII have 
Ib(k, a)1 > O. We shall not attempt to prove (4.7) 
here. 

Equation (4.2) follows immediately from (4.5), 
(4.6), and (4.7). We have, furthermore, 

'" L L Irn;p(k, a) I = 00. (4.8) 
n=l p 

That is to say, the primitive linked-diagram ex­
pansion for the true problem is not absolutely con­
vergent when taken diagram by diagram. This 
result does not preclude the weaker property that 

'" 
I: II: r,,;p(k, a)1 
n=l p 

converge. The latter would correspond to absolute 
convergence of SJr.(ta) as a power-series in "A if the 

interaction potential Vex) were replaced by "AV(x). 
We have already noted that (4.2) does not mean 

(4.1) cannot be true. However, it certainly indicates 
that the assumption expressed by (4.1) must be re­
garded with suspicion in the absence of supporting 
evidence. We shall attempt to develop such evidence 
in the remainder of this paper by turning to the 
more general problem of linked-diagram expansions 
for nonequilibrium statistical ensembles which 
evolve in time. 

5. NONEQUILIBRIUM CORRELATION AND GREEN'S 
FUNCTIONS 

5.1. Summary of the Method 

The formalism we shall outline in Secs. 5 and 6 
is an extension, to second-quantized fields, of a 
nonequilibrium method previously applied to a 
classical field problem, the evolution of the cor­
relation tensor in turbulence dynamics.2 The changes 
required in the present case are due to the different 
degree of nonlinearity of the equations of motion 
and to the q-number nature of the fields. Neither 
characteristic necessitates a drastic modification. 
We shall develop the formalism here ab initio, but 
not with full proofs or in complete detail. Our 
interest here is not in nonequilibrium as such but 
in elucidation of the convergence question which 
we stated, for equilibrium, in Sec. 4. 

The nonequilibrium treatment will be carried out 
in the Heisenberg representation. Our procedure 
may be summarized as follows. We define Heisen­
berg creation and destruction operators which coin­
cide with the Schrodinger operators at an initial 
time to, and we specify an initial statistical ensemble 
by a weighting operator which is Gaussian in the 
Schrodinger operators. Then we define correlation 
functions of the Heisenberg operators, and also 
Green's functions which give the average response 
of these operators to infinitesimal external perturba­
tions. The correlation and Green's functions are 
expressed in terms of the Schrodinger operators by 
iterative solution of the Heisenberg equations of 
motion. The results are evaluated by a statistical 
form of Wick's theorem which is valid for any 
Gaussian weighting operator. This yields linked­
diagram expansions for the correlation and Green's 
functions. An advantage of working in the Heisen­
berg representation is that unlinked diagrams do 
not arise and therefore do not have to be eliminated. 
Both primitive and irreducible linked-diagram ex­
pansions are obtained. The latter yield formally 
closed equations which give the evolution in time 
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of the correlation and Green's functions for each 
of our stochastic models. 

5.2. Quantized Nonlinear Oscillator 

In order to minimize notational complications, we 
shall introduce the nonequilibrium treatment in 
terms of a simple example which yields diagram 
expansions identical in structure with those for the 
many-body problem. Consider the true Hamiltonian 

x = Xo + Xi, (5.1) 

where V and E are real parameters and the com­
mutation relations are 

(5.2) 

The index n = 1, 2, .,. , M specifies individual 
systems in a collection, as before. This Hamiltonian 
represents a collection of trivially soluble quantized 
nonlinear oscillators. In the fermion case, Xi actually 
vanishes identically, but this will not affect the 
usefulness of (5.1) for our purposes. In terms of the 
diagram expansions, the vanishing of Xi is expressed 
by the exact cancellation of the contribution of any 
nonexchange diagram by that of an exchange 
diagram; the formal structure of the expansion is 
unaffected. 

The general model Hamiltonian corresponding to 
(5.1) is 

(5.3) 

where the collective operators q" are defined by 

qa = M-! L exp (i27rCl.n/M)q[nl' (5.4) 
" 

as in Sec. 2.1, and obey 

[qa, q~) .. = 0, (5.5) 

For each of our model types (ladder, ring, random­
coupling, or Hartree-Fock) the CP"'M are precisely 
the same parameters as in Sec. 2.2. It may be noted 
that Xi in (5.3) bears a close formal resemblance 
to (2.18). 

We define the Heisenberg operators q" by 

q",(t) = exp [i(t - to)X]q", exp [ -i(t - to)X] , (5.6) 

q;(t) = exp [i(t - to)X)q: exp [-i(t - to)X]. 

The Heisenberg equation of motion for any operator 
B is 

dB/dt = -i[B, X]_. (5.7) 

For either the fermion or boson case this yields 

(d/dt + iE)q",(t) = -iM-1 VLa(t), 

LaCt) == L CP,,~"). 5,,+~,~+,q;(t)q.(t)q,(t), 
~~, 

where we have used (5.5) and (2.19). 

(5.8) 

In addition to the q", themselves, we introduce 
the retarded response or Green's operators G,,~(t, t'), 
defined by 

5q",(t) = J: dtf ~ G",~(t, tf) 5f~(t'), 

(t < t'). (5.9) 

Here 5f't is an arbitrary infinitesimal forcing operator 
added to -iM-IVL~ for times > to, and 5q", is 
the increment in q", produced by the addition. We 
restrict of r (t) to operators which anticommute 
(commute) with all the q" and q: in the fermion 
(boson) case. 

The of r may be regarded as arising from an in­
finitesimal modification of X. In this way one ob­
tains the relation7 

(t ;:::: t'). (5.10) 

From (5.6), (5.10), and the stated commutation 
property of 5f 'Y' it follows that 5f'Y and 5f t commute 
with G a~ for either the fermion or boson ~ase, what­
ever the indices or time arguments. Using this 
property, we obtain 

(a/at + iE)G"''Y(t, tf) = -iM-1VM"'Y(t, tf) 

(t ;:::: t f
), (5.11) 

Ma~(t, t') == 2: CP,,~~, o",+~,~+,[G;~(t, tf)q.(t)q,(t) 
i3.' 

=F q;(t)Gn(t, tf)q,(t) + q;(t)q~(t)G,~(t, t'»), 

with 

G,,~(t', t') = 0"'Y' (5.12) 

We shall also need C5.8) and (5.11) in the integral 
forms 

q",(t) = q~O)(t) - iM-1 V It dt'G(O\t, t')L,,(t') (5.13) 
t. 

and 

G"''Y(t, tf) = 5a~G(O\t, t') - iM-1V 

X r dt"G(O)(t, t")M",~(t", t'). (5.14) 
----

7 Cf. R. E. Peierls, Proc. Roy. Soc (London) A214 143 
(1952). ., 
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Here q~O)(t) and o",~G(O)(t, tf) are the Heisenberg 
destruction and Green's operators for the 'unper­
turbed' case V = 0. They are given by 

and 

G(O)(t, t) = exp [-iE(t - tf)] 

= ° 
(t ~ t f

), 

(t < tf). 

(5.15) 

(5.16) 

5.3. Correlation and Green's Functions for the 
Oscillator Models 

Let us now consider ensemble averages of the form 

(B) == Tr {WBj/Tr {wI, (5.17) 

where B is any operator and the weighting operator 
W is a function of the Schrodinger operators q" = 
q,,(to). A choice of W represents a choice of initial 
statistical ensemble for the collection of oscillators. 
For our present purposes, we restrict W to the 
Gaussian form 

'Wi = exp (-a L q:qa), (5.18) 
a 

where a is a real constant which, for bosons only, 
must further obey a > 0. Since 'Wi then commutes 
with X, such an initial ensemble is actually an 
equilibrium ensemble. However, we shall not use 
this fact in developing the time-dependent diagram 
analysis. The analogous Gaussian weighting opera­
tors for the many-body problem, which we shall 
introduce in Sec. 5.4, do not commute with the 
Hamiltonian; they represent genuine nonequilibrium 
ensembles. 

We define the correlation functions Qa(t, tf) and 
Green's functions Ga(t, tf) by 

Q,,(t, t') = (q:(tf)q,,(t» (5.19) 

and 

G"U, t') = (G",,(t, tf». (5.20) 

We shall also use the auxiliary correlation functions 
Q~ (t, tf) defined by 

Q~(t, t') = (q,,(t)q;(tf». (5.21) 

By (5.10), we have 

G aCt, t') = Q:(t, t') ± Q aCt, t') (t ~ t'). (5.22) 

It is easily seen that 

Qa(t, t') = Q~(t', t), Q:(t, t') = Q:*(t', t), (5.23) 

and 

(5.24) 

where the asterisk denotes complex conjugate. We 
see that Q~ is wholly determined by Q" and Ga. 
lt should be noted that the time-ordering operator 
T has not been used in any of the definitions above. 
We have not found time ordering to be very useful 
in the non equilibrium formalism. 

For V = 0, the correlation and Green's functions 
are independent of a for any M. They are given by 
Q (0) (t, t') and G (0) (t, t'), where 

Q(O)(t, t') 

Q+ (0) (t, t') 

(eO ± 1)-' exp [-iE(t - t')], (5.25) 

[1 =F (e a ± 1)-1] exp [-ic(t - t')] , 
(5.26) 

and G(O)(t, tf) is defined by (5.16).8 
For V r= 0, Ga(t, tf) and Qa(t, tf) satisfy the 

equations of motion and initial conditions 

where 

(a/at + iE)Ga(t, t') = Ja(t, t'), 

G ,,(t', t') = 1, 

(ajat + ic)Qa(t, t') = Ka(t, t'), 

Qa(tO, to) = (ea ± 1)-', 

J ,,(t, t') = -iJlr'V L o,,+~.~+).c/J,,~~). 
~~). 

x ([G;a(t, t')q~(t)qx(t) =F q;(t)G~.,(t, t')qx(t) 

+ q;(t)q~(t)Gxa(t, t')]) 

and 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

These equations follow directly from (5.8) and (5.11). 
Because of (5.23), the equation for aQ.,(t, tf)/at' 
is redundant with (5.29). The irreducible diagram 
expansions for J .,(t, t') and K,,(t, t') turn out to 
have a simpler form than those for G "Ct, t') and 
Q a (t, t') themselves, and it is for this reason that 
we introduce the differential equations (5.27) and 
(5.29). 

5.4. Correlation and Green's Functions for the 
Many-Body Models 

Let us now return to the many-body problem. 

S For the true problem [Hamiltonian (5.l)J, the exact 
functions are also independent of c< for V ,e O. For the fermion 
case, Xi vanishes identically and we have Q,,(t, t') = Q(O)(t, t'), 
etc. For the boson case, we easily find the exact results 

Qa(t, If) = Q(O)(I, If) [(1 - e-a)/(l - e-a- i (.-.')V)]2, 
Q" +(1, If) = Q+(O)(t, tf) [(1 - e-a)/(l - e-a- i (t-.')V)]2. 

It is of interest to note from these expressions that if Q,,(I, If) 
is expanded as a power series in V, the radius of convergence 
is given by IVI = a/It - fl· 
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The Heisenberg equation of motion corresponding 
to the Hamiltonian (2.16), (2.18) is 

(d/dt + ifk)qka = -ill1-1 L L Vk - s Ok+p,r+s 
/3p.>.. prs 

(5.33) 

where we have used (2.4) and (2.19). In analogy 
to the nonlinear oscillator case, we define the Green's 
operators Gkpa~(t, t') by 

G~O)(t, tf) = exp [-iEk(t - t')] 

=0 

where 

(t ~ t' ), 

(t < tf), 

N~O) = (eW(k) ± 1)-1. 

For Vex) ~ 0, we have 

(a/at + ifk)Gka(t, t') 

1, 

(5.41) 

(5.42) 

(5.43) 

ilqk,,(t) = ft dt ' L Gkp,,~(t, t') ilfp~(t'), (5.34) and 
to p$ 

where atka is an infinitesimal forcing operator in­
troduced on the right side of (5.33). 

\Ve again consider ensemble averages of the form 
(5.17), where now the weighting operator has the 
form 

exp [ - L w(k)N kaJ, (5.35) 
ka 

with 

We restrict the real function w(k) by the condition 

w(k) = Iw(k) I a: fk (k ~ (0). (5.36) 

For bosons only, we further require w(k) > ° for 
all k. The correlation and Green's functions for the 
many-body models may now be defined by 

Qka(t, t') = (q~a(t')qka(t», 

Q;,,(t, t') (qk,,(t)q:,,(t'», (5.37) 

Gka(t, t') (Gkkaa(t, t'». (5.38) 

For l'(x) = 0, the correlation and Green's func­
tions are independent of ex for any lJI, as was the 
case for the nonlinear oscillator. They are given by 

Q~O)(t, t') = N~O) exp [-i€k(t - t')], (5.39) 

Q; (O\t, t') = (1 =F N~O) exp [-ifk(t - t')], (5.40) 

9 The methods to be presented in Secs. 6 and 7 are also 
applicable to (non-Gaussian) normal ensembles which 
describe statistically inhomogeneous systems. Such ensembles 
are specified by weIghting operators of the form 

OW = exp [- ~kpaw(k, P )qka tqpaJ, 
where w(k, p) is a suitable function. In place of Qka(t, tf) and 
~a(t, t'), one must deal with the more general quantities 

QkPa(t, t') = (qpa t(tf)~,,(t», 
GkP.,(t, t') = (~pa,,(t, tf». 

Alternatively, the analysis may be carried out directly in 
x space by using the fields "'.,(x) and "'" t(x). Such a treatment 
is illustrated for two classical field problems in Secs. 10 and 
11 of reference 2. It is also possible to work with non-normal 
weighting operators which describe, for example, non-zero 
initial two-body correlations. This type of generalization is 
briefly discussed in Sec. 9 of reference 2. 

(a/at + iEk)Qka(t, t') = Kka(t, t'), 
(5.44) 

Qka(tO, to) = N~O), 

where Jk,,(t, t') and Kko«t, t') are given by obvious 
modifications of (5.31) and (5.32). The analogs of 
(5.22)-(5.24) hold also for the many-body case. 

The partition of particles and of energy among 
the momentum modes as a function of time may be 
expressed directly in terms of Qka(t, t'). We have, 
immediately, 

(5.45) 

In analogy to 1:(4.10), we may easily establish from 
(5.33) the relation 

eX) = t ~ ~ {€kQka(t, t) + {aQka~~, t') 1,-J 
(5.46) 

5.5. Approach to Equilibrium 

Let us consider the case to ~ - 00. Then at finite 
t we anticipate that the ensemble specified by (5.35) 
will have evolved into a state of statistical station­
arity. This need not be so for the random-coupling 
model, which may be unstable to catastrophic col­
lapse because of the unboundedness of Xi' However, 
it seems assured for the ladder and ring models, 
if V (x) satisfies the conditions which make Xi 
bounded from below. If an approach to equilibrium 
is granted, we anticipate for any finite t and t' that 
Qka(t, t') and Gka(t, t') will take the forms 

Qko«t, t') = Qka(t - t'), 

(5.47) 

It should be noted that we are not invoking an 
adiabatic switch-on of Vex). We are simply fixing 
the initial statistical ensemble by a choice of OW 
and then letting the ensemble evolve according to 
the exact equations of motion. 

The equilibrium ensemble which is achieved will 
in general not be a grand canonical ensemble. The 
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reason is that (5.35) does not in general represent 
an initial distribution of total energy (kinetic plus 
potential) and total particle-number corresponding 
to a grand canonical ensemble. Since X and mare 
constants of motion, the distribution of these quanti­
ties can not change with time. Nevertheless, we 
conjecture that for our models in the limit M ~ co 

the equilibrium functions Qka(l - t') and Gka(l - tf) 
will be identical in value with corresponding averages 
defined over the grand canonical ensemble with the 
same (X) and (m). In the limit M ~ co, both the 
grand canonical ensemble and the ensemble specified 
by (5.35) represent total-energy and total-particle­
number distributions which are peaked with infinite 
sharpness about their means. We have noted pre­
viously [cf. (2.27) and (2.28)] that the M systems 
in the collection are coupled for our models; they 
exchange both energy and particles. This means 
that, with respect to the achievement of statistical 
equilibrium, the models represent infinitely large 
super systems in the limit M ~ co, even if the 
mean number of particles per system is small. It 
is on the basis of these facts that we conjecture the 
identity of Qka(t - tf) and Gka(t - tf) for the two 
kinds of ensemble. The conjecture supposes certain 
ergodic properties, as does the assumption that 
ensembles specified by (5.35) will reach equilibrium 
at all. 

If we turn from the models to the true problem 
(all cf>a~~}. = 1), then the M systems in the collection 
are not coupled, and, if the mean number of 
particles per system is small, we do not have a 
large super system in any dynamical sense. In this 
case, the grand canonical ensemble and the ensemble 
specified by (5.35) cannot be expected to yield the 
same averages when to - - co. It does not follow 
that our Gaussian ensembles are physically inap­
propriate. The grand canonical ensemble is used 
for equilibrium calculations more because it is 
mathematically convenient than because it is uni­
quely appropriate physically. For our present pur­
poses, Gaussian ensembles are the ones which are 
most convenient mathematically. The real justifica­
tion for either choice of ensemble is the hope that 
for a dynamically large system (M- 1(m) ~ co for 
the true problem; M ~ 00 and M- 1(m) finite for 
the models) the values of physically interesting 
equilibrium averages are insensitive to a substantial 
range of choices of ensemble. We shall not attempt 
to go further into this matter here. The questions 
which arise are not unique to our investigation. 

The conjecture made above concerning Qka (t - t') 
and Gk,,(t - t') for the models implies that these 

quantities may be identified with equilibrium cor­
relation and Green's functions of types discussed 
previously by a number of authors.l0 The tempera­
ture-domain propagators Skaa(U, u') may be ex­
pressed in terms of the equilibrium correlation and 
Green's functions by analytic continuation of the 
latter. The continuation is given formally by the 
relations 

-Q;,,( -iu + iu') (u > u'), 

±Qk,,( -iu + iu') (u:::; u'), 
(5.48) 

which follow from (3.4) and (5.37) if ( ) is taken 
throughout as an average over the grand canonical 
ensemble. 

There is a useful general relation between the 
equilibrium functions Qk,,(t - tf) and Gk,,(t - tf). If 
we define G:,,(t - tf) by 

G:"Ct - t') = Gk,,(t - tf) 

= Gt,,(t' - t) 

then the transforms 

(t 2:: t'), 

(t < t f
), 

a:,,(w) = (27rfl L: G:,,(t) exp (iwt) dt, 

Qka(W) = (2'11-) -1 L: Qk,,(t) exp (iwt) dt 

are related by 

Qka(W) = (l("'-~) ± l)-la:,,(w). 

(5.49) 

(5.50) 

(5.51) 

Equation (5.51) has just the form of the free-particle 
Fermi-Dirac or Einstein-Bose distribution law pro­
vided that we interpret a:a (w) as a density of states 
for momentum k and Qk,,(W) as a mean occupancy. 
For the grand canonical ensemble, (5.51) may be 
obtained directly from the definitions of a:,,(w) and 
Qk" (w) by using the cyclic properties of the trace. 11.12 

However, (5.51) may also be deduced as a necessary 
condition for equilibrium under coupling to a ther­
mometer, without specifying the precise nature of 
the equilibrium ensemble. This is clearly preferable 
for the present application. We hope to present a 
derivation of this type at another time. The nature 
of the argument has been stated previously. 13 

10 A review discussion is given by D. N. Zubarev, Uspekhi 
Fiz. Nauk 71,71 (1960). [Translation: Soviet Phys.-Uspekhi, 
3, 320 (1960).] Our Gk(t - t') differs by a factor i from that 
commonly defined. 

11 R. Kubo, J. Phys. Soc. Japan, 12, 570 (1957). 
12 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 

(1959). 
13 R. H. Kraichnan, Phys. Rev. 112, 1054 (1958). 
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6. DIAGRAM EXPANSIONS FOR THE NONEQUILIB­
RIUM CORRELATION AND GREEN'S FUNCTIONS 

6.1. Primitive Diagram Expansions 

The generation of primitive and irreducible linked­
diagram expansions for Jk,,(t, t') and Kk,,(t, t') is 
straightforward in principle, but somewhat intricate 
in practice. We shall introduce the procedure by 
means of the nonlinear oscillator example discussed 
in Sec. 5.2. Suppose that we carry out a formal 
iteration solution of the integral equations (5.13) 
and (5.14). We thereby obtain q,,(t) and G"At, t') 
expressed as power-series in V. The coefficients in 
these series consist of terms of the following kind: 
Each term is a multiple integral over a product of 
Kronecker symbols, of factors of the form M- 1cp, 
and of unperturbed operators of the form q I~~, 
q:I,O), GIO

), or GIO». The term is summed over the 
intermediate indices. If the power-series are sub­
stituted into (5.31) and (5.32), we obtain expressions 
for J a(t, t') and Ka(t, t') as power-series in V. The 
terms which make up the coefficients in these series 
involve integrals over ensemble-averages of products 

10) tlO) GIO ) d G(O» of factors q a', qa" , an . 
In order to evaluate the ensemble-averages, we 

first note that G(O)(t, t'), given by (5.16), is a c­
number function and may be taken outside the 

• • (0) d brackets < ). The remammg averages over q an 
q tlO) factors may be evaluated by using a statistical 
form of \Vick's theorem, which follows from the 
Gaussian form of the weighting operator (5.18).14 
We pair the q (0) and q t (0) factors in all possible 
ways, maintaining always the original left-right order 
of the two factors in a pair. We replace each pair by 
its individual ensemble average of the form 

<q~IO\t')q~O\t» = O.xQIO)(t, t'), (6.1) 

<q;O)(t)q~(O)(tl» = o.xQ+ (O)(t, t'), (6.2) 

or 

<q~O)(t)q~O\t'» = <q:(O\t)q~IO)(t'» = O. (6.3) 

Then we take the product of all the individual 
averages for each pairing and sum over all the 
possible pairings. For fermions only, we mUltiply 
each product, before summing, by (-l)P, where P 
is the number of permutations required to obtain 
the particular pairing. 

Let us suppose that we have carried out the 
procedure just described and have then performed 
the summation over all the intermediate indices 
which arise. Each contribution proportional to vn

, 

14 Cf. C. Bloch and C. De Dominicis, Nuclear Phys. 7, 
459 (1958). 

in the expansion for either J a(t, t') or K,,(t, t'), 
then consists of a multiple integral over a product 
of Q 10\ Q+ (0), G (0), and G (0)* functions, multiplied 
by a summed product of Kronecker symbols and n 
factors M-1c/J. The Kronecker symbols express the 
'collective-index conservation' which also charac­
terized the equilibrium analysis of Sec. 3. A conse­
quence is that the sums over products of Kronecker 
symbols and factors M- 1cp turn out to be precisely 
the quantities Cn;p(a) of the equilibrium theory. 
These quantities contain the entire dependence of 
the contributions upon the cp's and upon a. 

As the preceding paragraph suggests, the formal 
expansions for J a(t, t') and K,,(t, t') in powers of 
V have systematic diagram representations which 
resemble the primitive linked-diagram expansion of 
the equilibrium theory. It is immediately apparent 
that only linked diagrams arise. Any intermediate 
index which occurs arises from an iterative branching 
of the Heisenberg equations of motion and thus is 
necessarily linked by a Kronecker symbol to indices 
which occurred previously in the iteration process. 15 

In order to write the complete contribution to 
J a(t, t') or K,,(t, t') which is proportional to Vn, 
we first write down all the distinct nth-order primi­
tive linked diagrams, just as in the equilibrium 
treatment. Now, however, it turns out that each 
diagram [and hence each Cn;p(a)] above the first 
order is associated with more than one contribution. 
The method of forming the diagram contributions 
is most clearly indicated by giving some examples. 
Consider the first-order contribution to Ka(t, t') 
associated with the diagram of Fig. 4. The one 
vertex in the diagram is associated with the cp 
factor that appears explicitly in (5.32). The con­
tribution is obtained from the product of the zeroth­
order terms in the iteration expansions of all the 
operators in (5.32). This is because a factor V 
already appears explicitly in (5.32). There are two 

FIG. 4. Repre­
sentation of the 
primitive contribu­
tion to K,,(t, t') 
proportional to 
Cl ;1("')' 

Q"'("~O I ,.'.) ~ ,.'P'p.) I 

:t , 

l' It is essential here that the Heisenberg equations of 
motion be taken in the form (5.8). If, instead, the equation 

dqa/dt = i(Xqa - qaX) 
is used directly in the iteration procedure, both unlinked 
and linked diagrams arise, just as in the Schriidinger repre­
sentation. Thus the elimination of unlinked diagrams in <?ur 
procedure can be traced to the use of the commutatiOn 
relations (5.5) in obtaining (5.8). 
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FIG. 5. The diagram associated with 
CI;,(a). 

possible non-vanishing pairings of the creation and 
destruction operators according to Wick's theorem: 

(O'.A) ((3f.!) and (O'.f.!) ((3A) . 

Only the first pairing corresponds to the present 
diagram. By (6.1), it yields the contribution 

-iCI;I(O'.)VQ(O)(t, t)Q(O)(t, t'), (6.4) 

where C 1;1 (0'.) is given by (3.15). The second pairing 
corresponds to the exchange diagram Fig. 5, and 
involves the quantity 

C1;2(0'.) = M-1 L I/>a~a~. (6.5) 
fl 

We have diagrammed the contribution (6.4) by 
labeling the vertex in Fig. 4 with time t, labeling the 
outer end of the incoming external line with time t', 
and writing the two Q(O) factors along the lines with 
which they are associated. Ko factor is associated 
with the outgoing external line, and this is true of 
every contribution to the expansions of Ka(t, t') 
and J aCt, t'). The reason is that we are dealing with 
the differential equations (5.29) and (5.27) instead 
of with Qa(t, t') and Ga(t, t') directly. In the box 
on the right side of Fig. 4, we have given an alterna­
tive symbolic representation of the contribution of 
this diagram to (5.29). 

In Fig. 6, we have diagrammed the contribution 
to J aCt, t') associated with C1;1 (0'.). This contribution 
arises from the third term on the right side of (5.31), 
and it is obtained by replacing all the operators in 
that term by their zeroth-order values. By (6.1), 
the contribution therefore is 

-iC1;1(0'.) VQ(O)(t, t)G(O)(t, t'). (6.6) 

A symbolic representation of the contribution of 
this diagram to (5.27) is given in the box on the 
right side of Fig. 6. (The underlined 0'. represents 
G aa.) The second term on the right side of (5.31) 
gives rise to the first-order exchange contribution 
to J aCt, t'), associated 'with Fig. 5 and C1;2(O'.)' 
By (6.3), the first term on the right side of (5.31) 
gives no first-order contribution. 

/J 

Q(OJ(tJ) '-----~_-_(_~~ft_~_)_.....J sentation of the O l
ot FIG. 6. Repre-

primitive contribu­
tion to J aCt, t') :t proportional to 

olE E ol t' 
G cOJ(t,i') 

C1;I(a). 

There are three contributions to J a(t, t') associated 
with the second-order diagram shown in Fig. 7(a). 
They are diagrammed in Figs. 7(b), 7(c), and 7(d). 
In the boxes beside the diagrams we have represented 
symbolically the particular iteration-substitutions 
(iterative branchings) and operator pairings associ­
ated with the contributions. Below this, we have 
shown (in square brackets) the left-right ordering 
of the final set of creation and destruction operators 
which are produced, in each case, by the iteration 

~ 
I I :t :t" 
I I 

ol E ! ).. E 1 E cC. t' 
(a) 

~ _(/Jtp~) 

1. (p.tft~l 
[ippt,8] 

~ ~<'Bt#- Xl 
t()..t~.B) 

[ftt).tp).J 

E ol t' 
(;. (O)(t'; t') 

(e) 

(d) 

FIG. 7. (a) The diagram associated with CH(a); (b), (c), 
(d) representations of the primitive contributions to Ja(t, t') 
proportional to C2 ;I(a). 

substitutions. This must be kept account of to 
determine whether Q(Q) or Q+(O) factors are associ­
ated with given lines and to determine the sign of 
the contribution in the fermion case. The total 
contribution of Fig. 7 to J a (t, t') is 

C2;1(0'.) V2 It [_Q(O)(t", t)Q+(O)(t, t")G(O)(t, t") 
t' 

(6.7) 

=j= G(O)'(t, t")Q(O)(t, t")Q(O)(t, t")]G(O'(t", t') dt", 
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where 

The three terms which comprise (6.7) are associated, 
from left to right, with Figs. 7(b), 7(c), and 7(d), 
respectively. 

The contributions to Ka(t, t') and J aCt, t') associ­
ated with all the primitive diagrams may be deter­
mined in the fashion illustrated above. For each 
diagram, one traces through all the iterative branch­
ings and nonvanishing operator pairings which cor­
respond to the diagram topology. Then one writes 
down the contributions by using (6.1) and (6.2). 
The primitive-diagram contributions have the fol­
lowing general characteristics. Each nth-order con­
tribution to J aCt, t') contains a factor Cn;p(a) which 
multiplies an n-fold integral over n factors G(O) 

or G(Ol* (in some combination) and n factors Q(O) or 
Q+(O). The contributions to Ka(t, t') are similar 
except that there are n - 1 factors G(O) or G(O)' 

and n + 1 factors Q(O) or Q+ (0). In every contri­
bution to J aCt, t'), but in only some of the contribu­
tions to Ka(t, t'), the factor associated with the 
incoming external line is a G(O) factor. vVe have 
already remarked that no factor is ever associated 
with the outgoing external line in either the J aCt, t') 
or Ka(t, t') expansions. 

The primitive linked-diagram expansions for the 
functions Jka(t, t') and Kka(t, t'), which appear in 
(5.43) and (5.44), may be obtained in close analogy 
to the analysis for the nonlinear oscillator. The only 
difference is that there is a momentum associated 
with each line in the diagrams, and the results must 
be summed over the intermediate momenta, as in 
the equilibrium analysis. For example, the contri­
butions to Jka(t, t') which correspond to (6.6) and 
to the first term in (6.7) are 

-iC1;1(a) L VoQ~O)(t, t)G~O)(t, t') (6.9) 
p 

and 

-C2;1(a) L Vk-sVS-k It Q~O)(t", t)Q;;~~s(t, t") 
ps t' 

(6.10) 

respectively. 
Let us now consider the limit M -> 00. As we 

discussed in Sec. 4, all the primitive linked diagrams 
may be divided into two classes, 'wanted' and 
'unwanted,' for each of the stochastic models. The 
Cn;p(a) for wanted diagrams all have the value one. 
For any unwanted diagram of finite order n, we have 

Cn;p(a) -> 0 as JJJ -> 00. Let us extend to the non­
equilibrium case the fundamental assumption made 
in Sec. 3 about unwanted diagrams. We assume that 
the total contribution to J aCt, t'), Ka(t, t'), Jka(t, t'), 
and Kka(t, t') from all unwanted diagrams vanishes 
in the limit M -> 00. We shall reserve all discussion 
of the validity of this assumption for Sec. 7. An 
immediate implication of the assumption is that 
Ja(t, t'), Ka(t, t'), Ga(t, t'), Qa(t, t'), and the cor­
responding functions for the many-body problem 
all become independent of a in the limit. We may 
therefore omit the index a in these functions. Then, 
in analogy to (3.21), we find 

(qJnl(t')q[ml(t)) = onmQ(t, t'), 
(6.11) 

with corresponding relations for the many-body 
problem. 

6.2. Irreducible Diagram Expansions 

Irreducible linked-diagram expansions for J aCt, t') 
and Ka(t, t') may be constructed by the following 
rules: Retain only the irreducible diagrams; that is, 
those without self-energy parts. (See rule 2' of 
I: Sec. 4 for the definition of an irreducible diagram 
and of a self-energy part.) Then alter the primitive 
contributions associated with these diagrams by 
replacing each factor G(O), G(O)', Q(O), or Q+(O) 

therein with a factor G., G~, QUI or Q: having the 
same time-arguments. Here G" is the collective index 
that labels the line associated ,yith the factor. [The 
external line (G" = a) does not form an exception to 
this rule.] Corresponding rules hold for the irreducible 
expansions for J ka (t, t') and Kka (t, t'). 

The formal validity of these irreducible-diagram 
expansions may be demonstrated in two ways, 
neither of which will be carried out here. The first 
way is to construct directly, by iteration and the 
use of Wick's theorem, the primitive-diagram ex­
pansions for G.(t, t'), Q.(t, t'), etc. 16 One then substi­
tutes these expansions into the irreducible expansions 
for J aCt, t') and K a(t, t') and compares the results 
with the primitive expansions for J aCt, t') and 
Ka(t, t'). 

The second method does not require the explicit 
primitive expansions for G .(t, t') and Q.(t, t'). It 
involves calculating the changes in J aCt, t') and 
Ka(t, t') produced by small variations in the 4>a~"~, 
and it gives directly the contribution proportional 

16 In contrast to those for J aCt, t') and KaCt, t'), the 
primitive expansions for GaCt, t') and QaCt, t') have factors 
associated with both external lines. 
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to each irreducible C",,,Ca). The method is illustrated, 
for another application, in reference 2.17 

The irreducible expansions are formally exact for 
any M. In the limit M ~ co, our assumption that 
unwanted diagrams make no contribution to the 
primitive expansion implies that these diagrams 
make no contribution to the irreducible expansions 
also. The argument is precisely analogous to that 
given in Sec. 3 for the equilibrium case. Thus, we 
obtain the formal irreducible expansions for J aCt, t') 
and KaCt, t') in the limit M ~ co by retaining only 
the wanted irreducible diagrams. For each of the 
stochastic models, these expansions can be summed 
to give closed equations for G(t, t') and QCt, t'), 
in analogy to the equilibrium case. The results 
appear substantially more complicated than in the 
equilibrium case, however. The complete equations 
for all the models are given in Appendix B, for 
both the nonlinear oscillator example and the many­
body problem. 

We have remarked earlier that the irreducible 
expansions for J a (t, t') and K a (t, t') are simpler 
than those for G a (t, t') and Q a (t, t') themselves. 
The expansion for Ga(t, t') actually may be con­
structed very easily from that for J aCt, t') by m­
tegrating C5.27). Thus we find 

Ga(l, t') = G(O)(t, t') 

+ r G(O)(t, t")J aCt", t') dt". (6.12) 

The factor GW
) Ct, til) in the integrand may be con­

sidered to be associated with the outgoing external 
line in each of the irreducible diagrams. [We recall 
that no factor was associated with this line in any 
of the diagram-contributions to J aCt, t').] However, 
we have not succeeded in finding an equally compact 
irreducible expansion for QaCt, t'). Equation C5.29) 
gives a substantially more complicated result upon 
integration than does (5.27). 

The difficulty in constructing a compact irre­
ducible expansion for QaCt, t') is apparent from the 
structure of the primitive expansion for this quan­
tity. In the primitive expansion for GaCt, t'), the 
factors associated with the incoming and outgoing 
external lines are always G(O) factors. This property 
underlies (6.12) [which is analogous to I:C4.12)]. 
In the primitive expansion for QaCt, t'), some con­
tributions have a G(O) factor associated with the 

17 As it is described in reference 2, the variational method 
is applicable only in the limit M --> (x). However, it can be 
extended to finite M by the formal device of introducing 
a 'collection of collections,' consisting of M' collections each 
with M systems, and considering the limit M' --> (x). 

outgoing external line and a G(Ol* factor associated 
with the incoming external line. The remaining con­
tributions have a Q(O) factor associated with either 
the incoming or outgoing external line and a G(O)O 

or G(O) factor associated with the other external 
line. This precludes an expression for QaCt, t') of 
the simple form C6.12). 

It is clear from what has been presented in this 
Section that our nonequilibrium primitive and ir­
reducible expansions do not have the simplicity and 
compactness of the diagram analysis for the equilib­
rium case, which we discussed in Sec. 3. This may 
be an unavoidable penalty for abandoning equili­
brium, but it may also be that our formulation is 
unnecessarily awkward. IS 

7. VALIDITY OF THE CLOSED MODEL EQUATIONS 

7.1. Description of Method 

We wish in Sec. 7 to investigate the basic assump­
tion that the total contribution of the unwanted 
diagrams vanishes in the limit M ~ co. This assump­
tion was stated for the equilibrium case in Sec. 3 
and for nonequilibrium in Sec. 6. It was the es­
sential ingredient in establishing closed equations 
for the model propagators, correlation functions, 
and Green's functions. The procedure we shall use 
here is to integrate the Heisenberg equations of 
motion by replacing them with a set of difference 
equations involving the discrete times to, to + I1t, 

to + 211t, '" . At each stage of integration, this 
finite-difference method yields approximations to the 
nonequilibrium correlation and Green's functions 
which contain as coefficients the same quantities 
Cn,pCa) that arose in the iteration procedure of 
Sec. 6. Only Cn,pCa) of finite order appear after a 
finite number of integration steps. 

The finite-difference method of integration actually 
constitutes a definition of the Heisenberg equations 
of motion. Consequently, we may hope that it 
converges in the limit I1t ~ 0 to yield the exact 
correlation and Green's functions, whether or not 
the iteration solutions of Sec. 6 converge. If, more­
over, the convergence as I1t ~ 0 is independent of 
M for large M, we may conclude immediately that 

18 A nonequilibrium linked-diagram formalism for infinite 
fermion systems has been described by K. Nishikawa [J. Phys. 
Soc. Japan 15, 78 (1960)], who uses the interaction representa­
tion instead of the Heisenberg representation. The basic 
quantities are taken as Qk(t, t') and Qk+(t, t'), rather than 
Qk(t, t') and Gk(t, t'). Equivalent complications in the con­
structioJl of primitive and irreducible expansions arise in 
that formulation, if the analysis is carried out correctly for 
a Gaussian initial ensemble and finite t - to. [The asymptotic 
irreducible expansion expressed by Fig. 9 of the cited paper 
is not valid for finite t - to.] 
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the unwanted diagrams make zero total contribution 
to the exact correlation and Green's functions in 
the limit M ~ 00. This is because the unwanted 
C,,;p(a) which appear in any given finite-difference 
approximation are of finite order and vanish in the 
limit M ~ 00. 

In what follows, we do not attempt to prove 
rigorously the requisite convergence properties of 
the finite-difference approximations. We make the 
convergence plausible by showing that the time 
derivatives of the matrix elements of the <lk",(t) 
have bounds which are independent of M in an 
appropriate mean-square sense. This is done for 
all t without any appeal to perturbation expansions. 
However, it is essential to our analysis that the 
Hamiltonian be modified by removing all momentum 
modes above an arbitrarily high but finite cutoff 
km • x • The significance of the momentum cutoff is 
discussed for the several stochastic models. In the 
case of the ring and ladder models, it is concluded 
that the exact functions Gka(t, tf) and Qka(t, t') 
for given k should be negligibly dependent on kma .. 

if kmax is high enough and if Vex) satisfies the con­
ditions, stated in Sec. 2, which yield lower bounds 
to the eigenvalues of the model Hamiltonians. 

After establishing, to the extent described, that 
the unwanted diagrams do not contribute to the 
nonequiIibrium correlation and Green's functions, 
we point out that this does not complete the justi­
fication of our formal closed equations for the 
stochastic models. If the wanted diagrams are suf­
ficiently numerous in high orders that they form 
nonconverging series, then a uniqueness question 
arises in the summation of these diagrams. We 
treat this question by regarding the closed integro­
differential equations themselves as limits of finite­
difference equations, rather than as summations of 
infinite classes of perturbation terms. Finally, we 
examine the conditions under which the nonequilib­
rium closed model equations imply those for equi­
librium. 

7.2. Bounds on Matrix Elements and Their 
Time Derivatives 

Let us consider the positive-definite quantities 

(T) F aCt) == (q:(t)q,,(t» = Q "Ct, t) (r = 0), 

(r)F (t) == (drq : U) d'qaU» (r = 1 2 ... ) (7.1) 
a dt' dt' ", 

where the q,,(t) are the Heisenberg operators for 
the nonlinear oscillator example. We have noted 
previously that the weighting operator (5.18) com­
mutes with the Hamiltonian. It follows that 

(r=O,I,2, .. ·) 

for all t. By (5.30), we then have 

(O)Fa(t) = H, 

(7.2) 

(7.3) 

where iv' = (e" ± 1)-1. Using (7.2), (5.6), (5.8), 
and Wick's theorem, we find 

(l)F,,(t) = H{e + VH[C1;1(a) =F C1;2(a)W 

+ V 21V\1 =F H)[C2;1(a) =F C2;2(a)]. (7.4) 

The C,,;p(a) which appear in (7.4) have been defined 
by (3.15), (3.17), (6.5), and (6.8). It follows from 
(2.19) that they are all real. 

Expressions similar to (7.4) may be found for 
the (r)F,,(t) of any finite order r. Each (T)Fa(t) may 
be evaluated for all t by repeated differentiation and 
self-substitution of (5.8) at t = to, followed by the 
use of Wick's theorem. The result is a polynomial 
of finite degree in H and the Cn;b(a). Only the 
C,,;p(a) of order n :::; 2r appear. It follows from (4.3) 
that each (T) F aCt) has a finite bound which depends 
on H but is independent of t, a, and M, and is also 
independent of the choice of model. In particular, 
this is true in the limit M ~ co. 

In order to make clear the significance of this 
result, let us write the traces which define the 
(r) F aCt) in the explicit form 

(0) F aCt) = Z-1 2: exp [-a;n(s)] I{s'l q,,(t) Is) 12
, 

.,' 
(r) F aCt) = Z-l 2: exp [-a;n(S)] 

where 

.,' 

x I(s'l d'q",(t)/dt' Is)12 

= Z-1 2: exp [ -a;n(S)J 
88 ' 

x IdT(s' Iq,,(t) 1 S)/drj2 (r ;::: 1), 

Z = 2: exp [-a;n(s)] 
• 

(7.5) 

(7.6) 

and (s' Iqa(t)1 8) is the matrix element of q,,(t) 
between the states s and Sf. The sums are over the 
complete set of joint eigenstates s, s' of the Schro­
dinger number operators q:qa, and 

;n(s) = (s l2:q:q",ls) (7.7) 
" 

is the total number of quanta in the state s. 
The boundedness of (T) F" (t) implies first of all 

that the sums in (7.5) converge to finite limits. 
In particular, it implies that the sum over the 
complete sets of states s which have successively 
increasing values of ;n(s) converges as ;n(s) ~ co. 

The density of states in the space of the occupation 
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numbers is such that the factor Z-l exp [-a:n(s)] 
in (7.5) gives the principal total weight in the sum 
to states s with :n(s) = O(M/';). In the limit M -t IX> , 

the sum is in effect sharply confined to states s 
with :n(s)/M = lV. Let us consider the complete 
set of states with a given value of :n(s)/"~I. The 
boundedness of (r)Fa(t) then implies that the rth 
time-derivatives of the complete set of matrix 
elements (s' Iqa(t)1 s) have a mean-square bound 
which is independent of M in the limit M -t IX> 

and which is finite if '.R(s)/jl1 is finite. It should be 
noted that the matrix elements (s' Iqa(t)1 s) are 
nonvanishing only if '.R(s') = :n(s) - 1. This follows 
from (5.6) and the fact that :n commutes with Je. 

We must now extend the analysis to the many­
body problem, for which Je is given by (2.16) and 
(2.18). We seek mean-square bounds on the time­
derivatives of the matrix elements (s' Illka(t) Is), 
where sand s' are now joint eigenstates of all the 
number operators Nka = q~aqka. Our previous 
technique can be applied in the present case only 
if a momentum cutoff is introduced, as mentioned 
in Sec. 7.1. We remove from Je all terms which 
contain any q or qt factor whose momentum index 
exceeds in magnitude some arbitrarily high but finite 
value km_x' It is clear that the cutoff preserves the 
Hermiticity of Je. We shall reserve for Sec. 7.5 all 
discussion of the dynamical significance of the cut­
off for the several stochastic models. 

Bounds for the many-body matrix elements with 
the momentum cutoff imposed can be obtained in 
close analogy to the procedure for the nonlinear 
oscillator. We introduce the special Gaussian weight 
operator 

'W' = exp [-0- L: NkaJ = exp [-o-'.R] , C7.8) 
ka 

where 0- is a real constant. (For bosons only, 0-

must also be positive.) Unlike the more general 
form (5.35), this operator commutes with Je and 
therefore corresponds to an equilibrium ensemble. 
It may be regarded as the infinite-temperature limit 
(13 -t 0, -f3f.L -t 0-) of the weighting operator 
exp [-f3CJC - f.L'.R)] which yields the grand canonical 
ensemble for the problem with momentum cutoff. 

Let ( )' denote a trace weighted by 'W'. Then 
the quantities 

(r) FkaC/) == (qLC/)qkaCt»' Cr = 0), 

(r) F C/) == <dr q~a(t) dT 

qka(t»' (r = 
ka dt' dt' 

satisfy 

(7.9) 
1,2, ... ) 

(7.10) 

The (T) Fka (t) may be evaluatcd III the same way 
as the (T) FaCt). We find 

(O)Fka(t) = b, C7.11) 

(l)Fka(/) = bh + b L: [VoCI;I(a) =r Vk_pCI ;2(a)]J 2 

p 

ps 

(7.12) 

where b = (e" ± 1)-1. The summations in (7.12) 
are over all p and s such that Ipl, lsi, and Ik + P - sl 
are all less than km_x' [It should be noted that, since 
Q is finite, the problem with momentum cutoff 
admits only a finite number of momentum modes. 
Hence, finite b implies a finite mean number of 
particles per system (:n)'/M.] For r > 1, we find, 
as before, that (r) Fka(t) is a finite-degree polynomial 
in b and in the Cn;p(a) of order n S 2r. 

It now follows from (4.3) that (r)Fka(t) has a 
bound which depends on b and on k but not on 
a, t, or M. Let us consider the complete set of states 
s such that '.R(s)/M has a given value. Here :n(s) = 
L:ka Nka(S) is the eigenvalue of the total number 
of particles. The boundedness of (r)Fka(t) then im­
plies that the rth derivatives of the complete set 
of matrix elements (s' IllkaCt)1 s) have a mean-square 
bound which is independent of M in the limit M -t IX> 

and which is finite if '.R(s)/M is finite. The argument 
is the same as for the nonlinear oscillator. 

7.3. Integration of the Heisenberg Equations 

Let us now consider the evaluation of the non­
linear-oscilla tor functions G a (t, t') and Q a (t, t') by 
a finite-difference solution of the Heisenberg equa­
tions of motion. We seek the solution over some 
given time-domain (to, tmaJ. Let the domain be 
divided into equal intervals I1t and let (5.8) and 
(5.11) be replaced by the sets of difference equations 

qa(tT+I) = qa(tr) 

and 

- i I1t[€qa(tT) + M- I VLa(tT)] , 

qa(tO) = qa, 

Ga~(tr+I' tm) = Ga~(tr, 1m) 

(7.13) 

- i 11t[€Ga~(tr, 1m) + M- I VMa~(/r, tm)], (7.14) 

G a~(tm' tm) = oa'n 

where tT = to + r I1t (r = 0,1,2, ... ). We may 
solve these equations in terms of the Schrodinger 
operators by recursion, substitute the results into 
C5.19) and (5.20), use Wick's theorem, and thereby 
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evaluate the quantities Qa(tn tm) and GaCt" tm). 
Equivalently, we may substitute into (5.31) and 
(5.32) and evaluate the quantities J a(t" tm ) and 
Ka(tn tm ). The results are related by the equations 

G aCtT+l, tm) - G aCtT' tm) 

= ~t[-i~Ga(tr) tm ) + Ja(t" tm)] , 

Qa(tT+l, tm) - Qa(tT, tm) 

= ~t[-i~Qa(tT' tm ) + KaCtr) tm)], 

(7.15) 

which are the finite-difference forms of (5.27) and 
(5.29). 

The final expressions obtained by this procedure 
resemble the results of the iteration expansion carried 
out in Sec. 6. Each contribution to QaCt" tm)' or to 
the other functions, consists of some product of 
factors Q(O)(to, to) and Q+(O)(to, to) multiplied by 
some power n of V and by a factor Cn;p(a). As in 
the case of the iteration expansion, all the contri­
butions containing a given Cn;p(a) may be associated 
''lith the pth distinct primitive linked diagram of n 
vertices. There are two differences, however. The 
first is that the finite difference results involve only 
the initial value Q(O) (to, to), in contrast to the time 
functions QCO) (t, t') and G CO

) (t, t') which appear 
in the iteration results. This is because we are taking 
finite-difference approximations to (5.8) and (5.11) 
rather than to the integral equations (5.13) and 
(5.14). The second difference is that the classes of 
diagrams included by the successive stages of the 
two p~ocedures are very different. The iteration 
expansion is a power-series expansion in V; at the 
rth stage, it yields for Q"Ct, t') an approximation 
which contains only the Cn;p(a) of order n ::::; r. 
In contrast, the quantity Q" (tT! tm ) obtained by 
the finite-difference scheme contains some Cn;p(a) 
as high as n = !(3T + 3m 

- 2). The finite-difference 
scheme can be considered a particular kind of con­
solidation, reordering, and weighting of the iteration 
(perturbation) expansion. 

Let us now consider the convergence properties 
of the finite-difference approximations in the limit 
~t -+ O. The exact function Qa(t, t') may be written 
as the explicit sum 

Qa(t, i') = Z-l L exp [-am(s)] 
,,' 

x (s Iq;(t') I s')(s' Iq,,(t) Is). (7.16) 

A similar expression for Ga(t, t') may be obtained 
by using (5.10). The Heisenberg equations (5.8) 
constitute a coupled set of first-order differential 
equations for the matrix elements which appear 
in (7.16). The error in the matrix elements given 

by the finite-difference integration scheme therefore 
depends on the magnitude of the second derivatives 
d2 (s' \q,,(t)\ s)/de over the domain (to, tmax). These 
derivatives, however, are not bounded for all s 
and s'. Certain matrix elements between states in 
which the total number of quanta is very large 
oscillate with extreme rapidity. 1'\0 matter how 
small ~t may be taken, there will be matrix elements 
that are poorly approximated. Convergence of the 
finite-difference approximations for Q a (t, t') therefore 
requires that the weighting function Z-lexp [-am(s)] 
in (7.16) suppress the contribution of matrix ele­
ments with infinitely rapid time variation. 

We found in Sec. 7.2 that for each finite r the 
quantities 

(d F (t) = [a2TQ
,,(t, t')J 

a at at" ,'~t 

satisfy finite bounds which are independent of t, a, 
and 1\-1. We note also that the contribution of every 
matrix element to (r) F aCt) is real and non-negative. 
It follows from this that matrix elements with 
infinite time derivatives do not make a finite contri­
bution to Qa(t, t). By applying Schwarz's inequality 
to (7.16), we see that the contribution of any matrix 
element to Q" (t, t') is bounded by its cont;ibutions 
to Q,,(t, t) and Qa(t', t'). These considerations sug­
gest that in the limit ~t -+ 0 the finite-difference 
approximations to Qa(t, t') and Ga(t, t') may con­
verge to give the exact functions over any given 
domain (to, tmax). 

It should be emphasized that we have not given 
a proof of convergence. The fact that matrix ele­
ments with extremely high oscillation frequencies 
make a negligible contribution to the exact Q,,(t, t') 
does not assure that they also make negligible 
contributions to the finite-difference approximations 
to Q,,(t, t'). The successive approximations to such 
matrix elements will in general be unstable, and can 
greatly exceed the exact values after a sufficient 
number of integration steps. We shall not attempt 
to resolve this question in the present paper. How­
ever, we conjecture that such instability does not 
destroy the convergence of the finite-difference ap­
proximations to Q,,(t, t'). The reasoning behind the 
conjecture is intimately connected with the col­
lective nature of the variables qa(t). It is clearest 
for the true problem, and we shall outline the argu­
ment briefly for this case. 

The Hamiltonian for the true problem is (5.1). 
The matrix elements for this case may be evaluated 
immediately in the representation where the indi­
vidual-system number operators qinlqlnl are diagonal, 



                                                                                                                                    

516 ROBERT H. KRAICHN AN 

and the (s' Iqa(t)1 s) may then be evaluated by 
transformation to the representation with the q~qa 
diagonal. If one carries this out and takes M very 
large, the results strongly suggese9 that, for any 
given Fl, those (s' Iqa(t)1 s) which have significant 
components with frequencies» (E + VN) are ones 
for which :rr(s)/(MN) » 1. However, these matrix 
elements are very strongly suppressed by the weight­
ing factor Z-1 exp [-a:rr(s)] in (7.16) when M is 
very large. This makes it plausible that the finite­
difference approximations to Qa(t, t') converge as 
ilt -+ 0 if we take M infinite.20 Now we note that 
the Cn;p(a:) are independent of M for the true 
problem and consequently the finite-difference ap­
proximations to Qa(t, t') are independent of M. 
This then implies, if the previous argument is cor­
rect, that the approximations to Qa(t, t') converge 
for any Jlf. For small M, however, we conjecture 
that instabilities arise in such a way that the sum 
over states sand s' in (7.16) becomes, in effect, a 
sum over a divergent but formally correct series 
as we take ilt -+ O. 

The argument just outlined can be extended to 
the stochastic models by introducing a 'collection 
of collections' consisting of M' collections each 
with M systems, taking collective variables in the 
collection of collections, and considering the case 
of infinite M'. The extension can also be made with­
out this device. The central part of the argument­
that for large M only states with :rr(s)/(MN) » 1 
give rise to matrix elements having significant com­
ponents with frequencies » (E + V.2\')-appears 
on qualitative grounds to depend only on the col­
lective nature of the qa(t) and to be as valid for 
the models as for the true problem. A point of 
consistency which should be noted here is that the 
explicit expressions for the successive (8' Iqa(tr)1 s), 
obtained by recursive solution of (7.13), involve 
only matrix elements between intermediate states 
s" which satisfy :rr(s") ~ :rr(s) - 1. 

It now remains to extend our considerations to 
the many-body problem. In order to clarify the 

19 We have not proved this rigorously. 
20 It is important here that the Heisenberg equations 

of motion used in the finite-difference procedure be taken in 
the form (5.8) and not in the form 

dqa/dt = i(:JCqa - qa:JC). 
The latter form yields unlinked- as well as linked-diagram 
contributions to Qa(t, t'), as we have already noted. It is 
unsuitable for a finite-difference integration procedure 
because the eigenvalues of :JC grow with M so that, for large 
M, dqa/dt is expressed as the difference of two operators 
each wIth large matrix elements. In this situation, it could not 
be expected that the convergence of a finite-difference 
procedure would be independent of M as M --> co. An equi­
valent difficulty arises if one attempts finite-difference 
integration in the Schrodinger representation. 

discussion, let the weighting operator (5.35) be 
taken in the particular form 

(7.17) 

If Vex) were zero, this would correspond to a grand 
canonical ensemble at temperature /30 and chemical 
potential J.l.o. With Vex) nonzero, (7.17) does not 
correspond to an equilibrium ensemble. 

We may now write Qka(t, t') as the explicit sum 

QkaCt, t') = Z-1 I: 
,,' 

p-y 

(7.18) 

Here sand s' are members of the complete set of 
joint eigenstates of the number operators Np'Y = 
q!.."qp-y, the N P7 (s) are the eigenvalues of these 
operators, and :n(s) = I:P'Y Np-y(s) is the eigenvalue 
of the total number operator :rr. The factor Z is 
now given by 

Z = I: exp {-/3o[I: €pNpy(s) - J.l.o:n(s)]). (7.19) 
p-y 

If the term -/30 I:P'Y E~p-y(S) were absent from 
(7.18), our discussion of the convergence of the 
finite-difference approximations for the nonlinear 
oscillator would be immediately applicable to the 
many-body problem with momentum cutoff. This 
follows because we found similar mean-square bounds 
on matrix-element derivatives in the two cases. But 
it is difficult to see how the presence of the term in 
question can interfere with convergence. The effect 
is to weight the sum against states in which there 
is strong initial excitation of high momenta and, 
therefore, in which the initial kinetic energy is high. 
Since the problem is conservative, this implies a 
discrimination for all t against certain states of 
high total energy. If we consider large M, then the 
weighting operator (7.17) effectively confines the 
sum to states s for which :rr(s)/(MN) ~ 1, where 
N is determined by /30 and J.l.o. In this respect, it 
resembles the infinite-temperature weighting opera­
tor (7.8) which we used to obtain bounds on matrix 
elements. But further, it chooses from among the 
complete set of such states a subset which is weighted 
in a particular fashion against high total energy 
eigenvalues, The additional selection may reasonably 
be expected to increase rather than decrease the 
suppression of matrix elements with extremely high 
frequencies of oscillation. We conclude therefore that 
if the finite-difference scheme converges for the non­
linear oscillator, then it is very plausible that the 
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finite-difference approximations to the many-body 
functions QkC«t, t') and Gka(t, t') also converge, at 
least for the problem with momentum cutoff. 

7.4. Justification of the Formal Model Equations 

Let us assume, on the basis of Sec. 7.3, that the 
finite-difference approximations to Gka(t, t') and 
Qka(t, t') converge for all M as ~t ~ 0, and that the 
convergence is independent of M for large M. It 
follows directly that the total contribution of the 
unwanted diagrams vanishes for each of the sto­
chastic models in the limit M ~ co. The unwanted 
Cn;,,(a) which appear in each approximation are of 
finite order and vanish in the limit M ~ co. Thus 
they do not appear in the final functions to which 
the sequence of finite-difference approximations 
converges. 

The justification of our formal closed model 
equations for nonequilibrium does not immediately 
follow from the vanishing of the contribution of the 
unwanted diagrams. These equations were obtained 
in Sec. 6 by carrying out formal sums of the primi­
tive- diagram iteration expansions for Qka(t, f') and 
Gka(t, t') with only the wanted diagrams included. 
However, it is possible that the expansions are 
divergent even when they are restricted to wanted 
diagrams. In this case, it is not assured that the 
formal closed model equations represent a unique 
summation of the expansions. This question can be 
resolved by considering the formal model equations 
themselves as the limits of finite-difference equations 
rather than as infinite sums of perturbation terms. 
The justification of the equations proceeds in several 
steps, which we shall outline in terms of the non­
linear oscillator example. 

It is convenient for the present purpose to carry 
out a finite-difference solution of the integral 
equations (5.13) and (5.14) instead of (5.8) and 
(5.11). Upon substituting the results into (5.19), 
(5.20), (5.31), and (5.32), one obtains expressions 
for Ga(t" tm ), Qa(t" tm ), J a(t" tm ), and Ka(t" tm ) 

which may be evaluated by Wick's theorem in 
terms of the quantities Q(O)(tr" tm ,), Q+(O)(tr" tm ,), 

G(O)(tr" tm ,), and G(O)*(tr" tm ,). These expressions 
are more compact (and also more accurate for 
finite ~t) than those obtained by the more ele­
mentary integration scheme of Sec. 7.3. The results 
of the present procedure are analogous to the 
primitive expansions of Sec. 6.1. They contain 
contributions associated with all the primitive 
linked diagrams. Only diagrams of finite order 
contribute to Ga(t" tm), etc. for given rand m. 

The expressions for J a(f" tm) and Ka(trl tm) can 

be reformulated in terms of contributions associated 
with irreducible diagrams only. As in Sec. 6.2, one 
obtains the irreducible forms by retaining only the 
contributions associated with all the irreducible 
diagrams, and in them replacing each factor 
G(O)(fr" tm,), G(O)·(tr" tm,), Q(O)(tr" tm,), or 
Q+ (0) (fr" tm ,) with a factor G~(fr" tm ,), G: Cfr" tm ,), 

Q~(tr" fm ,), or Q;(tr" tm ,), where (J' is the collective 
index which labels the relevant line. The irreducible­
diagram expressions for J a(t" tm ) and Ka(t" fm) 
may be verified, as in Sec. 6.2, by substituting for 
each factor Gu(tr" tm ,), etc., its finite-difference ex­
pression in terms of primitive diagrams. In the 
present case, the expression for each G~(tr" tm ,) 

is a finite sum over primitive-diagram contributions 
instead of an infinite series. Alternatively, the ir­
reducible expressions may be obtained by the 
variational method mentioned in Sec. 6.2. 

At this point we may take the limit M ~ co, 

so that only contributions associated with the 
wanted irreducible diagrams survive. In the case 
of the Hartree-Fock and random-coupling models, 
it may then be verified that if the expressions for 
J a(t" tm ) and K"(t,, tm ) are substituted into (7.15) 
the results are just the finite-difference forms of the 
closed integro-differential equations for these models 
given in Appendix B. In the limit ~f ~ 0, they be­
come identical with these equations. For the ladder 
and ring models, the further step remains of summing 
the (finite) series of irreducible diagrams which 
contribute to each quantity KaCtr, fm) and J a(f" tm ). 

This can be done by introducing vertex functions 
defined by difference equations. The final sets of 
equations thus obtained are again the finite-dif­
ference forms of the closed integro-differential equa­
tions for the models which are given in Appendix B. 

The formal closed model equations may thus be 
obtained without any use of the perturbation ex­
pansions of Sec. 6. Their justification then depends 
solely upon the validity of our assumption that the 
finite-difference integration scheme converges in 
the limit ~f ~ O. 

7.5. Approach to Equilibrium 

Let us now consider the extent to which validity 
of the formal closed model equations for none qui­
librium implies validity of the equilibrium model 
equations of Sec. 3. On the basis of the preceding 
discussion, we shall suppose throughout the present 
section that the nonequilibrium closed equations 
are valid over any given domain (to, fmax) for all 
the stochastic models with momentum cutoff. 

Consider first the ladder and ring models when 
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the conditions stated in Sec. 2 for boundedness of 
the potential energy per particle are satisfied. It 
is easy to verify that the imposition of a momentum 
cutoff does not destroy the boundedness properties. 
The interaction Hamiltonian for the ladder model 
may still be written in the form (2.30), which is 
positive definite if Vex) is non-negative everywhere.21 

When all the Vk are non-negative, the lower bound 
-! V(O):n, implied by (2.33) for all the total potential 
energy of the ring model, is replaced by the less 
negative bound -! L"kP Vk_pNk ", where the sum 
over momenta is restricted by Ikl :::; kma" Ipi :::; kmax • 

Suppose that we take the nonequilibrium ensemble 
in the form (7.17). For given (30 and /.Lo, momenta 
Ikl "-' l~max will have negligible initial excitation if 
kma, is sufficiently high. Since the potential energy 
per particle is bounded from below and the system 
is conservative, it then is plausible that such mo­
menta will be negligibly excited at any later time. 
We anticipate that the behavior of Gk,,(t, t') and 
Qk" (t, t') will be independent of kmax for all time 
in the limit kmnx ---? co. 

The discussion of Sec. 5.5 now suggests that in 
the limit to ---? - co the nonequilibrium functions 
Gk,,(t, t') and Qka(t, t') should depend only on t - t' 
and should be related by (5.48) to the temperature­
domain equilibrium propagators for some (3 and fJ.. 

(In general, we will have (3 ~ (30 and fJ. ~ fJ.o.) Since 
the unwanted Cn;v(a) do not contribute to the 
nonequilibrium functions, it follows that they should 
not contribute to the equilibrium propagators in 
the limit M ---? co. The closed equations for the 
model propagators are then justified provided, in 
addition, that the formal summations of wanted 
diagrams described in Sec. 3 are justified. The latter 
supposition is made plausible by the discussion of 
Sec. 7.4, which validates the corresponding summa­
tion of wanted diagrams for the nonequilibrium 
functions. 

The arguments just presented are not conclusive, 
and they are based in part on ergodic assumptions 
which are very difficult to investigate. However, 
it may be feasible to check the correspondence 
between the equilibrium and nonequilibrium closed­
model equations in a direct analytical fashion. If 
both sets of equations are valid, and if our ergodic 
assumptions (Sec. 5.5) are valid, then the equations 
for Sk" (.Ia) should be obtainable by analytic con-

21 The cutoff does not mean the removal of all Vk from 
Xi for k > kmax• Higher Vk are admitted where they connect 
q and qt factors admitted by the cutoff. In the x-space re­
presentation, the cutoff leaves Vex) unaltered but restricts 
the fields ",,,(x) and "'" t(x) to Fourier sums which do not 
contain the excluded momentum modes. 

tinuation from the nonequilibrium equations for 
to ---? - co. We have not attempted this. 

The following point should be noted. Some equi­
librium values of (3 and fJ. may be unreachable by any 
choice of (30 and fJ.o in (7.17). In particular, if Vex) 
is purely repulsive the initial potential energy will 
be so high that very low temperatures will be un­
reachable. The reason is that (7.17) represents zero 
initial two-body correlations. We may handle this 
situation by taking a true problem in which the 
system of interest is coupled by weak forces to a 
reservoir of otherwise free particles and constructing 
a stochastic model of the combined system. If enough 
particles are in the reservoir, and the coupling is 
weak enough, then any desired equilibrium temper­
ature may be reached by evolution of an ensemble 
of the form (7.17). In this way we may justify the 
formal closed equilibrium equations for the propaga­
tors of the combined system. Finally, we may let 
the coupling to the reservoir go to zero and thereby 
recover the closed propagator equations for the 
system of interest in isolation. 

Now let us consider the random-coupling model, 
in which there is no lower bound to the potential 
energy per particle in the limit M ---? co. Our re­
marks will also apply to the ladder and ring models 
when V (x) does not satisfy the conditions which 
give bounds on the eigenvalues of Xi. In the absence 
of a momentum cutoff, it is not assured that these 
models will evolve to equilibrium at all. It is pos­
sible that the mean potential energy may grow 
negatively infinite and the mean kinetic energy 
positively infinite. With the momentum cutoff, 
there is a ceiling on the kinetic energy, and in this 
case we anticipate that an equilibrium will be 
achieved. The supposition is supported by the 
existence of the rigorous equilibrium ensembles 
given by (7.8). However, such an equilibrium may 
differ very markedly in its properties from a grand 
canonical ensemble. In particular, it may be unstable 
under coupling to external systems. Obviously, its 
properties need not become independent of kma, 

as kma, ---? co. These considerations lead us to regard 
the formal closed equations for the temperature­
domain propagators with strong suspicion in the 
case of models with no lower bound on the potential 
energy per particle. The classical results presented 
in I perhaps cast some light on the situation. 

APPENDIX A. GENERALIZED MODELS FOR 
DISTINGUISHABLE PARTICLES 

Let the true Hamiltonian for a system of N 
distinguishable particles interacting through the pair 
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potential VeX) be 

H = ~ L P: + Hi, Hi = ~ L' V(x i - Xi), (AI) 

as in I:Sec. 2.1. As before, L~; means that i = j 
is to be omitted in the summation. We consider a 
collection of M such systems (M odd) with total 
true Hamiltonian 

X = ~ L L P:lnl + Xi' 

Xi = ~ L L' V(x i lnl - X; lnl), (A2) 
ij 

where Xilnl and pilnl are the position and momentum 
of the ith particle of the nth system. Then we take 
the general model Xi in the form 

(A3) 

with 

Viilnml(X) = M-J Vex) 

X L exp [-i2r.(n - m)O'/MJ$i,;;a 

[a = 0, ± 1, ... , ± !eM - l)J. (A4) 

To recover the true problem, we take $i ,;;" = 1 
for all i, j, and a, thereby obtaining 

(A5) 

In the stochastic models, the $; ';;" have unit 
modulus but stochastically determined phases. In 
this case, the individual systems in the collection 
are dynamically intercoupled. We see from (A4) 
that Vijlnml(Xilnl - X;lml) depends not only on the 
displacement Xi lnl - Xj[ml of the pair of particles 
in space, but also on their 'displacement' n - m in 
the collection. Moreover, Viilnml (x) is different, in 
general, for each pair i, j. 

The distinguishable particle versions of the 
generalized ladder, ring, random-coupling, and 
Hartree-Fock models are given by the follo\ving 
prescriptions: 

Ladder Model 

Take 

$i.i;a = exp [+i2r.O' ~i,;/MJ, ~i,j = -~;,i' (A6) 

For each pair of indices i, j fix the integer ~i ,j by 
an independent random choice in the interval 
(0 ::; ~ < M), subject only to the antisymmetry 
constraint in (A6). By (A4) and (2.10), we find 

Viilnml(X) = On-d',i,m V(X) , (A7) 

where O,,-d'oi. m is to be interpreted according to the 
cyclic convention (2.15). 

Ring Model 

Take 

$i.i;a = exp [-i2r.(Ai;a + ~;;_,,)/M], 
~i;a = -~i;-'" (AS) 

For each pair of indices i, a fix the integer ~i; a 

by an independent random choice in the interval 
(0 ::; ~ < M), subject only to the antisymmetry 
constraint in (AS). 

Random-Coupling Model 

Take 

$i,;;a = exp [-i2r. ~i,;;a/M], 
(A9) 

For each triad of indices i, j, a, fix the integer ~i.j:a 
by an independent random choice in the interval 
(0 ::; ~ < M), subject only to the antisymmetry 
constraints in (A9). 

Hartree-Fock Model 

Take 

$i,;;O = 1, $i,;;a = 0 (a ¢ 0). (A1O) 

There are no random parameters. By (A4) and 
(2.10), we have 

(All) 

A comparison of the present models with those 
of I:Sec. 2 shows that 'displacement in collection' 
n - m, and the associated 'Fourier' modes a, now 
play the roles in constructing the randomized po­
tentials that formerly were played by spatial dis­
placement Xi - X; and the Fourier modes k. In the 
present models, the shape of the interaction betwcen 
any pair of particles is always that of Vex); There is 
no mutilation of the potential as in I:Sec. 2. However, 
the strength of this interaction can vary with n - m, 
i, and j. In the simplest case, t.he Hartree-Fock 
model, we see from (A3) and (All) t.hat. each particle 
simply moves in t.he average field of the entire col­
lection of particles. 

If one takes a grand canonical ensemble of col­
lect.ions, the present models lead, in the limit 
j11 --7 ex> , to closed expressions for the classical 
Helmholtz free energy whatever may be the value 
of N, the mean number of particles per system. A 
classical nonequilibrium formalism, analogous to 
that of Sees. 5 and 6, may be developed for these 
models. It involves n-body time-displaced distri­
bution functions (n = 1, 2, ... ) and also Green's 
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functions which give the response of these distri­
butions to small perturbations. 

APPENDIX B. NONEQUILIBRIUM MODEL 
EQUATIONS 

We list here the final expressions for Jka (t, t') 
and Kka(t, t') for the four stochastic models in the 
limit M -7 co. The collective indices a, .,. are 
omitted since there is no dependence on these in­
dices in the limit. The equations below, taken to­
gether with (5.43) and (5.44), form complete sets 
which determine the evolution of Gk(t, t'), Qk(t, t'), 
and Q~(t, t') = Gk(t, t') =t= Qk(t, t' ). (As in the text, 
the upper and lower signs of a double sign refer to 
fermions and bosons, respectively.) The equations 
for the boson random-coupling model (with to= - co) 

have been given previously.Ia The equations for 
the several nonlinear oscillator models may be ob­
tained from those belo"w simply by omitting all the 
momentum indices and sums over momenta. All 
integrals in the equations below may be taken 
from to to + co ; the G functions then automatically 
restrict the actual ranges of integration according 
to the defining relation Gk (t, t') = 0 (t < t'). 

H artree-F ock Model 

Jk(t, t') = -i L (Va =t= Vk- v)2Vit)Gk(t, t') 
p 

-i L (Va =t= Vk- p)2Vp(t)Qk(t, t') 
p 

Here 

(Bl) 

(B2) 

(B3) 

is the mean number of particles per system with 
momentum p at time t. 

Random Coupling Model 

Jk(t, t') = -i L (Va =t= Vk-p)l\"p(t)GkCt, t') 
p 

p. 

x J [=t=GtU, tl)Qr(t, tl)Q.(t, t l ) 

± Qp(tl , t)Gr(t, tI)Qs(t, t l) 

=t= Qk(tI , t')Gt(t, tI)QrCt, tI)Q.Ct, t l ) 

± Qk(tI, t')Qp(tI , t)Gr(t, tI)Q.(t, t I) 

- Qk(tI , t')QvCtl , t)Q:(t, tl)G.(t, tl)J dtl . (B5) 

In these equations r = k + p - s. 

Ring Model 

Jk(t, t') = -iViv"Gk(t, t') 

± i L J V~_.(t, tl)Q.(t, tl)Gk(tl, t') dtl 
• 

X G.(t, tl)Gk( t l , t') dtl dt2 dta 

Kk(t, t') = -iVoNQkCt, t') 

± i L J V~_.(t, tl)Q.(t, tl)Qk(t" t') dt 1 

• 

x [G:'(t', t l)Q;(t2' ta)Qr(ta, t2) 

X Q.(t, t l ) - Qk(tl , t' )Qp(t2 , ta)Q:(ta, t2) 

X G.(t, tl)J dtl dt2 dta. 

(B6) 

(B7) 

Here N = Lp 1Vp (t) is the (constant) mean number 
of particles per system, and r = k + p - s. The 
vertex function V'-s is determined by 

V~(t, t') 

= Vq{ oCt - t') + i ~ J [Gp>t;(t, t")Qp'+q(t, til) 

- Qp,(t", t)Gp'+q(t, t")J V~(t", t') dt"}, CB8) 

It sa tisfies 

V~(t, t') = V~:(t, t'). (B9) 

If the initial momentum distribution has reflectional 
symmetry, VHf, t') is real. The vertex function may 
be interpreted in terms of a higher-order Green's 
function, of a kind which is non vanishing only for 
nonlinear systems. We have 

- QvCtI' t)Q:(t, tl)G.(t, tl)JGk(tl , t') dtl 

Kk(t, t') = -i L (Va =t= Vk- p)1Vp (t)QkCt, t') 

(B4) M-1 ", ~ * L.... ua+p,p+~¢aPp~ 
pp~ 

p X (03qka(t)/[o/;p(t1) ofrit2) of.~(tam 

p. = -i ff GkCt, t')n-.(t', tDGt(ti, t1)Gr(t{, t2) 

X G.(t', ta) dt' dti· (BlO) 
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Here Oik,,(t) is the infinitesimal perturbation operator 
introduced in Sec. 5, L&PA means that the values 
p. = a and A = a are omitted from the sum, and, 
again, r = k + p - s. Equation (BlO) is valid only 
for the ring model and for M ~ co. 

Ladder Model 

Jk(t, t') = -i L 1 V'PPk(t, tl)Qp(tl , t)Gk(tl , t') dtl 
P 

=t= L 111 Vk~rs(t, t3)V~:sr(tl' t2)G"f,(t, t l ) 
ps 

X Qr(t3 , t2)QS(t3 , t2)Gk(tl , t') dtl dt2 dt3 (Bll) 

Kk(t, t') = -i L 1 V'ppk(t, tl)Qp(tl , t)Qk(tl , t') dtI 
p 

+ L 111 nprs(t, t3 ) V ';rs( tI , t2 ) 
ps 

X [Gt(t', tI)Q;(tI, t) =t= Qk(tI , t')G~(t, tI)] 

X Qr(t3 , t 2)Qs(t3 , t2) dtI dt2 dt3 • 

Here r = k + p - s, and 

(B12) 

V'prs(t, t') = nprs(t, t') =t= V'psr(t, t'). (B13) 

The vertex function V'prs is determined by 

V'prs(t, t') = Vk - s oCt - t') - i L Vk - s ' 
s' 

X 1 [=t=Gr,(t, t")Q.,(t, t") V~'.'.r(t", t') 

+ Qr~(t, t")G.,(t, t") V~'r'rs(t '~ t')] dt '~ (B14) 

It sa tisfi es 

nprs(t, t') = V~s.(t, t'), (B15) 

a fact which has been used in writing (B12). In 
analogy to the case of the ring model, V'PrB may be 
interpreted in terms of a higher-order Green's func­
tion. We have 

X Gs(t~, t3) dt' dtL (B16) 

where L~"A has the same meaning as in (BlO). 
Equation (B16) is valid only for the ladder model 
and for M ~ co. 

If the vertex functions V' in (B6), (B7), (Bll), 
and (B12) are expanded into infinite series by itera­
tion solution of (BS) and (B14), there result ex­
plicitly all the contributions associated with the 
irreducible diagrams that survive in the ring and 
ladder models. 

The nonequilibrium equations presented above 
for the several stochastic models should reduce to 
an equilibrium description in the limit to ~ - co , 

subject to the reservations expressed in Secs. 5.5 
and 7.5. In this case, the equations may be simplified 
considerably by transformation to the frequency 
domain and the use of (5.51). The results possibly 
may prove a useful adjunct to the model equations 
for the temperature-domain propagators presented 
in I:Sec. 5. In some applications, the equilibrium 
quantity of direct interest is Qk(W) , defined by (5.50). 
In principle, Qk(W) may be determined from the 
temperature-domain propagator Sk(Sa) by analytic 
continuation, but in practice this may prove very 
difficult. It is therefore of interest to have equations 
which directly determine Qk(W), 

In this connection, it should be noted that the 
formalism used for the temperature-domain propa­
gators in I, and in Sec. 3 of the present paper, does 
not appear to be directly applicable to propagators 
in the real-time or frequency domain. The reason 
is that the individual states which make up the 
unperturbed (free-particle) grand canonical ensemble 
are not, in general, eigenstates of the adiabatic S 
matrix; the particles can scatter each other ir­
reversibly while the interaction is switched on. Con­
sequently, it is not clear that the perturbation series 
for the real-time propagators can be expressed in 
terms of time-ordered products in the simple way 
that is possible for the temperature-domain propa­
gators. 
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Asymptotic Expansion of the Bardeen-Cooper-Schrieffer Partition 
Function by Means of the Functional Method* 

B. M UHLSCHLEGEL t 
Department of Physics, University of Illinois, Urbana. Illinois 

( Received December 1, 1961) 

The canonical operator exp [-(3(X - I'N)] associated with the Bardeen-Cooper-Schrieffer (BCS) 
model Hamiltonian of superconductivity is represented as a functional integral by the use of Feyn­
man's ordering parameter. General properties of the partition function in this representation are 
discussed. Taking the inverse volume of the system as an expansion parameter, it is possible to 
calculate the thermodynamic potential including terms independent of the volume. This yields a 
new proof that the BCS variational value is asymptotically exact. The behavior of the canonical 
operator for large volume is described and related to the state of free quasiparticles. A study of the 
terms of the thermodynamic potential which are of smaller order in the volume in the low-temperature 
limit, shows that the ground state energy is nondegenerate and belongs to a number eigenstate. 

I. INTRODUCTION 

SINCE Bardeen, Cooper, and Schrieffer1 (BCS) 
presented their theory of superconductivity, 

there has been a rapidly growing interest in the struc­
ture of the BCS model Hamiltonian. One of the chal­
lenging questions arises from the fact that a lower 
bound of the partition function Z = Tr exp [ - {3H BCS] 

is calculated by means of a variational procedure 
with a particle number nonconserving trial Hamil­
tonian Ho (the free quasi-particles) leading to a 
thermodynamic behavior which, in general, agrees 
extraordinarily well with experiment. Several 
investigations of the exactness of the variational 
solution have been made. Considerations of this 
kind in the whole temperature range must include, 
of course, T = 0, i.e., the ground-state energy. In 
the Appendix of the BCS paper, one can find the 
remark that, for large particle number, the approxi­
mative ground state is also the exact one. Later 
Bogoliubov, Zubarev, and Tserkovnikov2 claimed 
that the same is true for the partition function and 
thus the thermodynamic potential in the full 
temperature range. Their proof, based on a thermo­
dynamic perturbation calculation, has been criticized 

* This work was supported by Xavy Contract Nonr 
1834 (12) and by a travel grant of the German Bundesminis­
terium fur Atomkernenergie und Wasserwirtschaft. 

t Present address: Institut fUr Theoretische Physik der 
Universitat Kaln, Kaln, Germany. 

1 J. Bardeim, L. N. Cooper, and J. R. Schrieffer, Phys. 
Rev. 108, 1175 (1957); recent review by J. Bardeen and 
J. R. Schrieffer, in Progress in Low-Temperature Physics 
edited by C. J. Gorter, (North-Holland Publishing Company' 
Amsterdam, 1961), Vol. III, p. 170. ' 

2 X. N. Bogoliubov, D. N. Zubarev, and 1. A. Tserkovni­
kov, .Soviet Phys.-Doklady 2, 535 (1958); See also Fortsch, 
Physlk .. 6! 605 (1958); A New Method in the Theory of Super­
conductw~ty (Consultants' Bureau Enterprises, Inc., New 
York, 1959). 
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by several authors, including Bogoliubov.3 For 
temperatures below the transition point, according 
to this treatment, the partition function of free 
particles would also be an "exact" solution. A 
number of authors have treated the limiting case 
of strong coupling for both zero temperature4

-
1 

and finite temperature. 5 

Recently, Bogoliubov, Zubarev, and Tserkoy­
nikov8 (BZT) attacked the problem again by 
studying the system of differential equations for 
the thermodynamic Green's functions, associated 
with the Hamiltonian H BCS. They included an 
auxiliary term which does not commute with the 
particle number in the Hamiltonian. Considering 
the problem in the zero limit of this term, BZT 
were able to prove that the Green's functions 
corresponding to free quasi-particles satisfy the 
full chain of equations in the limit of large volume, 
and that the triyial free particles solution must be 
rejected below the transition temperature. 

The BZT treatment is an asymptotic expansion 
performed on an infinite system of differential 
equations. "Csually. in statistical mechanics one 
transforms the partition function into an integral 
and applies well-known expansion methods. Study­
ing an integral of the type 

3 D. J. Thouless, Ann. Physics 10, 553 (1960); G. Wentzel, 
Helv. Phys. Acta 33, 859 (1960); N. N. Bogoliubov, Suppl. 
Physica 26, 1 (1960); B. Muhlschlegel, Sitber. math. natmw. 
Kl. Bayer. Akadwiss. Munchen, 1960, 123 (1961). 

4 Y. Wada and N. Fukuda, Pro gr. Theoret. Phys. (Kyoto) 
22,775 (1959). . 

6 D. J. Thouless, Phys. Rev. 117, 1256 (1960). 
6 H. Koppe (unpublished). 
7 K. Baumann, G. Eder, R. Sexl, and W. Thirring, Ann. 

Phys. 16, 14 (1961). 
8 N. N. Bogoliubov, D. N. Zubarev, and 1. A. Tserkovni­

kov, Soviet Phys.-JETP 12, 88 (1961), hereafter referred 
to as B. Z. T. 
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1(0) = L: dxF(x)e- aG(.) (1.la) 

asymptotically, is called Laplace's method.9 For 
large parameter 0, the leading term of the integral is 

(l.lb) 

provided the G possesses an absolute and isolated 
minimum Xo. 

The purpose of this paper is to bring the BCS 
partition function into a form suitable for applying 
an expansion procedure which is similar to the 
simple Laplace method in one dimension and where 
the volume of the system plays the role of the large 
parameter. The method we will use to transform 
the partition function is not new but will follow 
the same lines first treated in the work of Stratono­
wich 10 on distribution functions in a Bose system, 
and later considered from a more general point of 
view by Hubbard.ll Similar ideas were used also 
by Edwards'2 in calculating the thermal behavior 
of the classical screened electron gas. 

We confine our attention to the BCS Hamiltonian 
with separable attractive interaction W kit' = - VkVk ' 

Ek = Lk is the single-particle energy relative to the 
chemical potential; n..r = l1.:r + Ckr, bkr + = l1.:t + C-kl + 

are the number and pair creation operators for the 
fermions in the momentum-spin states. The Vk 

entering in H Bes are independent of the volume n. 
It is very convenient to express H Bes in terms of 
the operators 

(1.3) 

For the same k these Hermitian operators behave 
like Pauli matrices, l(k) being the unit. They 
commute for different momenta. '3 The Hamiltonian 
is 

8 See A. Erdelyi, Asymptotic Expansions (Dover Publi­
cations, New York). 

10 R. L. Stratonovich, Soviet Phys.-Doklady 2, 416 
(1958). 

11 J. Hubbard, Phys. Rev. Letters 3, 77 (1959). 
12 S. F. Edwards, Phil. Mag. 4, 1171 (1959). 
13 The difference between the s z(k) and the common Pauli 

matrices is solely that they act in a four-dimensional space 
according to the four possibilities of occupying kj and - kl. 
Here eaq·. = 1 - I + I cosh a + n's sinha and Tr eaq·. = 
2(1 + cosh a), n being a unit vector. 

H Be s = H + L: Et + (1/20) L: v:I(k) 
k k (104) 

H = - t: Et s3(k) - 4
1
0 [ ~ VtS1(k) T 

- 4
1
0 [ ~ Vts2(k) T 

We consider only H. However, it is quite clear that, 
apart from ~€k the ground states of H Bes and H 
for equal particle number can differ only by the 
volume independent term (2n)-I~Vk.'4 

II. OPERATOR INTEGRAL 

To illustrate the method we look at the operator 
exp [-!3(A - tB 2/0)]. First of all, assume the 
Hermitian quantities A and B commute. Applying 
the formula 

e!~b' = (1..)! fa> dxe-!~·'+M. (2.1) 
211" _a> 

to the quadratic operator (for instance in the 
spectral representation of the exponential operator) 
we get 

-/lCA-'B'/O) (!3 0)t fa> d -! O/l.' -/l(A-.B) e' =- xe e . 211" _a> (2.2) 

Introducing the integration variable x one achieves 
a linearization of the exponent; the integration is a 
Gaussian average. 

If A and B do not commute, (2.2) is no longer 
correct. Nevertheless, it is possible to apply (2.1). 
One has to introduce Feyman's ordering parameter'5 

and to replace 

!3( A - 2
1
0 B2) by t LlT.[ A(T.) - 2~ B2

(T,) J. 
Here we use a sufficiently fine, but fixed, interval 
division 0 < T, < T2 < ... < Tn = 13 with 
L:: LlT, = 13. The operators A(T), B(T) can be treated 
like C numbers; the final elimination of the ordering 
parameter, the "disentangling" process, must 
proceed according to the rule A(T,)B(Tj) 
B(Tj)A(T.) = AB for T, > Tj, = BA for T, < Tj, 

respectively. The analog to (2.2) is therefore 

e-Il(A-tB'/O) = II (LlTiO)!fa> lldx, 
, 211" -0>, 

X exp ( -to t LlT'X~) 

X exp {- t Llr;[A(T;) - X,B(T;)]}' (2.3) 

,. The same holds for the thermodynamic potential. 
" R. P. Feynman, Phys. Rev. 84, 108 (1951). 
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Strictly speaking, the equality sign in (2.3) holds 
only in the limit n ~ <Xl. The right-hand side is 
nothing but a functional integral with Gaussian 
measure, the product in front being the normaliza­
tion factor.'6 

The model Hamiltonian of superconductivity 
(1.4) has almost the structure discussed above. We 
have only to introduce an additional set of variables 
Y i corresponding to the second square getting 

n (Lh,Q) f'" n e-~H = II -2- II dXi dYi 
t 7r _00 ~ 

X exp [ -!Q ~ Lh.(x~ + Y:) J 

X exp [ - ~ t:.T,H(Ti; XiYi) J ' 

H(Ti; XiYi) = L hk(ri; XiYi) 
k 

~{ t'k = - f-' V2 [Xisl(k, Ti) + YiS2(k, Ti)] 

+ EtSa(k, Ti)}' 

(2.4a) 

(2.4b) 

Eliminating the ordering parameter in the integral 
of (2.3) means writing the sequence of operators 
exp [- t:.r(A - xiB)] in the order of decreasing i. 
For a general point XI> X2, ... Xn in n-dimensional 
space, the resulting operator is neither Hermitian 
nor positive as the left side of (2.3) obviously is. 
This is easily understood because the integral is 
invariant with respect to the following changes of 
the variables: 

1. Xi ~ Xn+l-i, this inverts the order and guaran­
tees the Hermiticity. 

2. Xi ~ -Xi, this causes the positive definiteness 
of the integral. 

There is in addition another feature of the BCS 
operator. Whereas exp [-j3H] commutes with the 
number operator N = Lk [1 - s3(k)], the integrand 
in (2.4) does not. However, 

N exp [ - ~ t:.riH(Ti; Xi, Yi) J 

= exp [ - ~ t:.TiH(Ti; -Xi, -y;)JN. (2.5) 

Therefore the invariance under Xi ~ -Xi, Yi -> -Yi' 

16 The following could be formulated, of course, in the 
language of functional analysis, where x i ~ xC T) takes the 
place of the integration point. We will retain, however, the 
formulation with finite n, because it is more convenient for 
the asymptotic expansion performed later. 

mentioned above, also yields the particle number 
conservation of the integral. 

Considering a many-particle system with more 
general interaction, the introduction of a multi­
dimensional integral associated with ordering 
parameters leads to a linearization of the problem. 
Because there are infinitely many integration points, 
the original many-particle problem is replaced by 
infinitely-many one-particle problems. Whether or 
not this is an advantage depends, of course, on the 
special features of the system. In the case of the 
BCS Hamiltonian the operator (2.4) has two 
properties which allow a great simplification. First, 
the exponential in the integrand can be factorized 
with respect to the momenta k since the SI for 
different k commute 

exp [- L t:.TiH(ri; XiYi)] 

= II exp [- L t:.Tihk(Ti; XiYi)] 
k (2.6) 

Tr exp (- L t:.TiH,) 

= II Tr exp (- L t:.Tihki). 
k 

Here the traces on the right-hand side are evaluated 
in the 4-dimensional Hilbert space associated with 
a single k. Second, because the SI act like Pauli 
matrices, each factor exp [-L7 t:.ri~(r,; X,Yi)] can 
be considered as a sequence of infinitesimal imagi­
nary rotations (infinitesimal Lorentz transforma­
tions). 

m. GENERAL PROPERTIES OF THE PARTITION 
FUNCTION 

Using (2.4) the partition function Z =Tr exp[ -j3H] 
can be written as 

n (t:.TiQ) f'" n Z = II -2 II dXi dYi 
t 7r -co 1 

X cos y,(xl .,. XnYI ... Yn)e- OO(x, ••• x ••• , ••••• ). (3.1) 

y, is the argument of the complex number 

Tr exp [- E t:.TiH(T.; XiY.)] 
i 

and 
n 

G = ! 2: t:.rJx: + Y:) 

- ~ In ITr exp [ - ~ t:.TiH(Ti; XiYi) JI· (3.2) 

The partition function has been brought into the 
form mentioned in the introduction by the use of 
(3.1) To make further statements, one must learn 
more about the structure of G. For this purpose we 
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will first construct a lower bound of G for each 
point (Xi' Yi) in the 2n-dimensional space. Here the 
special features of the BCS operator will come into 
play. It follows from (2.6) that 

!Tr exp [- L: t:.TiH(Ti; XiYi)]! 

= II !Tr exp [- L: t:.Tihk(Ti; XiV,)]!. (3.3) 
k 

Furthermore, we take advantage of the analogy to 
Lorentz rotations by using the following theorem: 

Given a product of n imaginary rotations 
.. 

p = II exp (aiei·d) = 71" + P'd, (3.4) 

where a; > 0 and eo are real unit vectors. Then: 

!71"! = ! !Tt P! :::; cosh (al + a2 + ... + an). (3.5) 

The equality sign applies only if all e i are equal 
(in which case, of course, 71" is real). 

This theorem can easily be proven, e.g., by 
induction and the use of the fact that P can be 
split into a product of a single real and a single 
imaginary rotation. 

Applying (3.5), one finds with (2.4b) 

ITr exp [- t t:.TA(Ti; XiV,) JI 
:::; 2{ 1 + cosh [ t t:.T'(~ (x: + V:) + ~~rJ}· (3.6) 

Therefore, 

G(xl .. , XnYl ... Yn) ~ GO(xl ... X"Yl ... Y") (3.7a) 

where 

GO = ! t t:.T;(x: + V:) - ~ ~ In 2 

X {I + cosh [ t t:.Ti(~ (x: + V:) + ~rJ}· (3.7b) 

Points with the same coordinate value 

= Xn = x; 

= Yn = Y 

(we call them xy points) correspond to equal unit 
vectors in (3.4). At these xy points the argument if; 
of the trace vanishes and the equality sign applies 
in (3.7a): 

G(xy) = GO(xy) = !.B(X2 + y2) - ~ f: In 2 

X {I + cosh I{~ (X2 + y2) + ~ Jl (3.8) 

On the other hand, if(Xl ... X,,, Yl '" Yn) is a 
completely symmetrical function of the variables 
r: = x: + y~. Thus if takes its extrema only at 
points with r: = r2. The condition for the minimum is 

aGO! {I 
ar; r t:.Ti r - 2n 

X ~ V~ ;k [1 - 2f(,BEk)]} = O. (3.9) 

Here, 

(3.10) 

and f(x) is the Fermi function. Equation (3.9) is 
nothing but the well-known gap equation. The 
nontrivial solution ro ~ 0 gives the gap parameter 

t:.k = (Vk! V2)ro. (3.11) 

The absolute minimum G~in = G~"H,'-r.' is the 
BCS thermodynamic potential per unit volume, 
divided by kT17

: 

G~in = ,BF BC s, (3.12) 

The behavior of GO enables us to say that the 
function of interest, G(x 1 , ••• X n , Yl, ... y,,) also has 
the absolute minimum G~in and that it reaches this 
value at all xy points with X2 + y2 = r~. No direction 
is specified in the one-dimensional manifold 
x; = ro cos cp, Yi = ro sin cp of minimal points. The 
reason for this is, of course, that the variables 
Xi, y i are related to the operators Sl (k) and s2(k) 
and the interaction Hamiltonian in (1.4) is sym­
metrical in these operators. 

The fact that it is possible to determine both 
value and position of the absolute minimum of the 
complicated function G in an exact manner essen­
tially contains the proof that F BCS must give the 
leading contribution in a volume expansion of the 
thermodynamic potential. What remains and what 
will be done in the next section is a simple Taylor 
expansion at the minimal points. 

IV. ASYMPTOTIC EXPANSION 

The derivatives of G at xy points are 

~G = t:.T;{X - _ I~ L: Vk(Sl(k))} 
"Xi v 2 n k 

~~i t:.T.{Y - V~ n f: VJ.(82(k»} 
(4.1) 

riG { t:.T; 
aXi iJx; = t:.Ti Oij - 2Q 

X ~ V~[(81(kTi)8l(kT;» - (Sl(k»2]} (4.2a) 
----

17 Of course, one has to add the term LkEk of (1.4). 



                                                                                                                                    

526 BERNHARD MUHLSCHLEGEL 

a2
G { AT-

ay,oYj - AT, O'i - 2d 
X ~ V~[(s2(kT.)S2(kT;» - (S2(k»2]} 

~ = _! AT, AT; L ~ 
aX. ayj 2 2n k 

(4.2b) 

where, 

A = ir (ATin)' 1'" ir dri , 27T 0 i 

X exp [-tn L AT, R.;(r i - ro)(rj - ro)] (4.8) 
ii 

X [(sl(kT;)S2(kTj» - (sl(k»(S2(k» + c.c.] 

The averages are taken with respect to 

exp [-(3hk (xy)], 

B = II (r~ ATi12)! f2"-" II di(J, 
(4.2c) • 27T -" • 

where 

hk(xy) = -(vk/V2)[xs1(k) + YSz(k)] - Ek8a(k), 

Further, 

sl(kT) = exp [Thk(xY)]SI(k) exp [-Thk(xy)]. (4.3) 

In (4.2) the operator with the larger T always stands 
to the left. To get the formulas (4.1) and (4.2) from 
(3.2) one has to use (2.6), the smallness of the AT, 
the disentangling rule and the cyclicity of the trace. 
The expectation value of SI becomes 

(sl(k» = ..)2 ;k [1 - 2f({3Ek)] (4.4) 

where Ek is given by Eq. (3.10). Replacing x by y 
given (S2)' 

The "correlations," appearing in the second 
derivatives (4.2), can be easily calculated by means 
of the simple properties of the S operators. It is 
convenient to use polar coordinates. Then the 
derivatives at the minimal points ri = ro, i(Ji, = i(J 

are given by 

a2G/or; ar; = AT. Rii 

{ 
AT; v~ 

= AT; O;j - 2Q t: 2 cosh2 (tf3E
k

) 

X [~! + ~ cosh ({3. - 2 IT; - Ti[)Ek]} , (4.5) 

2Gj 2 z{ AT; o Oi(J, Oi(J; = AT,ro<I>;; = ATiro 0,; - 2n 

X ~ 2 cOsh~(tf3Ek) cosh ({3 - 2 h - TjDEk}, (4.6) 

while the mixed second derivatives vanish. The 
Taylor expansion of G can be performed at an 
arbitrary minimal point ri = ro, i(Ji = i(J. Remember­
ing that in (3.1) the argument if; of the trace vanishes 
at minimal points, we get the following asymptotic 
expression for the partition function: 

Z = AB exp (-{3nF BCS) , 

X exp [-tr~n L AT.<I>iii(Jii(Jj]. (4.9) 

To proceed, one has to determine the eigenvalues of 
the matrices Rand <I>, defined by Eqs. (4.5) and 
(4.6). Both matrices have the structure 

0,; - ATj K(h - Til) (4.10) 

with 

K(T) = K({3 - T) > 0. (4.11) 

Since one is ultimately interested in the limit n --? co, 

the eigenvalues A of (4.10) can be obtained from the 
integral equation 

(1 - A)g(T) = ill dT' K(IT - T'l)g(T'). (4.12) 

Because of (4.11), it follows for the eigenvalues that 

fll r 27TPT 
Ap = 1 - 0 dTh(T) cos-{3-; 

P = 0,1,2, ... (4.13) 

The eigenfunctions of (4.12) are trigonometric 
functions: 

gp(T) = {cos (27TPT/{3); 

sin (27TPT j (3) 

P = 1,2, .... (4.14) 

We call A (R) the eigenvalues of R, A (¢) those of cpo 
The T integration in (4.13) gives for the (non­
degenerate) lowest eigenvalue: 

AIR) = 1 _ -.L '"' ~ 
o 212 f-' Ek 

X {2(3EkM1 - fk) ~! + (1 - 2fk) i~} , (4.15) 

(¢) 1 '" v~ ( f ) Ao = 1 - 212 t' Ek 1 - 2 k , (4.16) 

where fk = f({3Ek ). The twofold degenerate higher 
eigenvalues are (P = 1, 2, 3, ... ): 
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A (<1» 1 "v: ( j E: () 
p = 1 - 2n f-' Ek 1 - 2 k) E: + (-rrP/fj)2· 4.18 

Let us first consider the eigenvalues of the matrix 
R. By means of ~: = E: - .1: it follows for the 
lowest one 

A (R) = A (<1» + -L "v; .1; 
o 0 2n f-' E: 

(4.19) 

Taking the nontrivial solution .1k of the gap equa­
tion, Aci<l» vanishes. The sum on the right-hand side 
is positive since the factor 1-2f(x)-2xf(x)(I-f(x» 
remains always positive. Therefore, the matrix R 
is positive definite and the radial part in the asymp­
totic expansion (4.7) becomes 

00 

A = (AciR»-! II (A~R»-I. (4.20) 
P-l 

On the other hand we see easily that (for tempera­
tures below the transition point) the trivial solution 
of the gap equation (r = 0) does not correspond to 
a minimum of G since in that case AciR) < 0: 

CR) 1 " t~ ( I I Ao trivial = 1 - 2n f-' ~ {1 - 2j fj ~)}. 

The right-hand side is zero at the transition point 
{3 = {3e and decreases with increasing (3. 

As already mentioned, the lowest eigenvalue of 
the matrix c/> is zero and thus the matrix is positive 
semidefinite, expressing the fact that no direction in 
the 1-2 plane is preferred in the problem. In spite 
of this, it is possible to do the asymptotic expansion 
of the angular part (4.9). Consider the substitution 
cPo = L:i U.iCPi which diagonalizes the exponent in 
(4.9), cPl belonging to the eigenvalue zero and there­
fore not appearing in the exponent. All integrations 
associated with positive eigenvalues can be per­
formed in the same way as before. In the remaining 
cPl integration it 'is important that the region 
of integration is changed by the transformation from 
2-rr to Li Uu 2-rr = 2-rr L:i (.1T;/{3)! = 2-rr({3/ .1T)\ 
assuming all elements .1Ti having the same magni­
tude. Therefore B takes the form 

"' 
B = (2-rrr~{3n)! IT (A~<I»)-I. (4.21) 

P~l 

Combining (4.7), (4.20), and (4.21) we obtain the 
following asymptotic expression for the thermo­
dynamic potential below the transition temperature 

_!c In Z = nF - l.. 1 (2-rrr~{3n) 
{3 Be s 2{3 n AbR) 

(4.22) 

It is easy to get the corresponding expansion for 
T> Te. In this temperature region the gap equation 
(3.9) has only the solution r = o. Hence, the func­
tion G possesses an isolated minimum at the origin 
Xi = Yi = 0, the minimal value Gmin being the 
thermodynamic potential F 0 of free Fermions 
divided by kT. Both matrices (4.2a) and (4.2b) are 
identical, all eigenvalues are positive and given by 
(4.15)-(4.18), if one puts .1 = 0 in these formulas: 

Ap = 1 

122 
- 2n t: I~I [1 - 2j({3 hDJ ~: + (~P/{3)2· (4.23) 

The asymptotic expression above the transition 
temperature becomes 

1 1 2 00 

-~ In Z = nFo + ~ In Ao + ~ k In Ap. (4.24) 

In an expansion of the thermodynamic potential 
only the leading term which is proportional to the 
volume is of physical interest. Therefore, the method 
we used proves that the BCS expression is exact 
below and above the transition temperature con­
firming Bogoliubov's result. 

The next-order terms in the volume are important 
insofar as one needs them to decide whether the 
leading part is stable or not. The phase transition 
can be determined in approaching Te either from 
below or above. In the first case the lowest eigen­
value R (4.15) goes to zero, whereas in the second 
case Ao(4.23) changes its sign from positive to 
negative. It is interesting to note that in the normal 
phase, the volume independent term In Ao in (4.24) 
blows up for T ~ Tc. ls This does not occur in the 
superconducting phase (4.22), where AciR) tends to 
zero as r~. 

As we have seen it is not necessary for an asymp­
totic expansion of the BCS partition function to 
introduce a particle nonconserving auxiliary term 
as did BZT in their Green's function treatment. 8 

For the sake of completeness, however, we will 
include such a mathematical term into the Hamil­
tonian and sketch the results. They can be obtained 
with almost no new calculations. Consider the 
Hamiltonian 

H - II L: _v~_ [cosCPosl(k) + sincpos2(k)] 
k v2 

(4.25) 

where H is given by (1.4) and II is a small positive 
parameter. The whole problem now depends on a 

18 This may, perhaps, be related to critical fluctuations 
as treated by K. Gottfried and L. P. Kadanoff, Bull. Am. 
Phys. Soc. 6, 65 (1961). 
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certain direction CPo in the 1-2 plane. All conclusions 
in Sec. III will remain valid. We merely replace 
Xi by Xi + P cos CPo and Yi by Yi + P sin CPo under 
the square root in (3.7b). A consequence of this 
is that G as a function of the T i , CPi now reaches its 
absolute minimum at a single point in the 2n­
dimensional space determined by CPi = CPo and 
T i = To where To is a solution of the equation 

(4.26) 

and 

Ek = (ii: + ~:)!; 
The eigenvalues which we now call ~~R), ~~) are 
given by (4.15)-(4.18) if one replaces ~ by ii and 
E by E in these formulas. The important difference, 
compared with the previous symmetrical problem, 
is that the lowest eigenvalue of cp takes the form 

(4.28) 

using Eq. (4.26). Therefore, both matrices Rand cp 
are positive definite and the asymptotic expansion 
becomes 

-~ In Z = fJ.p + 2~ In (~bR)~b<P») 

+ ~ t In (~~R) >.~», (4.29) 

F being the minimal value of G mUltiplied with kT. 
Note that the thermodynamic potential does not 
depend on CPo. If jJ tends to zero as fJ.- 1 F will go 
over in F Bes. 

V. THE LIMIT T ---> 0 

The question arises whether an expansion of the 
partition function allows some conclusions about 
the behavior of the canonical operator itself. In 
particular, one may ask whether we can obtain the 
projector on the ground state wave function by 
taking the limit (3 ---+ CD for the canonical operator. 
If one includes the very small auxiliary term (4.25) 
in the Hamiltonian, the leading term (for fJ. ---+ CD) 
in the expansion of the functional integral (2.4) for 
the operator exp [- (3H BCS] will be 

exp [(3 L {~k[ cos CP081 (k) + sin CPo82(k)] 
k 

+~83(k)}]. (5.1) 

Diagonalization of the exponent leads to the Hamil­
tonian of free quasi-particles. For (3 ---+ CD the 
normalized operator (5.1) projects out the wave 
function 

where 10) is the vacuum and Uk = (1 - vk)! = 
(1/ V2)(1 + ~k/Ek)!' 

Similar statements for the original density 
operator without the BZT auxiliary term cannot 
be made, simply because, taking fJ. ---+ CD, there is 
a whole manifold of terms corresponding to dif­
ferent values of CPo which will give a contribution. 
This is due to the fact that the eigenstates of 
exp [- (3H BC sl are almost degenerate. We shall see 
that the level spacing is of order fJ.-l.19 On the other 
hand the asymptotic expansion performed in Sec. 
IV is exact only to order fJ.0. Naively taking the 
limit (3 ---+ CD must give a nonsensical result if kT 
becomes small as fJ.- 1. Thus we see that without the 
Bogoliubov trick, the limits fJ. -+ CD, (3 ---+ CD are 
not interchangeable. The true eigenstates belong 
to a definite number as has been emphasized already 
by BCS. Following Anderson2o they may be ob­
tained from (5.2) by 

IN) = Cv {~ dcpe-!iN~ ICP)BCS' 

The part In fJ.! appearing in the expansion (4.22) 
of the thermodynamic potential is closely related 
to the almost degeneracy of H BOS' As we have seen, 
this term emerged from the fact that the lowest 
eigenvalue of the matrix cp was zero, indicating the 
symmetry of the problem in the 1-2 plane. To get 
a better physical understanding of the different 
terms in the expansion (4.22) for (3 -+ CD, we will 
give a more detailed discussion of the structure of 
the low-lying levels. 

The particle number average and the fluctuation 
around it, calculated with the BCS state ICP)BCS 

(5.2) are given by 

No = L 2v~ = L (1 - ~/Ek) (5.3) 
k k 

~N2 = L 4u:v~ = L ~:/E~. (5.4) 
k k 

Expanding ICP)BCS in states of definite particle 
number: 

00 

ICP)BCS = L ei"~a" 12n), (5.5) 
n-O 

19 It should be emphasized that the almost degeneracy 
applies, of course, only to the operator H BCS = JCBcs - ,.N 
and not to the Hamiltonian itself, the energy difference 
between the ground states of an N + 2- and an N -particle 
problem being 2,.. 

20 P. W. Anderson, Phys. Rev. 112, 1900 (1958). 
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we get by (5.2) 

an 12n) = ~, (II Uk)(~ Vk b:)n 10). 
n. k k Uk 

(5.6) 

The coefficients of the normalized 2n particle states 
follow 

2 IfdZ II (2+ 2) an = -2' -n+:! Uk ZVk' 
7r~ Z k 

(5.7) 

A Darvin-Fowler calculation yields 

a~ = [7r(! ~N)2r!e-(n-3N')'/(! t.N)'. (5.8) 

The very plausible result simply means that in the 
expansion of the BeS state, only states with the 
number No - ~ < N < No + ~N will contribute 
significantly. One should expect that the expectation 
values of JCBCS - p.N taken with the number 
eigenstates No, No ± 2, No ± 4, ... No ± ~N will 
give a good approximation of the low lying eigen­
values of this operator.21 Using the same technique 
as before they are found to be 

(N IHBcs/ N) = QWo + bWN (5.9) 
OWN = -!a + a(N - NO)2/~N\ 

where QWo is the BeS ground-state energy and 

1 ~: 
a = ~N2 t: Ek (5.10) 

is an energy independent of Q. The position of the 
levels, compared with the energy gap for different 
coupling strengths in the simplified BeS interaction, 
is plotted in Fig. 1. 

For sufficiently large {3 the partition function is 
given by 

Z = e-flnw , ~ e-flOWN 

.V 

-(J( nwo+!Swxo) '"" -f3aCV-.vo)~/D.N2 =e L..Je . 
.V 

(5.11) 

Of course, the sum tends to one as kT -t O. However, 
if kT remains above the level spacing which is 
proportional to Q-t, the sum can be transformed 
into an integral and the thermodynamic potential 
becomes 

1 1 (7r ~N2) 
-~ In Z = QWo + bW No - 2fJ In 4fJa . (5.12) 

The fluctuation square ~N2 is proportional to Q. 

Hence, the same In Q! term as in the expansion 
(4.22) appears in formula (5.12). It is clear that this 

21 At least as long (No + ANIHBcslN 0 + AN> -
(N olH BC siN 0> does not exceed appreciably the energy gap. 

0·0.1 

nw. 

FIG. 1. Ground-state energy of the operator BO S - ,..N 
for different particle number compared with the BCS value 
OW o• On the right, the magnitude of the energy gap is 
plotted for different coupling strengths. 

term is not an indication of a "zero-point entropy." 
It is connected with the almost degeneracy of the . 
lowest eigenvalues of JCBC S - p.N and describes 
the behavior of the thermodynamic potential 
correctly only if kT remains above the level spacing 
of this operator. 19 

Let us compare Eqs. (4.22) and (5.12) in more 
detail for the special case of strong coupling. In 
this case a constant interaction 

(5.13) 

near the Fermi surface is so large that one can 
neglect the kinetic energies Ek relative to p. and put 
Ek = ~. The gap parameter is then ~ = gliw where 
g = VoDo is the coupling constant and Do the 
density of states per unit volume at the Fermi 
surface. Equation (5.12) becomes 

1 1 1 ( 7rQ ) 
- ~ In Z = Q W 0 - '2 ~ - 2fJ In 2fJ Vo . (5.14) 

The volume independent lowering of the BeS 
ground state energy is the same as in the strong 
coupling treatment of Baumann et al. 7 

On the other hand our original expansion (4.22) 
will also take a very simple form. All eigenvalues 
A~R) become equal to one. Using (3.11) and (4.18) 
we get 

-~ In Z = QF BCS - 21fJ In (7r ~~Q) 

1 00 [ (~/3)2J --lnll 1+ - . 
/3 P~1 7rP 

(5.15) 

Remembering the product representation 

(5.16) 



                                                                                                                                    

530 BERNHARD MUHLSCHLEGEL 

one obtains for fj,(3 » 1 

1 
-~ In Z = QFBcs(T = 0) 

- fj, - ~ln(~). 
2(3 4(3Vo 

(5.17) 

Apart from a factor 2, the In terms in both Eqs. 
(5.14) and (5.17) coincide. The ground-state 
energy in both equations is exactly the same if one 
notices two things. First, the BCS value QWo = 
(cp IHBcsllcp) contains, in contrast to QFBCS(T = 0), 
an Q independent part which results from the 
summation restriction k rf k' in Eq. (1.2) and which 
is quite generally given by 

QWo = QF Bcs(T = 0) + 41
Q ~ V(k, k) ~!. (5.18) 

In the strong-coupling case the second term on the 
right-hand side is ! fj, and therefore cancels -! fj, 
in (5.14). Second, a similar cancellation will also 
take place in Eq. (5.17) if one takes into account the 
term (2Q)-1 Lk v~ of Eq. (1.4) which equals fj, for 
strong coupling and which we have suppressed 
during the calculations. 

Finally, an estimate of the series in Eq. (4.22) 
for T = 0 without restriction of the coupling strength 
shall be given. We use a relation for the eigenvalues 
which simply expresses Mercer's theorem for the 

integral equation (4.12) or the trace invariance of 
Kin (4.10): 

1 - xciR) + i: 2(1 - X~R» = L L v~ 
p_\ 2Q k 

X {2Ml - fk) ~! + (f~ + (1 - fk)2) ;~}, (5.19) 

1 + t 2(1 - Xj;Pi) = :Q ~ v~{f~ + (1 - tk)2} 

Taking into account the fact that In X ~ X-I, 
the limit (3 ---) 00 will lead to a volume independent 
lowering of the ground-state energy QF BC seT = 0) 
which is at least as large as 

(5.20) 

This energy tends to zero with increasing coupling 
strength in agreement with the treatment above. 
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LESLIE L. FOLDY 

Case Institute of Technology, Cleveland, Ohio 
(Received October 27, 1961) 

Given a function w completely antisymmetric in n vari­
ables, there may exist a set of n functions of one variable 
such that the given function is a Slater determinant in the 
latter. The first problem considered is that of obtaining a 
criterion for this to be the case for a given function. This 
problem is solved by considering the function w as a mapping 
of the space of functions in n - 1 variables onto the space 
of functions of one variable. A necessary and sufficient 
condition for the initial function to be a Slater determinant 
is then shown to be that the image space be n dimensional. 
This criterion is converted into practical algorithms which 
can be employed for the determination. The application of 
one of these yields the theorem that an arbitrary linear 
combination of the n + 1 Slater determinants in n variables 
formed from n + lone-variable functions can always be 
written as a single Slater determinant. It is further proved 
that if the image space of the mapping is m( >n) dimensional, 

1. INTRODUCTION 

THE results described in this paper originated 
from an attempt to answer the question, How 

can one determine when a given antisymmetric 
function is a Slater determinant? Its solution made 
apparent certain additional applications of the 
method employed to problems of approximation of 
antisymmetric functions by single Slater deter­
minants or by linear combinations of them. As the 
manuscript of this paper was being completed, we 
were made aware l of the existence of Some recent 
work of Lowdin2 which contain results and ideas 
related to, and in some cases identical with, some 
of the content of this paper. Since the present paper 
begins with a somewhat different approach and 
contains some results which we have not found in 
the earlier literature, it was felt for reasons of 
economy that publication of the manuscript in 
what is essentially its original form would be 
justified. In spite of differences in terminology, 
notation, and normalization, there should be no 
difficulty for the reader in tracing the connections 
between the present work and that of Lowdin's. 
Lowdin's work stems, in part, from a large volume of 
work on the Hartree-Fock approximation, and some 

* Work Bupported in part by the U. S. Atomic Energy 
Commission. 

1 We are grateful to Dr. M. K. Banerjee for bringing the 

the original function can be expressed as a linear combination 
of m!/(m - n)!n! Slater determinants in n variables formed 
from m one-variable functions. Playing an important role in 
the analysis is the product of the mapping described above 
by its adjoint (the product is simply related to Dirac's 
density matrix for a quantum mechanical system of identical 
particles) as well as the eigenvectors and eigenvalues of this 
Hermitian positive semidefinite mapping. The latter form a 
basis for a systematic approximation procedure for repre­
senting a given function by a single Slater determinant or 
by sums of Slater determinants formed from a particular 
number of one-variable functions, which yields results 
obtained previously by Lowdin. Problems of simultaneous 
approximation of sets of antisymmetric functions and possible 
physical applications to many-fermion systems are briefly 
discussed. 

ideas of Slater3 on extending this approximation, as 
well as some early work of Dirac4 on the density 
matrix. Rather than attempt to document again this 
earlier work, we refer the reader to the extensive 
references in the work of Lowdin and Lowdin 
and Shull.5 

To those familiar with this earlier work, it may 
be useful to designate those results of this paper 
which, to our present knowledge, do not exist in 
previous work. These are: the initial geometrical 
approach to the problem including the criterion 
for a function to be a Slater determinant in geo­
metric form, two algorithms for ascertaining 
whether a function is a Slater determinant which 
may in practice be simpler than employing the 
criterion of Lowdin, the rather interesting Theorem 
III of Sec. 3 which establishes that an arbitrary 
linear combination of the n + 1 Slater determinant 
for n particles formed from n + lone-particle 
states can always be written as a single Slater 
determinant, and some considerations on the 

3 J. C. Slater, Quarterly Progress Report of Solid-State 
and Molecular Theory Group at Massachusetts Institute of 
Technology, 6, January 15, 1953 (unpublished); Technical 
Report No.3, 39, February 15, 1953 (unpublished); Phys. 
Rev. 91, 528 (1953). We have not seen personally the first 
two of these references which are taken from Lowdin's 
papers. 

4 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26 376 
(1930); 27, 240 (1931). ' 

6 P.-O. Lowdin and H. Shull, Phys. Rev. 101 1730 (1956)' 
1509 (1955). J. Chern. Phys. 30, 617 (1959). ' , 

work of Lowdin to our notice. 
2 P.-O. Lowdin, Phys. Rev. 97, 1474, 1490, 
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problem of simultaneously approximating a set 
of given antisymmetric functions in a limited 
number of configurations. The relationship between 
Lowdin's notation and terminology and our own 
is generally quite transparent, but we have added 
footnotes to explicitly spell out the connections 
where this was convenient. 

The state of a quantum-mechanical system con­
sisting of n identical particles obeying Fermi statis­
tics is described by a state function w(qJ' q2, ... qn) 
which is a completely antisymmetric function of 
the coordinates q., where q. stands for the collection 
of coordinates describing the ith particle. All of 
the variables q, have the same domain D(q) and 
the scalar product of two state functions WI (ql ... qn) 
and wz(ql '" qn) involves an integration (and/or 
summation) over the domain D(q) for all q variables 
of the product 

(1) 

It will be convenient to employ an Einstein con­
vention for such integrations according to which the 
repetition of a particular q in any term implies 
integration over D(q) on this q variable. Thus (1) 
according to this convention would already indicate 
that all q variables are integrated over. On the 
other hand, an expression of the form 

(2) 

implies an integration over qIq2 ... qk thus yielding 
a function of the variables qk+l ... qn, q£+1 '" q~. 
All functions of q variables with which we shall 
deal will be assumed to have the usual properties 
required of state functions; in particular, a function 
!(ql ... qn) will belong to a Hilbert space of square­
integrable functions of n q variables. 

A particularly simple antisymmetric function in 
the variables qi ... qn is a Slater determinant of 
the n functions ul(q), ... un(q), which is defined to be 

UI(ql) U2(ql) 

U I (q2) U2( q2) 

UI(qn) U2(qn) 

U,,(ql) 

Un (q2) 

un(qn) 

(3) 

A Slater determinant has the following properties: 

(1) It vanishes if the U; are not linearly inde­
pendent or if the domain D(q) consists of fewer 
than n points. 

(2) If the functions v" (q) are related to the func­
tions Ufi(q) by a linear transformation 

(4) 

then 

(5) 

where lal is the determinant of the a"p' Two Slater 
determinants will be said to be equivalent if one is 
a nonzero multiple of the other. Thus the two 
Slater determinants in (5) are equivalent provided 
lal ~ O. 

(3) Any Slater determinant is equivalent to one 
in which the functions u" are orthonormal through a 
Schmidt orthonormalization process. If the u. are 
orthonormal, then the scalar product of the Slater 
determinant with itself has a value n!. 

We shall say that an arbitrary nonzero anti­
symmetric function w(ql .. , qn) is a Slater determi­
nant if there exists a set of functions ul(q), .. , un(q) 
such that w is equivalent to S {u l .•. un}. The 
primary problem considered in this paper is that of 
establishing criteria by which it may be determined 
whether a given antisymmetric function W(ql ... qn) 
is a Slater determinant. Clearly, if it is, the set of 
functions U 1, ••• Un will not be unique, but different 
solutions will be related by linear transformations. 

An approach to the solution of this problem is 
suggested by the observation that if the Slater 
determinant (3) is multiplied by an arbitrary 
function of the variables qz ... qn, and an integration 
performed over each of these variables, the result 
will be a function of the variable qi which is a linear 
combination of the n functions U l , .,. Un. In geo­
metrical terms we may thus consider the function 
w(ql '" qn) as giving rise to a mapping of the 
Hilbert space [F] of functions F(q2 .. , qn) onto the 
Hilbert space [f] of functions !(ql) through the 
correspondence: 

F(q2 '" qn) --7 f(ql) = W(qlq2 '" qn)F(q2 ... qn). (6) 

In general, this mapping is onto a subspace [j",] of the 
space [j], which we may make definite by requiring 
that it possess no proper subspace onto which all of 
[F] is mapped by w. Our statement above is then 
equivalent to the statement that if w is a Slater 
determinant, then the image space (the subspace 
[fwD is n dimensional. What we shall now prove is 
the converse of this theorem, namely that if w maps 
[F] onto an n-dimensional subspace of [f], then w is 
a Slater determinant. We will then have the result: 

Theorem I. A necessary and sufficient condition 
that a function W(qi ... qn) be a Slater determinant 
is that the space [fu.] onto which w maps [F] be n 
dimensional. 

It will then be demonstrated how this theorem can 
be converted into a practical means of determining 
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whether a function is a Slater determinant. As 
by-products of the proof we obtain additional 
results which appear to be quite interesting. 

2. SOME RESULTS ON MAPPINGS 

Let us call the mapping [F] onto if] through the 
agency of the function w the mapping w so that 
we write: 

as well as [tv,] = w[F]. We may now define an 
adjoint mapping of the space If] onto the space [F]. 
We shall designate this adjoint mapping by w + and 
define it by 

f(ql) ~ wf(ql) = F(q2 .,. qn) 

= W*(qlq2 ... qn)f(ql)' (7b) 

Again the mapping is in general onto a subspace 
[F w] of [F] which we make specific by requiring that 
it possess no proper subspace onto which all of if] 
is mapped, and we write [Fw] = w+[fl, We shall 
now prove that [F .. ] = w+(f .. ], [fwl = w+[F v,], and 
that these two mappings are each one to one. 

To this end we consider the mapping Q == ww + 

of the function space [f] onto itself: 

f(ql) ~ t'(ql) = Qt(ql) 

= W(qlq2 ... qn)W*(qiq2 ... qn)f(qD· (8) 

This is clearly a bounded Hermitian mapping of [f] 
onto itself and is in addition positive semidefinite. 
In particular, Q maps the subspace [f .. 1 onto itself. 
Since the mapping is Hermitian it has a complete 
set of eigenfunctions in the space [f] belonging to 
non-negative eigenvalues, and these eigenfunctions 
can always be so chosen as to be orthogonal and 
normalized. Let a complete set of orthonormal eigen­
functions be denoted Ul(q), U2(q), .. , u,(q), 
U,+l(q), ... where the order is such that the eigen­
values X; associated with these eigenfunctions are 
in descending order: 

xi 2:: x; 2:: .,. 2:: x: 2:: .. , , (9) 

and where A~ represent the last nonzero eigenvalue 
in the sequence (we do not exclude the possibility 
that v may be infinite). These eigenfunctions and 
eigenvalues are of course the solutions of the 
"integral" equation 

X~Ua(q) = W(q, q')u,,(q'), (lOa) 

(lOb) 

Under the mapping w + each of these functions is 
mapped into a function belonging to [F]. We define 

V a(q2 .. , qn) = W*(qlq2 .,. qn)U,,(ql)' (11) 

If we form the scalar product of two Va, we obtain 

= u~(q)W(qq2 '" qn)W*(q'q2 ... qn)up(q') 

= X~u~(q)up(q) = A~ OaP, (12) 

where we have used the orthonormality of the u". 
Thus V,,(q2 ... qn) = 0 for ex > v. The U,,(ql) 
with ex S; v clearly form a basis in [fwl and the func­
tions V,,(q2 .,. qn) with ex S; v clearly form a basis 
in [F wJ. The mapping function W(ql '" qn) can then 
be written as 

w( ql ... qn) = L: u,,( ql) V~( q2 '" qn). (13) 
a-I 

To see this we need merely note that (13) performs 
the same mapping as does w. If the two functions 
were different, their difference would then map every 
function of [FJ into the zero function in [fJ. But then 
the difference could be nonzero only on a set of 
points of measure zero in the domain of all the 
variables, and in quantum mechanics as well as in 
the theory of Hilbert spaces such functions are 
considered null functions. Thus w has the form given 
by (13). We note from (12) that the V,,(q2 '" qn) 
are not in general normalized; if we define the 
normalized functions 

then 
, 

w(ql ... qn) = L: X"U,,(ql)V,,(q2 .. , qn). (15) 

Of course, the v functions V! and Va for ex S; v are 
linearly independent and in fact orthogonal. 

An important result following from (15) is that 
if w is normalized and we form its scalar product 
with itself and use (12) we obtain 

(16) 

6 The kernel W(q, q') is identical with the density matrix 
of Lowdin except for normalization. The eigenvectors of the 
kernel are called "natural spin orbitals" in the papers of 
Lowdin2 and Lowdin and Shull.6 Lowdin's criterion for w to 
be a Slater determinant can be written in our notation as 

W(q, q") W(q", q') = nW(q, q'), W(q, q) = n. 
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We have so far not made use of the antisymmetric 
properties of W(ql .. , q,,). By the use of these we 
can obtain the desired converse theorem or actually 
a generalization of it. We shall establish first the 
following theorem: 

Theorem II. If a completely antisymmetric 
function W(ql .. , qn) can be written in the form 

w(ql ... gn) = L U,,(ql) V,,(q2 ... qn), 
0: .... 1 

where the u" and the V" are each sets of linearly 
independent functions, then 

(a) w is not identically zero; 
(b) 11 2:: n; 
(c) if 11 = n, then w is a multiple of the Slater 

determinant S(u 1 •• , Un}; 
(d) if 11 > n, then w is a linearly combination 

of the lI!/n!(11 - n)! Slater determinant 
formed by selecting in all possible ways n 
distinct functions u" from the 11 such functions 
occurring in (16) but cannot be written as 
a single Slater determinant. 

We lose no generality by assuming that the u" 
are orthonormal, since the Schmidt orthonormaliza­
tion process assures us of the existence of a non­
singular transformation 

. 
U" = L c,,~u~ 

ff~1 

such that the u~ are orthonormal. Under this trans­
formation, (16) becomes 

. 

. 
L U,,(ql) V,,(q2 ... qn) 

,,-I 
v 

= - L U,,(q2) V a(qlq3 ... qn), (21) 
a-I 

whereupon forming the scalar product of both sides 
with u~(ql) we obtain 

v 

= - L Ua(q2)U~(q~)Va(q~q3 ... qn). (22) 
a:=l 

This may be rewritten as 

v 

V,,(q2 ... qn) = L Uiq2) Va~(q3 ... qn), (23) 
~-I 

where 

-u~(q~) V Q(q~q3 ... qn) 

-u~(q~)u~(qDw(q:q~q3 '" qn) 

= u~(qDu~(qf)w(q:q~q3 ... qn). (24) 

In obtaining (24) we have used (20) and also inter­
changed the integration variables q; and q~ using 
the antisymmetry of w. We then have from (23) 
and (17) 

• v 

= L L UQ(ql)U~(q2) V a8(q3 ... qn). (25) 
a=1 ~=I 

w(ql ... qn) = L U;(ql) V~(g2 .. , qn), (18) We now continue this procedure [at the next 
P~I 

with 

(19) 

and the V~ are linearly independent. We shall now 
proceed under the assumption that the u" are 

step interchanging q2 and q3 in (25), etc.] until we 
obtain finally 

v v 

w(ql .. , qn) = L L 
a=L .8=1 

(26) 

orthonormal. Then with 

To establish conclusion (a) we now note that if w 
were identically zero, then by (20) all the V" would 
vanish contrary to the hypothesis of their linear 
independence. 

We now use the antisymmetry of wand permute 
ql and q2 in (16) obtaining 

x u~( q~)W( qi q~ ... g~). (27) 

Now V Q~"'K is clearly antisymmetric in all its 
subscripts and is therefore proportional to the 
Levi-Civita symbol €a~"'<; this fact allows us to 
rewrite (26) as 
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v 

L: Va~ ...• 
x S {uau~ ... u.}, (28) 

Ca < (3 < ... < K). 

For v < n, (28) clearly vanishes establishing conclu­
sion (b) of our theorem while for v = n we clearly 
have conclusion (c). The first statement of conclusion 
(d) also follows from (28). The last statement of con­
clusion (d) follows from the fact that if (17) is 
considered as a mapping function of [f] onto [F], 
the functions u'" are mapped into V a and since 
these latter are linearly independent, the space onto 
which w maps must be v dimensional. On the other 
hand, if w were a Slater determinant, the space 
must be n dimensional; since v > n, w cannot be a 
Slater determinant. 

Combined with our previous results, this theorem 
then establishes that a necessary and sufficient 
condition for a function W(ql ... qn) to be a Slater 
determinant is that in the above sense, it generates 
a mapping onto an n-dimensional subspace of [fl. 
We shall now give several applications of the results 
obtained above starting with practical algorithms 
for determining whether a given function can be 
written as a Slater determinant. 

3. IDENTIFICATION OF A SLATER DETERMINANT 

To apply Theorem I to determine whether a given 
function W(ql ... qn) is a Slater determinant, we 
select n linearly independent functions F(q2 ..• qn) 
from the function space [F] and map them through 
w into n functions f(ql) of the function space [fl 
and then form the Slater determinant of the latter. 
If this determinant vanishes identically, we know 
that we have been unfortunate in our selection of 
our initial n functions and we repeat the process 
by a new choice of n functions F until we obtain a 
nonvanishing Slater determinant. The existence 
of such a choice is guaranteed us by conclusion (a) 
of Theorem II. In general, by a "random" selection 
of the initial n functions, there is only a negligible 
probability that the projection of all of these onto 
the subspace [F w] of [F] is onto a proper subspace 
of [F w], which is the condition for the vanishing 
of the determinant so that this will be a rare and 
purely accidental contingency. In any case, having 
constructed such a nonvanishing Slater determinant, 
it is either equivalent or inequivalent to the original 
function w. In the former case, w is of course a 
Slater determinant, in the latter case, it cannot be. 

Since a direct test of the identity of the function w 
and the Slater determinant may be rather laborous, 

an alternative procedure can often be usefuL 
Namely, we select at "random" n + 1 functions 
F from [F], map them into n + 1 functions f in (f), 
and then form the Slater determinant of these 
n + 1 functions. If this determinant is nonvanishing, 
that is, if the n + 1 image functions are linearly 
independent, then clearly by our theorems, w 
cannot be a Slater determinant. On the other hand, 
if the determinant vanishes, but one of its minors is 
nonvanishing, then w is a Slater determinant. If 
all of its minors vanish, we have been unlucky in 
our choice of initial functions and must repeat 
the procedure, but again this will be a rare con­
tingency. 

As an illustration of this method, we shall prove 
a simple but interesting theorem which was dis­
covered by these procedures. Suppose that we are 
given n + 1 linearly independent one particle 
functions u",(q). From these we can form n + 1 
linearly independent Slater determinants in n­
particles by choosing in all possible ways n functions 
from the set. We now prove: 

Theorem II I. An arbitrary linear combination 
of the n + 1 Slater determinants in n particles 
formed from n + 1 linearly independent single­
particle functions is a Slater determinant. 

The proof employs the second of the procedures 
outlined above. We write 

(29) 

and choose our n + 1 test functions F to be 

where i runs from 1 to n + 1, and the subscripts 
on the u's are to be interpreted modulo n + 1. One 
can then readily calculate the n + 1 image functions 
fi to be 

That these n + 1 functions are not linearly inde­
pendent can be seen from the fact that if each Ii 
is multiplied by the product of all the a's with the 
exception of a. and a'+l, then the sum of the resultant 
terms vanishes identically. On the other hand, any 
n of the f. are linearly independent and their 
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Slater determinant is equivalent to w thus estab­
lishing the theorem. 7 

While the theorem just established obviously 
may have some useful applications in shell model 
calculations, we have not explored the possibilities 
thereby suggested. 

Combining Theorem III with Theorem II tells 
us that the image space rfteJ can never be of di­
mensionality n + 1. Construction of simple examples 
shows that a dimensionality n + 2 is not excluded. 
Whether there exist other excluded dimensionalities 
than n + 1, we do not know, but it appears unlikely. 

4. RELATION TO A PROBLEM IN CLUSTER-MODEL 
THEORY 

Suppose that one had the exact wave function 
(or a good approximation to it) for the ground state 
of a system of n identical fermions and that this 
function is W(ql .•. qn). The problem of obtaining 
the ground state wave function for the system 
with n + 1 fermions is often approached in the 
following approximation: One assumes a variation 
wave function of the form 

if;(q! •• , qn+l) = AW(ql .• , qn)y(qn+l) , (32) 

where A is an operator which completely anti­
symmetrizes the function which follows in the n + 1 
q-variables. Entering with this trial function in the 
variational theorem one then derives an integro­
differential equation for the one particle function y. 
Now there may exist a number of functions y such 

7 An alternate proof of this theorem based on a second­
quantized representation of the many-particle system has 
been communicated to the author by F. Coester. rln this 
connection the following papers are of interest: F. Coester, 
Nuclear Phys. 7, 421 (1958); 17, 477 (1960).J The theorem 
can also be proved by elementary methods based on the 
addition formula for two determinants. 

An interesting combinatorial problem arises in an attempt 
at an extension of Theorem III, to which we have not found 
a solution. Suppose that one considers an arbitrary linear 
combination of the m!/n!(n - m)! Slater determinants in n 
particles formed from m independent single-particle functions 
and asks what is the smallest number of Slater determinants 
in which the linear combination can be re-expressed. The 
following combinatorial problem then arises: Consid~r all 
combinations of n objects drawn from a set of m objects. 
Divide these combinations into classes in which each class is 
characteri2ed by the .fact that all combinations in. t~e c,lass 
have n - 1 objects III common. Such a decomposition mto 
classes is not unique, but we have found in some simple 
examples that carrying out the division into classes in all 
possible wltys suggests the theorem thltt the number of 
classes obtained is alwltYs the same and that the numbers of 
combinations occurring in the various classes for different 
divisions is also always the same. We have so far not proved 
that this theorem is generally true, but if it is true and we 
identify Slater determinants with the combinations, then all 
Slater determinants belonging to one class can be simply 
added to yield a single Slater determinant. We further do 
not know the number of such classes for given m, n, nor 
whether the resultant Slater determinants associated with 
different classes may still be further combined to give a 
smaller totltl number of Slater determinants. 

that the right-hand side of Eq. (32) is identically 
zero; in such a case one can readily show that a 
linear combination of such functions always satisfies 
the integro-differential equation for any value of 
the energy eigenvalue.s For example, if w itself is a 
Slater determinant in the functions Ull •• , Un, then 
any linear combination of these u's is a function 
of the type described. These functions represent 
states which are forbidden by the exclusion principle. 
While these "spurious" solutions can never really 
cause trouble since they do not contribute to the 
state function if;, it may sometimes be convenient 
to know whether such solutions exist and to find 
them. We shall now show how our work is related 
to finding the solutions of the equation 

AW(ql '" q,,)y(qn+l) = O. (33) 

To this end we multiply the above equation by 
w*(ql ... q,,) and integrate over the variables 
ql ... In. To determine the result we note first that 
the above equation can be rewritten as 

w(ql ... q,,)y(q>t+l) = W(qn+lqz .. , qn)y(ql) 

+ W(qlqn+lqa '" q,,)y(q2) 

+ ... + w(ql ... q,,-Iqn+l)y(q,,). (34) 

Then, if we assume w is normalized to 

W(ql .. ' q,,)W*(ql .. ' q,,) = 1, (35) 

we see that the result of the indicated operation is 
that we obtain 

y(qn+l) = nw(q,,+lq2 ... q,,)W*(qlq2 ••. q,,)y(ql), (36) 

or, in the notation introduced earlier, 

(lln)y(q) = W(q, q')y(q'), (37) 

with W(q, q') defined by Eq. (10), Hence, any 
solution of (33) is an eigenvector of the mapping n 
belonging to the eigenvalue lin. The converse is 
not generally true, however. Thus if the manifold 
of solutions of Eq. (37) can be obtained, among 
them will be found all the solutions of Eq. (33). 
In the partiCUlar case where w is itself a Slater 
determinant, one sees immediately that any linear 
combination of the functions Ul, ••• Un is an eigen­
function of W belonging to the eigenvalue lin. 

5. BEST APPROXIMATIONS BY A SLATER 
DETERMINANT 

In actual applications of the cluster model, it is 
not uncommon to mutilate the integro-differential 

8 In this connection, see, P. Swan, Proc. Roy. Soc. (Lon­
don) 228, 10 (1955). 
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equation obtained strictly from the variation 
principle. In fact one sometimes neglects the integral 
(nonlocal) terms in the equation or replaces them 
by (in some sense) equivalent local-interaction 
terms.9 In this case the resultant equation may 
possess spurious solutions which on a reasonable 
interpretation should be excluded, but there is 
now no unambiguous way of identifying which of 
the solutions are the spurious ones and which are the 
valid ones. The difficulty arises from the fact 
that unless w is a Slater determinant, there do not 
exist n one-particle states which are forbidden to 
the (n + l)th particle. A possible approximate 
solution to this difficulty is suggested below. 

The difficulties attendant when w is not a Slater 
determinant could be avoided if w were replaced 
by its ''best'' Slater determinant approximation, 
and we may ask whether there is a procedure for 
securing this. One such procedure would consist in 
asking for that Slater determinant of none-particle 
functions on which w has the largest projection in 
Hilbert space. It is easy to show that the solution 
to this problem may be obtained in the following 
way. One constructs the mapping function W(q, q') 
from w by the use of Eq. (10) and then determines 
the n eigenvectors of this function corresponding to 
the n largest eigenvalues ,,2 as described in Sec. 2. 
The Slater determinant of these n eigenfunctions 
wiII then be the best approximation according to 
the above criterion. One can then use this Slater 
determinant in place of the function w in the 
variational problem. The states forbidden to the 
(n + l)st particle are then these n eigenfunctions. 
Since the sum of the squares of all the eigenvalues 
is unity, the amount by which the sum of the squares 
of the n largest of these falls short of unity is a 
measure of the goodness of the approximation. If, 
after the substitution of the Slater determinant for 
the function w, a mutilation of the integro-dif­
ferential equation is performed, or if one persists 
in employing the mutilated form of the original 
integro-differential equation, one can solve the 
resultant equation variationally under the addi­
tional condition that the solutions be orthogonal 
to the one-particle states of the Slater determinant. 
Alternatively, any solutions of the mutilated integro­
differential equation which have large projections 
on these one-particle states may be rejected. How 
satisfactory a resolution of the difficulties these 
suggestions provide is not clear however. 

9 An example of this type of procedure is contained in some 
recent work of Wackman and Austern on Li 6 (to be published): 
P. H. Wackman, Ph.D. thesis, University of Pittsburgh 
(1960). 

6. BEST APPROXIMATION BY LIMITED 
CONFIGURATIONS 

The idea involved in the preceding section of 
finding the "best" Slater determinant approxima­
tion to a given antisymmetric function has a 
natural extension which we here consider. A Slater 
determinant describes a state of an n-particle system 
in which there is one particle in each of n one­
particle states or "orbitals."lo Such an assignment 
of n orbitals for a system of n particles we shall call 
a "configuration."ll If there is given a complete set 
of one-particle states, then the totality of configura­
tions constitutes a complete set of functions for the 
entire system, and hence an arbitrary state of the 
system can be described by a linear combination 
of configurations. It may sometimes be convenient, 
however, to approximate a function by writing it 
as a linear combination of configurations formed 
from a limited number of orbitals, say m where 
m > n. The total number of such configurations is 
of course m!/n!(m - n)! . One can now ask the 
question: Given the number m, what is the best 
choice of the one-particle states from which the 
configurations are to be constructed? Before attack­
ing this problem, we introduce some ideas which are 
convenient for the discussion. 

Let us define a "primitive" of a given completely 
antisymmetric function as any function which 
when antisymmetrized yields the given fUnction. 
Every antisymmetric function has of course many 
primitives, but we shall now define a specific 
manner in which a primitive of a given antisym­
metric function can be constructed. Let u,,(q) be a 
complete ordered set of orthonormal one-particle 
functions. The totality of products of n such func­
tions w"ith arguments ql .,. qn, respectively, then 
form a complete set of functions in which any 
function W(ql '" qn) can be expanded: 

W(ql .. , qn) 

L C"fJ' ..• U,,(ql)UfJ(q2) .. , u.(qn), (38) 
a{3"'/C 

where the sum is taken over all values of a, {3, ••• K. 

If w is a completely antisymmetric function, then 
10 These correspond to Lowdin's "spin orbitals." 
11 Note that there is a slight difference from the ordinary 

usage of the term "configuration." In ordinary usage (with 
a central field) the magnetic quantum numbers (projection 
of angular momentum on z axis) of the occupied one-particle 
states are not specified when a configuration is given, while 
in the present usage all quantum numbers defining a one­
particle state must be specified. It would perhaps be useful 
to borrow a term from classical statistical mechanics and to 
call a configuration in our sense a "constellation" since it is 
the direct quantum analog of the classical meaning of this 
term. Lowdin also uses the term "configuration" in the new 
sense. 
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the coefficients c are completely antisymmetric in 
their n indices. If one now limits the sum on the 
right side of (38) so that the sum is taken only over 
all values of a, f3, ... K such that a < f3 < ... < K, 

then the resultant function will be a primitive of w. 
A primitive of this type can be constructed by the 
use of any complete ordered set of orthonormal 
one-particle states. If W is a Slater determinant and 
the states from which this determinant is con­
structed are included in the complete set of one­
particle states, the primitive obtained will consist 
of only one term. If these states are the first n 
states of the ordered set, then the coefficient of this 
one term will be CI23"'n = lin! and all other c's 
will then be zero. In the more general case, where 
W is not a Slater determinant, it would be convenient 
to select the ordering of the functions U a such that 
the absolute magnitudes of the c's form a non­
increasing sequence when the e's are arranged in 
dictionary order with respect to their subscripts; 
that is, cafJ .... stands before Ca'fJ"".' if a < a', 
or if a = a', provided f3 < f3', ... etc. An approxima­
tion to the primitive can then be obtained by drop­
ping those terms in the sum which involve one­
particle states later in the sequence that the mth. 
Antisymmetrizing (and renormalizing) the resultant 
function gives us the best approximation to the 
original antisymmetric function in terms of the con­
figurations generated from these m orbitals. If we 
now ask how to choose the m one-particle states such 
that after truncation we have the best approximation 
to the original function, the answer is clear. We 
choose these to be the m eigenfunctions of the kernel 
W(q, q'), formed from W in accordance with Eq. (10), 
which correspond to the m largest eigenvalues ';1.2. 

Indeed, since the sum of the ';1.2 is unity, we again 
obtain a fairly precise idea as to how good the 
approximation will be by seeing how far the sum of 
the m largest ';1.2 falls short of unity. Alternatively, 
one could discover how many orbitals would be 
required to give a satisfactory approximation to a 
given antisymmetric function by seeing how far in 
the sequence of eigenvalues one must go in order 
that the sum of their squares be sufficiently close 
to unity. 

A generalization of the above problem would 
consist in attempting to simultaneously approxi­
mate two or more antisymmetric functions by 
configurations derived from a common set of one­
particle orbitals. Since in general the kernels derived 
from each such function will not commute,I2 the 

a We mean here, of course, that WI(q, q") W,(q", q') r! 
W2(q, q") W1(q", q'). 

kernels will have different eigenvectors. We do not 
propose a general procedure for the solution of this 
problem but content ourselves with pointing out 
that the methods indicated above can still be 
helpful. For example, suppose that the functions 
which are to be approximated are WI, W2, ••• Wk and 
they are to be approximated by configurations 
derived from m orbitals. Corresponding to each of 
the functions WI, W2 •• , Wk, one can construct the 
positive semidefinite kernels WI, W 2 , ••• W k 

using (10). The fact that these are positive semi­
definite suggests forming the new kernel W = 
WI + W 2 + ... + W k, determining the m eigen­
vectors of W associated with its m largest eigen­
values, and then employing these as the orbitals for 
the approximation. The expressions for WI, W2, ••• 

can be explicitly obtained in terms of these orbitals 
then by replacing each kernel W, by PW,P where 
P is the projection operator on the subspace spanned 
by the m orbitals. Depending on other considerations 
which may enter the problem, it may sometimes 
be more advantageous to employ a weighted sum 
of the Wi (with positive weight factors) for W in 
place of the simple sum. 

An alternative approximation procedure, useful 
when no definite bound on the number of orbitals 
m is envisaged, but only an adequate representation 
of each of the original functions W is desired, is to 
find a sequence of eigenvectors for the kernel of 
each function separately which by the L ';1.2 

criterion yields an adequate approximation and 
then to form the union of the subspaces spanned 
by each of these sets of eigenvectors. Finally one 
introduces an orthonormal basis in the union of 
these subspaces. Variations of these procedures can 
be constructed to take care of special situations. 

Our discussion in the present section and the 
preceding one has been rather abstract in that we 
have not indicated in practical situations how the 
initial antisymmetric function or functions ware 
obtained. We therefore conclude this section by 
describing an example of the type of situation in 
which the procedures suggested above may have 
application. I3 Suppose that one is engaged in a shell­
model calculation without configurational mixing 
(in the usual sense) in which the number of orbitals 
in the unclosed shell is greater than the number of 
particles in this shell. One might then calculate the 
wave function for the lowest state in this approxi­
mation by conventional methods yielding a state 
function w. It is possible that by using the methods 

13 For further discussion see also references 2 and 5. 
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outlined above one finds that w can be represented 
reasonably accurately by a single Slater determinant 
in a new set of one-particle states determined by 
the use of the eigenvectors of the kernel W associated 
with the function w. One might then usefully 
introduce the set of eigenfunctions of W as a new 
set of one-particle basis states in proceeding to 
find the eigenfunctions of the higher states, and 
hopefully, in this new representation, the off­
diagonal matrix elements of the interaction might 
be sufficiently smaller than those in the original 
representation that perturbation methods could 
be employed where they could not be employed 
before. 

The problems involved in determining the eigen­
functions of the kernel W may be very formidable 
ones indeed. There is one aspect of this problem 
which may be favorable, however. One would be 
interested in determining the eigenfunctions be­
longing to the largest eigenvalues primarily. For 
these, certain well-known iterations methods are 
particularly well adapted and hence may sub­
stantially reduce the actual labor involved. Beyond 
this, little can be said concerning the practical 
feasibility of employing the methods of this paper 
without testing them in specific calculations. 

7. GENERALIZATIONS OF THE MAPPING PROBLEM 

For the purpose of determining if a given anti­
symmetric function is a Slater determinant, it was 
convenient to regard the function w(q, ..• qn) as 

a mapping of the space of functions of n 1 q 
variables onto the space of functions of a single 
q variable. There is an obvious generalization of 
this procedure, namely, regarding w as a mapping 
of a space of functions of n - k q variables onto a 
space of k q-variables through the identification: 

F(qk+1 ... qn) ~ f(q, ... qk) 

= w(q, ... qkqk+' ... qn)F(qk+' ... qn). (39) 

The procedures we have employed in dealing with 
the simpler case can be employed here, many with 
little change.14 However, we have not pursued this 
aspect of the problem except in an exploratory way. 
It is clear that if w is a Slater determinant then the 
subspace [fw] of [f] onto which [F] is mapped in this 
case will have a dimensionality n!jk!(n - k)!, 
and it is likely that this is the minimum dimen­
sionality for any function w, but we have not given 
a rigorous proof of this nor do we know whether the 
fact that the image space has this dimensionality 
is sufficient to establish that w is a Slater deter­
minant. Analyses of these other mapping situations 
would probably be most valuable when many-body 
systems with strong correlations are subjected to 
serious study. 

14 Obviously the adjoint mapping can be defined in an anal­
ogous manner to the earlier case, and the kernel W(q, ... qk; 
ql' ... qk') = W(ql ... qkqk+l" ... qn") W*(ql' ... qk'qk+l" ... 
qn") constructed which gives rise to a Hermitian positive 
semi-definite mapping of [lIon itself. The kernal W is identi­
cal, apart from a normalization and transposition, with the 
density matrix of order k of Liiwdin. 
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Excitation Spectrum of a Fermion System* 
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By the method of "modes" introduced by Sawada, the excitation spectra of a fermion system with 
singular interactions have been obtained in three cases; (1) with one additional particle above and 
and one hole below the Fermi surface, (2) with one additional particle above the Fermi surface, and 
(3) with two particles above the Fermi surface. The argument holds not only for the system of low 
density (nuclear matter with a hard-core repulsion), but also for the case of the interacting electron 
gas in the high-density region. The results have been compared with the Brueckner-Goldstone per­
turbation-expansion formulas, by using diagrams in the second- and third-order of the expansion in 
interaction strength. We show that in the approximation of our treatment, the occupation proba­
bility function at temperature T has the same form as the Fermi distribution function. 

INTRODUCTION 

CONSIDERING that the operators a*b* and ba 
(which represent a simple excitation "mode" 

for a many-fermion system) play essential roles in 
the calculation of ring (or cluster) diagrams in high­
density electron gas, Sawada investigated1 the equa­
tion of motion of these operators and succeeded in 
obtaining knowledge about the ground-state energy 
without a perturbation expansion in the coupling 
constant A. Recently this idea of mode was developed 
further and the so-called scattering eigenmodes a* 
and (3 were introduced to show that the singular 
two-body interaction can be consistently replaced 
by the reaction matrix in the equations of motion 
and in the expressions for the energies of states.2 

However, the details of the pair-scattering mode 
(particle-hole correlation) were not given. The pair­
scattering mode is essentially important to the 
present problem, in which shall be evaluated an 
excitation energy spectrum of a system of fermions 
(nuclear matter) with one particle above and one 
hole below the Fermi surface. We shall investigate 
this mode using Sawada's procedure and obtain 
knowledge about the approximate excitation spec­
trum without a perturbation expansion. We shall 
also evaluate the energies of one particle and two 
particles when they are put above the Fermi surface. 
These energies will correspond to the differences 
of the binding energy of states of nuclei of N + 1 
and N + 2 particles from the ground state of the 
nucleus of N particles, respectively. 

When the two-body interaction is of a Coulomb 

* Supported by the National Science Foundation. 
t On leave from the University of Tokyo, Tokyo, Japan. 
1 K. Sawada, Phys. Rev. 106, 372 (1957). 
2 K. Sawada, Phys. Rev. 119, 2090 (1960). We shall refer 

to this paper as (S.) from now on. 

type, we can also apply our results, since the pair­
scattering mode is taken into account. We also 
discuss the continuity at the Fermi surface in the 
occupation probability function in our approxima­
tion. Finally in Appendix we give a extended pre­
scription of our procedure appling to a finite system 
(real nuclei such as Ca41 and Ca42

). 

PAIR-SCATTERING MODE 

For the details of the procedure for constructing 
and evaluating modes, we refer the reader to the 
papers of Sawada. 1

•
2 For our purpose the following 

outline will be sufficient. Consider the total HaInil­
tonian written in the notation of second quantization 

H = L EiC~Ci + L CW~tVi.i:l.mCmCI' (1) 
i,i,l,m 

where Ei = kU2m is the kinetic energy and C~ 
represents a creation operator of a particle in a 
large volume with momentum, spin, etc., described 
by k i • C~ is separated into a creation operator of 
a particle and a destruction operator of a hole by 
the following definition3

; 

CT = a~, Wi> fJ" (2) 
CT = bi , Wi < fJ" 

where Wi is the "true" one-particle energy which is 
defined to be compatible self-consistently with the 
equation of the eigenvalue problem, [Eq. (22) of (S.)] 
and J.I = dEN/dN. (EN = the ground state energy 
of the N-particle system and N = total number 
of particles.) 

By this definition the Hamiltonian (1) can be split 
into the following parts: 

3 We use the letters p, q, p', ... in the case Wp, W q, .,. > iJ. 
and the letters r, s, r', ... in the case w r , W" •• , < iJ.. 

540 
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H = Ho + HI, 

Ho = L wpa~a" - L wrb~br + L ~r, 

HI = L (aT + b.)(af + b;) (3) 
i,i,l,m 

x ! Vi,;,z.m(am + b!.)(al + b~) 
+ L (~p - wp)a~a1> - L (~r - wr)b~br' 

p r 

The scattering mode operators a~, fJ-n are defined by 

a~ } _ =n * * 
fJ - L 1/;",.a p a. 

-n p, q 

p, r 

In (4), the wave functions 1/;, x, and i; are determined 
by the eigenvalue equation which is obtained from 
the following equation of motion: 

[(a~) H] = _ ( wn(S)a! ) + Y (5) 
fJ-n' _ w-n(S)fJ-n *n' 

In (5) Yan contains the interaction term between 
this mode and other modes only [Eq. (19) of (S.)]. 
In the approximation which neglects the interaction 
term Y",n, the eigenvalue equation for determining 
eigenvalues and eigenfunctions is 

[W.n(S) - {wp(S) + w.(S) lJ 1/;,,~: 
= L vp,a.;pl,fJ,t/;;,n,Q' - L vp ,Q.;r'.8'X;,n. 8 , 

H = L {EP + 2 Lv",.;p,. p • 

- 2 L Rp~~Rp~: Cf 

., -n w_n(S) - {wp(S) + w.(>") I 

_ 2 L R;, .f(;,. } * 
.,n wn(S) - {wp(S) + w.(S)} a"a

p 

+ L {Er + 2 L Vr,.;r,. 
r • 

- 2 L R,~;R~~~ 
.,-n w-nCS) - {wr(>") + w.CS)} 

- 2 L R;jl;,. }b b* 
.,n wn(S) - {w,(S) + w.(S)} r r 

+ C + HI + H 2 , (7) 

where 

+ L 1 it,.R;,. ~ 
r,',n WnCS) - {wr(S) + w.(S)} 

+ 2 L, Rp~~Rp~~ 
1>,r,-n w-nC>") - {Wp(S) + w,CS)} , 

HI = -21 '\' R-n *b*b* 1 '\' R- -nb*b*{3 L-J a.rD:'n r 8 - '2 £...J 8.'1' r 8 -n 
r.8,n. r,8,-n 

+ L 1l~:>r"b~b~a:"br'" 
r. II ,p' I • r " 

and 
11' • Q' r' .3 ' 

[W .. n(S) - {wr(S) + w,(S) IJxr~; 
(6) H2 = ! L R:,pa~apa. -! L R.~;a"a.fJ_n 

= '\' v .. . _f,"';- • - '\' v .' 'x"':' • ~ r,s,p ,11 Y'11 .Q ~ T,.,T,8 r ,8 , 

iJ' ,0' r' ,Il' 

with 

t'i,;;l,,,,=t(V;,;;l,m- V;,j;m,l- Vi,;;l,m+ Vi,;;""l), 

and i; is determined by 1/; and x. 
We can show that the quantity Wi(S), defined by 

(6), is the single-particle energy in this approxima­
tion, from the following consideration. Using the 
operators a* and fJ in (3) and shifting them to the 
left and right, respectively, we can rewrite the 
Hamiltonian in the following form; 

p,q,-n 

+ L 1l~:~,r"a:"br"apa. 
1),<1 ,p' I, '1'" 

- 2 L 1l~:~,r"b~a:"br"ap, 
8 ,f) ,p" • r" 

The definition of 1l is given by (18) of (S.), 
When we take the modified Hamiltonian H(modl 

defined below, we have the equation of motion for 
the one-particle mode, 

[a~, H(IDOdlJ_ = -wp(S)a~, 

with 

H(lrwdl = I: wp(S)a~ap + I: wr(S)brb~ + C + HI 
p 

(8) 

(noting the definition of Wi(S), and the relation 
[a~, HI] = 0). From (8) we get (IN) is the ground 
state), 

H(modl a: IN) = {w/S) + EN}a: IN). (8') 
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Equation (8') shows that w,(S) is the single-particle 
energy in this approximation. But since HCmod) can­
not be solved easily, we must content ourselves 
with omitting HI in HCrnod). Thus we can write the 
modified Hamiltonian in the following compact form, 
using the definition of the C. operator 

H
Cmod

) = L Wi(S)C~Ci + C. (9) 

In this approximation the ground-state energy could 
be written in terms of Wi(S) or the reaction matrix 
R [(24) of (S.)]. 

Now we consider the excitation state which con­
tains one additional particle above and one additional 
hole below the Fermi surface. To investigate the 
state, the following pair scattering modes 1':. and 0_". 
must be constructed; 

1'! } _ '" ~m * * '" *m * li-m - ;; 'f>p,ra"b r + t: Xp,.a"a. 

+ L Z~.:b~br + L e~.~brap. (10) 
r,8 r .p 

The reason is as follows. If we can find the operator 
1'! which satisfies 

(11) 

we get, 

HI'! IN) = (w m + ENh! IN), 

where particle number of the state is still conserved. 
Then 1'! I N) represents an excited state of the 
N-particle system and from its definition it corre­
sponds to the state with one particle above and 
one hole below the Fermi surface, and w'" is the 
excitation energy of the state. 

For construction and evaluation of the pair 
scattering mode (10), we use the same technique, 
as we did in the case of the scattering mode, Using (3) 
we have, 

[L 'f>;::a~b~ + L X;,~a~a. + L Z~.:b~br 
P, r P,Q r I 8 

r ,p p, r 

L Vp,r';r,p,'f>;'~r' + L: B;'.';r,p'X;,~., 
'P' • T I p' .0:' 

- L: B;.lJ';r.rIZ;/~Il' + L: UpIP';r.r,e~,~p'} 
r' ,4 'T' ,v' 

- L B;.8' ;q.r,a;'~81 + L: Up,v l ;(l.,.,e;'~p/} 
r '. 8 ' r' IV' 

., r 

+ L B:.81;tI.r,Z;·~8' - L Ur.p';8.rlE>;/~p'} 
r ',8' r' .8' 

r ,p 

- L B:.8';p,r,'E~'~8' + L Ur.p';p.r,E>;'~v/} 
r' .8' ,,' ,p' 

P,. 

+ L b~br {Wr - Wr(S) - W. + W.(s) I Z;,: 
r " 

r ,P 

p,r 

P,. 

r, • 

(12) 
r ,p 

where 

and the definitions of Ma,b and N a •b are given by 
Eq. (29) of (S.). By setting (12) equal to the following 
quantity (representing the quantity in the square 
bracket by Z *"'), 

(12) = -w*m( L: 'f>;:;a~b~ + L: X;,~a~a. p,r P,. 

r,8 r,p 

and constructing equations for 'f>, X, Z, and e, 
we can get the approximate normal mode 1'! and o-m' 
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[w ... - (w" - Wr)]~::; 

"" - .... = £....J VJl.rl ;r,p'CPp' tr' - L: B;,.' ;r,"'X:,~., 
pi Ir' pi ,Q:' 

+ "" B+ ...... =m L..J p.8':r.r'~r'.8' 
r' I.' 

(w ... - (w" - W.)]X;,: 

= L -V",r' ;o.v,cf>:'~r' 
p't r ' 

- L B; .• ,;.,,,,X:,~., 
p' ,Q' 

= - L -Vr,r';.,p,cf>:'~r' + L: B;,.,;.,,,,X:,~., 
p'tr' pi ,fl.' 

"" B+ ~=m + "" U-r,-,.,.,r,Q""'r'''''-' , - "-' r,.' ;.,r' ...... '· ,.' "-' v 'CI v 

r' ,8' r I ,p' 

+ "" B+ .... ~'" "" U- r.;>=" .£....i r." ;p.r'~r' ,8' - ~ T.P' ;p,r''CJ'r' ,V'· 
r',8' r' ,p' 

(13) 

B· represents the rather weak interaction induced 
by the scattering and may be regarded as small. 
The leading term in each term of B· begins with a 
term of the order of A3 in the expansion of the 
coupling constant A, and B'" contains the difference 
of such terms. In this approximation (B· = 0), 
the eigenvalue equation (13) reduces to the simple 
form in which essential coupling exists only for cf> 
and e, and X and Z can be regarded as so called 
attached field. Thus the equation for cf> and e in 
(13) can be written as 

(w. m - (w" - wr)]cf>::: 

-L: 
r' ,p' (14) 

"" - c.*m - L.J Vr,:pI;p,r,Or',v" 
r ',1" 

In this reduction, the following relation has been 
used, 

fr - -
Va.b;c,d = Vc.d;a,b = Ua,b;c,d' 

The solutions of (14) have both types of solution: 
W ~ o. We denote these as w.m , corresponding to 
the case w .. > 0 and w_ .. < 0, respectively. 

The wave functions cf> and e have the ortho­
normality relations; 

"" m m" "" em c. m
'· 0 ~ ~p.rtPp.r - L....J >-4 r,ptJr,p == m,m', 

p,r 

~ m m* 
£...J cf>",rcf>", ,r' 

Ctlm>O 
Wm<O 

r ,p 

L E>~,pe~/·.p' = 01',1" ororl. 
",,,,>0 
w.<o 

(15) 

The following relations can be easily found from (14), 
and these relations have been used in obtaining (15), 

e;,1) = - cp;.~, ;0,." c.-" 
'±"p,r = -Or,!), 

and 

(16) 

X and Z are determined by ~ and e. We can see 
[from (14)] that even when the interaction v contains 
a hard-core repulsion, it can be replaced by the 
reaction matrix V. 

Now we introduce a matrix T defined by 

T:,~ = L: Va. r' ;b IP'cI>:,~ r' 
p' .r' 

- L: Va,p';b,r,e~,~p' = T;::. (17) 
r' ,1" 

By substituting T into (13) (but B= = 0), the 
attached field X and Z are expressed in terms of T; 

(18) 

Thus the pair-scattering mode 1'* and 0 can be 
expressed by cf>, e, and T; and conversely we obtain 
the expression of a~b~ and bra" in terms of the pair 
scattering mode 1'* and 0 using the orthonormality 
relations (15). 

a~b~ = L cf>;'.r1'! - L e;o,,,1' ... ... .. 

(19) 

Here we used the relation; 

(20) 

We substitute the value of a~b~ and bra" in Z.", 
in (12) and express them as functions of 1'* and 1'. 
Now since Z",m contains 1'* and 1', we shift 1'* to 
the extreme left, and l' to the extreme right in Z .. "'. 
Noting that this procedure of shift for the scattering 
mode a* and {3 has been done already, we can rewrite 
Z ... in the form; 
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H ,cit, fr,~,P Lip. 
fbt J~ ,~,\hA, ~,VA. 

FIG. 1. ~ome excited states of a system with one additional 
particle above and one hole below the Fermi surface. 

Z"m = L: a~b~(wp - ~p - Wr + ~r)4>;:; 
p.r 

+ L: a~aQ(wp - ~p - W. + ~.)X;.~ 
p, a 

+ L: b,ap(w, - ~, - Wp + ~p)e:,: 
',p 

(21) 

where 

~. = WaCS) 
T m T m i5P,o + 2 L: B,a a."Ho,a 

p,a,',m [Wm - (W, - Wa)][Wm - (Wa - Wa)] 

T'" T m i5P,' + 2 L: 8,n r,pLto,r • 

r",p,rn [Wm - (W o - Wo)][W m - (w, - wp)] 

The term Z~", contains only the interaction term 
between a*, {3, /,*, /' and other modes. We do not 
give the explicit form here for economy of writing. 
Then in the approximation which neglects Z~m' the 
unknown parameter w. should be determined by 

Wa = ~.. (22) 

4>, e, and W: m should be evaluated by Eq. (14) 
with (22). 

This substitution of /'* and/' and shifting process 
to the extreme left and right should also be done in 
Y .. " in (5). Then Y .. " separates into two parts. One 
part is given by Y~" which only contain the inter­
action term between a*, (3, /,*, /' and other modes, 
just as in Z~m' The other part gives the effect of 
changing WaCS) in (6) to w. defined in (22). Accord­
ingly from now on, we must replace waCS) in every 

t.r, p,fb ,fP,~, ~,~, 
~,ib,~f9,Fb,~ 

~~.~".~:~.~ 
FIG. 2. Some excited states of a system with one additional 

particle above the Fermi surface. 

equation given so far, by Wa' Thus we obtain modified 
eigenvalue equations for determining the scattering 
mode, the pair-scattering mode and eigenvalues w~"' 
W=m simultaneously, by changing wa(S) in (6) and 
(14) to Wa' The modified Hamiltonian given by (8) 
must be changed too, by the effect of introducing 
the pair scattering mode; we have, 

[a* IJ(mod)] = - * p, _ Wpa p , 

C' = C - 2 (23) 

T m Tm f',p" X L 8,7 r',par,r' 

r,r',p,8,m [W m - Cw, - W,)][W m - (w" - wp )] 

In this approximation the energy of the ground 
state taking into account the pair-scattering mode 
is given by [see (24) of (S.)] 

T'" T'" Ra•
r 

+2 L: B.a "~V ',p , (24) 
p.a,',',m [w m - (w, - wQ)][wm - (w, - wp)] 

with the replacement of WaCS) in (24) of (S.) by 
Wa given by (22). 

DISCUSSION 

As stated before, /'~ I N), (We > 0) is an excited 
state with one additional particle above and one 
additional hole below the Fermi surface: that is, 
one-particle excitation. The excitation energy is in 
this approximation w., which is a positive eigenvalue 
of the equation for the pair-scattering mode /,*. 

Similarly, if we construct the double pair-scatterin~ 
mode, we can get the state of two-particle excitation, 
and so on. 

The state of the system with one additional 
particle above the Fermi surface is expressed by 
a~ I NI, (w, > /-I). The energy of the additional 
particle in this approximation which neglects the 
interaction between a*, {3, /,*, /' and other modes, 
is w., which is an eigenvalue of (23). This gives the 
difference of binding energy between the ground 
state of the N-particle system and a some state 
of the N + 1 particle system. Similarly the difference 
of binding energy between the ground state of the 
N particle system and a some state of the N + 2 
system, is given by an eigenvalue in (6) (We> 2J.l) . 

. We sho~ the. order of our approximation by giving 
dIagrams III FIgS. 1-3. (We omit the diagrams ob­
tained by exchanging the lines of particles and 
holes.) For the case (1) and (3) we give diagrams 
up to second order in the expansion of the coupling 
constant A, for simplicity, but to third order for 
the second case in conjunction with the Fig. 4 for 
the ground state. \ye draw these diagrams by ex-
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H.,t.tr. H.rf.fp. H.r<til. 
fbLt~ 

FIG. 3. Some excited states of a system with two additional 
particles above the Fermi surface. 

panding each term in the eigenvalue equations in 
a power series in A. As is easily seen from the dia­
grams, our results contain the contribution from 
the ladder type diagrams which are important to 
the evaluation of the approximate excitation energy 
and ground state energy in the low density Fermion 
system (nuclear matter). Our results also hold for 
the Fermion system in the high-density region, even 
when it has a hard-core repulsion or a Coulomb 
type interaction between the constituent particles. 
For the latter case it is known that the pair scatter­
ing mode should be taken into account. This cor­
responds to adding the ring diagrams (or cluster 
diagrams) in the evaluation of the energy (Fig. 4). 
These two cases combine in some low-density systems 
in which the major contribution to the ground-state 
energy may come from the ladder-type diagrams 
but some excited states are highly collective and 
require a knowledge of the ring diagrams in the 
presence of hard repulsive cores. Such cases have 
been discussed in connection with the nuclear giant 
dipole absorption for example. 

Now, consider the grand partition function de­
fined by 

Z = Tr {e-~(H(mOdl_pNl}. (25) 

In (25), B = l/kT and H(modl is the modified 
Hamiltonian given'in (23). If we write Z in the form 

(26) 

all the thermodynamic properties of the system in 
this approximation may be derived very simply 
from n. From the definition of H(modl (omitting C' 
term), n is given by 

n = -(1/(3) L: In (1 + e-{l('''-Pl), (27) 
i 

for the case of noninteracting system, as is well 
known. The occupation-probability function is just 
the same type as the Fermi distribution function, 
except the replacement of Ei by Wi' The occupation 
probability of the individual-particle energy levels 
at zero temperature is one for levels below the true 
Fermi energy and zero for energies above the Fermi 
level. 

~.o.s.~.~.s.s. 

~.~. 
FIG. 4. The ground state of a system. 

Finally we mention the diagrams which are con­
tained in the evaluation of the occupation proba­
bility n i , which is defined by; 

n i = Tr {e-{l(H.+HI(mOd)_pNlC~C;}/Z, 

Himodl = H(modl - Ho. 
(28) 

As is familiar from field theory, (28) may be written 
in terms of the Dyson ordering operator 

Il(p-,il Zo 
n, = e Z 

X / CiCt + f (-r ill ill 10.
8 

dU l ... dUn 
\ n-l n. 0 0 

X C,PlHjmOdl(ul) ... HimOdl(Un)]C~>. (29) 
all d 

In (29) 

(A) = Tr {e-Il(H.-pNl A} /Tr (e-~(H,-pNl}, 

Zo = Tr {e-Il(H.-pNl}. 

The subscript all d. on the average means that in 
evaluating this trace we are to take all diagrams. 
When we take only "connected" diagrams, (29) 
becomes 

X / C,Ct + f (-t ill fll foil dUl ... dUn 
\ n-l n. 0 0 

X C;P[HimOdl(Ul) ... HimOdl(Un)]C~>.' (30) 

where the SUbscript c means that we are to take 
only connected diagrams. Thus we can give the 
diagrams which are contained within the frame work 
of our approach in the evaluation of the average in 
(30) by the method of Bloch and DeDominicis' 

FIG. 5. Diagrams con­
tained in the evaluation 
of ni. 

f.t.t,l'l.f.f'l.f'l. 

N.N.N. 
'C. Bloch and C. DeDominicis, Nuclear Phys. 1, 459 

(1958). 
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(Fig. 5). In Fig. 5, the symbol ,:l represents the 
contribution of all single-particle diagrams shown 
in Fig. 2, and the diagrams which contain hole 
lines correspond to the abnormal diagrams defined 
by Luttinger. 5

•
6 This is the graphical representation 

of the evaluation of the function 
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APPENDIX 

ENERGY SPECTRUM OF A FINITE NUCLEUS 

In this Appendix the procedure for getting the 
energy spectrum by looking at the normal modes 
is extended to a case of finite nuclei consisting of 
a core nucleus plus one additional nucleon and two 
additional nucleons, say, such as Ca4l and Ca42

• 

The core nucleus means a nucleus consisting of 
closed neutron and proton shells such as Ca40

• The 
eigenvalue equations for determining the energy 
spectrum are obtained for each quantum number J 
(the total angular momentum of the nucleus), when 
a spherical two-body interaction is assumed. 

Although the mechanism producing the analogous 
states in the finite and infinite systems is essentially 
the same, the way in which the mechanism works 
in the finite system differs from that in the infinite 
system because of its shell structure. We shall 
describe here how modifications of the scattering 
modes are to be made so as to be appropriate in 
the case of real nuclei. The prescription will be made 
so as to bring out analogies in the methods used to 
those employed in describing the infinite system. 

We consider a system of nucleons (protons and 
neutrons) which are moving in a certain spherically 
symmetric self-consistent well. We choose, as basic 
functions of the second quantization representation, 
the wave functions of a nucleon in each well, and 
states are designated by If(r) (n, (I) i, m); (r designates 
proton or neutron), as is usually used when formu­
lating the problem in the i-i coupling scheme. Let 
us introduce the Fermi operators C:.(/.)m and C!::.m 
which create and destroy one nucleon of the r kind 

6 W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41 (1960). 
6 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 

(1960). 

in the state If(r)(n, i, m). The Hamiltonian for the 
system of interacting nucleons is then 

H = L: H(r) + H(r.r'), (AI) 
r-p,n 

with 

n,; ,m n.i.m 

and, 
H(r.r') = '"' c*(r) c*(r.') 

~ nl.31,ml na.1a,m2 
n.i.m 

Here E!:: is the single nucleon energy of the r kind 
in the If(r)(n, i, m) state, and 

V(r)(nl , il, ml ; n2, i2, m2 I n4, i4, m4, na, ia, ma) 

= II 1f:,(:I,.m,(I) ·1f:,(.?.m,(2)· v(r\I, 2} 

1f .I.*(r) (1)· .I,*(r.') (2)· v(r.r·)(l 2)· 
'Ynlt11,ml ¥'n.lll.1s,mlll , 

We consider for simplicity a core nucleus consisting 
of closed proton and neutron shells. We denote the 
ground state of the core nucleus by 10) and its 
energy by Ee! and treat it as the physical vacuum 
referring to absent nucleons and holes. Following the 
analogy with the infinite case, we shall define the 
separation of the operator C:.(/:m into a creation 
operator of a r-nucleon and a destruction operator 
of a r-hole as follows7

; 

w!:: ~ J.l~rl, 
w~:: < J.l~rl. 

(A2) 

Here w~:: is the "true" one r-nucleon energy of the 
state If(r)(n, j, m) which is defined to be compatible 
self-consistently with the equation of the eigenvalue 
problem which we shall establish later and J.l~r) is 
the binding energy of the one additional r-nucleon 
to the core nucleus. By this definition the Hamil­
tonian H(r!, for example, in (1) can be split into the 
following parts; 

7 We use the le~ters wit.hout prime in the case "'n./(r) ;:::: J.ll (r), 

and the letters With a pnme in the case "'n' j' (rl < "'1 (r). 
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Ho(r) "" (r) a* <r) a(r) .L...J Wn,i n.i ,m n,i ,m 
n.i.m 

x ! v(r)(i1, j1' k1; i 2 , j2, k2 I i 4 , j4, k4; i 3 , j3' k3)' 

X (a~:).i3.k. + b1.(.r/a.k3)(a~:~i.,k6 + bt.(,T,!.,kJ 

n.i.m 

L (En' .j' - Wn' .j,)b!.(.,!, .m,b~~~j' .m'; (A3) 
n',jl,m' 

where the suffices (i, j, k) stand for (n, j, m) or 
(n', j', m'). Now the scattering eigenmode operators 
a* and f3 in the finite system are to be defined in the 
following way, 

(A4) 
and 

(A4') 

Where a term of the square bracket 

for example, equals 

2: at(:1 •. ~.at.(:1,.~,(P1' 0'1, P2, 0'2 I JM), 
O'l+O'a- M 

with the Wigner coefficient (Ph O'h P2, 0'2 I JM). 
The reason is as follows. When we can find the 
operators a}~:) and a}~:·r') which satisfy 

[a} ~:>, H]_ = -w';:;a} ~:>, w;:: ~ Jl~r) 
and 

we get 

and 
Ha}~:·r') 10) 

(r,.,.') *(r,r') 
-WJ.8 CtJ,8 , 

(r,r') > (r,r') 
WJ.. _ Jl2 , 

(A5) 

( 
(r.r') + E) *(r.r') 10) 

WJ .• cCtJ.. , (A5') 

where Jl~r) is the binding energy of the two additional 
r-kind nucleons added to the core nucleus, and 
Jl~r.r') the same one referred to the additional one 
neutron and one proton. 

Then a}~:) I 0) and a}~:·r') I 0) represent the 
ground state or some excited states labeled by the 
quantum number J, respectively, and from the 
eigenvalues w,;:! and w<;:;') , we can find out the 
energy separations of the spectrum of each nucleus 
in terms of the J value. 

For construction and evaluation of the scattering 
modes, we use the same technique, as done in the 
infinite case. But because of the complicatedness 
and tediousness, we omit here full calculations. For 
our purpose the following outline will be sufficient. 

We evaluate the anticommutator of the modes 
defined above with the Hamiltonian using (A3), 
(A4) , and (A4') and put the quantity equal to the 
right-hand side of the next equation, 

[~~::],Hl 
and 

[ ~}~:.r')l ' H] 
(r, r') 
J ,-8 -

[ 

(r. r') 
= _ WJ •• 

(r. r') 
WJ.-8 

(A6) 

a}~:.r')l + y~r •• r'). 

f3 <.,r:~:) 
(A6') 

In (A6) and (A6') Y ... contains the interaction term 
between a*, f3 and other modes, respectively. We 
do not give the explicit form here for economy of 
writing. Then in the approximation which neglects 
the interaction term Y * .. the eigenvalue equations 
for determining eigenvalues and eigenfunctions are: 

x 1f~:~i~,8n~,i2:J - ,. ~ , . , 
"1 ,11 ,n2 .12 

[ 
(r) «r) + (r) )] 

WJ,. - WAt'. PI ' WAa',P:lI' 

x xi:~ :::' .1.,' .P,':J = 2: 
"1.i1. n2./2 

(A7) 
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and 

[w:/::~) - (W~:~Pl + W~::~JJ 
x ~~: :;:~~:.3p2:J = L: 

x 1f!::;~~~:.3i2:J - ,. ~, . , 
11] ,J I ,112 .12 

x 1#!::;:~~:.3j2:J - I' ~, . , 
111 ,11 ,n2 .12 

X V (r,r')(, I I, I I, J]{' I I 'I I 'I, J]") 
"), PI, "2, P2' lr.J n), 11, n 2 , 12, lY1 

(A7') 

with 

(r) _ (r) + 2 " 2J + 1 
Wa,b - Ea,b £,...- 2b + 1 

ft' ,J'.J 

X V-(r)( b I 'I, JM I b I 'f, J"') a, ,n, J ' a" n , J, lV1 

+ L: 2J + 1 
n',i',J 2b + 1 

X v(r,r'\a, b, n', i': JM I a, b, n', j': JM) 

2J + 1 R(r) ,-8, R(r>.-., _ 2 L: a,b.nd:J a,b.n']:J 

n,i.J,-8 2b + 1 w<;,)_. - (w~:~ + w~:;) 
2J + 1 R(r,r'>'-8R(r,r'>'-8 L: a,b.not:J a,b,n" :J 

n,i.J,-. 2b + 1 wjr..::;) - (W~:~ + W~:;» 
2J + 1 R- (r) " R- (r) " 

-2 L: a.b,n',i':J a,b,n',i':J 

n',i',J,. 2b + 1 W<;,). - (W~:~ + W~:~i') 

x tP!::;:~~:,8i2:J - ,. ~, . , 
nl .J 1 ,n2 ,12 

X 
(r.r'),*'8 

Xnl' .il' ,n:2' .i2" 

v(r)(a, b, e, d: JM I a', bf
, e' , a': Jill) 

= ! if [.,,(r)(l) ·,·(r)(2)1* 2 'I'.,b, 'l'c,d _JM 

X v(r)(I, 2)[ if;~:\,(1), if;!:~d,(2)]J M dr;r) dr~r) 

- exchange term, 

V(r,r')(a, b, e, d: JM I a', b' , e' , d' : JM) 

= II [if;~:~(I), if;~:~)(2)nM 
X v(r,r')(I, 2)[if;~;\,(1), if;~;:~,(2)]JM dr;r) dr~r') . 

In this approximation, w~:~ defined above is the 
"true" nucleon energy in the state if;~:Lm' (A7) and 
(A7f) are not independent of each other. They are 
dependent on each other through the single nucleon 
energy w(r) and w(r'). (A7), (A7f), and (A7") , should 
be solved so as to be simultaneously self-consistent. 
The solutions of (A7) and (A7f), have both types 
of solutions w<;) ;::: /1o~r), w<;) < /1o~r), and w<;,r') ;::: 
J.I~r,r'), w<;,r') < J.I~r,r'). We denote these as W<;:.8 
and w<;:2, corresponding to the cases WJ " ;::: /102 

and WJ ,-. < J.l2, respectively. 
The attached fields 

and 
(r. rt) • *8 

1Jx]' .Pl' ,All ,P2:J 

are determined by the following equations; 

t;~',rp',),;*,:,P" ,'J 
2J + 1 R- (r,r') ,8 R- (r,r') " ""." 

~ a,b,n',j':J a,b.n'.i':J 

"",+:.r,. 2b + 1 w<;:;') - (w~:~ + w~:::,) , = Rt:;:\::'P":J/[w<;:~;) - (wt~P, + wt:~P,,)], 

where 

fl(r)''''3 = 
a,b,c,d:J 

x l/t~:~;:.3n2Ii2:J - ,. ~, . , 
nl .11 ,nil .111 

X v(r)(a, b, e, d: JM I nL if, nL i~: JM) 

R(T,r'), •• = " 
a,b,c,d:J £...i 

(A7") and 
(r. r'). *3 

TJx 1 ' ,Pl' ,AII.P:z:J 

The expression for the energy spectrum for the 
nucleus consisting of a core nucleus and two nucleons 
is given by the set of the eigenvalue equations (A7), 
(A7'), and (A7") which are to be self-consistently 
solved. They give the expression for the energy 
splitting of the nucleus in terms of the quantum 
number J. In the case in which some knowledge of 
the ring diagrams is required, one must add the 
pair-scattering modes 1'* and 0 (particle-hole inter­
action) as shown in the infinite case. 
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Locally Maxwellian Solutions for a "Positronium" Plasma 

H. L. FRISCH 

Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey 
(Received September 1, 1961) 

Exact locally Maxwellian solutions of a neutral "positronium" plasma are explicitly presented. 
They correspond to a flow which is a superposition of a parallel flow, a radial expansion, and a rigid­
body rotation. 

CONSIDER a neutral plasma consisting of two 
species + and - whose particles possess equal 

magnitudes of charge and equal mass (i.e., e+ = e, 
e_ = -e, m+ = m_ = m). In the absence of external 
forces there exist exact, nonequilibrium, locally 
Maxwellian solutions for the distribution functions 
t ~(x, ~, t) of these species. These distribution func­
tions satisfy the transport equations 

at. + ~. at,. ± ~ [E + l ~ x BJ 
at ax m c 

X ~~. = r(f+, t-), (1) 

where the electromagnetic fields E, B satisfy Max­
well's equations with electric charge and current 
densities given by 

n(x, t) = e J [/+ - t-l d~ 
(2) 

lex, t) = e J ~(f+ - f-l d~, 
respectively. The J* for the case of the Boltzmann 
transport equation are 

c-- + C-+ 

with the usual collision terms l
•
2 

c+- = - J df I~ - fl J dQo-(+·-l 

X W(x,~, t)r(x, ~', t) 

- rex, ~I' t)r(x, ~i, t)], 

(3) 

etc. (4) 

where a(+·-l is the appropriate collision cross section. 
More generally, J'" must (1) be invariant under 
Galilean transformations in phase space, (2) iden­
tically vanish for the equilibrium Maxwellian dis­
tributions, and (3) conserve the usual three additive 
collisional invariants,2 as for example the J= of the 
Fokker-Planck equation, etc. 

When r is set equal to the locally Maxwellian 
distribution functions I ~ (x, ~, t), 

1 S. Chandrasekhar, Plasma Physics, (University of 
Chicago Press, Chicago, Illinois, 1960). 

2 H. Grad, Communs. Pure and Applied Math. 2, 331 
(1949). 

° p(x, t) {[~ - u(x, t)]2} 
!*(x, ~, t) = [21rRT(x, t)]t exp - 2RT(x, t) 

= rex, ~, t), R = kim; (5) 

then, by virtue of the previously listed properties 
of r, 

r(f2, f~) = o. (6) 

On substituting (5) into (2), we find that nand 1 
vanish identically and Maxwell's equations reduce 
to the form which they possess for a vacuum. A 
perfectly acceptable solution of these equations is 
obtained then by setting 

E = 0 and B = O. (7) 

Introducing (6) and (7) into the transport equations 
(1) we see that these equations simplify to a single 
partial differential equation, 

a/
o + ~.ar = 0 

at ax ' (8) 

from which, together with (5), we obtain the density 
p, mean velocity u, and temperature T previously 
obtained by Grad2 in the case of a single-component 
uncharged Boltzmann gas. After a translation in 
space and time, Grad's solution can be written 
[Eq. (A2.21) of reference 2 for a ~ 0, see (A2.14) 
for the more general casel 

RT(t) = -1/2(a4 + at2
) , 

U(x, t) = 

In {[21r~~~~)t)JI} 

a - 2atx + {1 xx 
2(a4 + at2

) 

4aa4x
2 + 4ata·x - (a + {1 XX)2 

= ao - 4(a4 + at2
) , 

(9) 

with ao, a, a4, a, and {1 constants. Thus this locally 
Maxwellian plasma can undergo a flow which is a 
superposition of a parallel flow, a radial expansion, 
and a rigid body rotation. 

In regard to the H theorem2 for such a plasma, 
these solutions play the analogous role2 to that 
played by the locally Maxwellian solutions for a 
Boltzmann gas. We are investigating the question 
of whether such solutions exist in the presence of 
external fields (particularly gravitational fields). 
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Studies in Nonequilibrium Rate Processes. V. 
The Relaxation of Moments Derived from a Master Equation 

KURT E. SHULER, * GEORGE H. WEISS, t AND KNUD ANDERSEN t 
National Bureau of Standards, Washington, D. C. 

(Received December 9, 1961) 

A study has been made of the relaxation of the moments 
of probability distributions whose time evolution are governed 
by a master equation. The necessary and sufficient condition 
for the first moment, M,(t), to undergo a simple exponential 
relaxation is found to be 

ro 

L nAnm = 13m + /" 
n=O 

where An", is the transition probability per unit time for 
transitions from state m to n, and where (3 and "yare constants. 
The necessary and sufficient condition under which the 
first k moments, M,(t), M 2(t), "', Mk(t), satisfy a closed 
system of linear equations is found to be 

I. INTRODUCTION 

I N an earlier paper of this series, one of us (K.E.S.), 
in collaboration with Montroll, has presented the 

theory for the relaxation of a system of harmonic 
oscillators in contact with a heat bath. l Starting 
with the master equation 

dxn(t) 
dt 

'" L {WnmXm(t) - H'mnxn(t)} 
m=O 

where xn(t) is the fraction of oscillators with energy 
nhv at time t and where the Wnm are the transition 
probabilities per unit time for transitions from 
state m to n, we showed that the first moment of the 
distribution, 

ro 

M,(t) = L nXn(t) , 
n=Q 

obeyed a simple exponential relaxation law of the 
form, where a is a constant, 

* Present address: Institute for Defense Analysis, Wash­
ington, D. C. 

t Consultant, National Bureau of Standards; permanent 
address: Institute for Fluid Dynamics and Applied Math­
ematics, University of Maryland, College Park, Maryland. 

t NATO Post Doctoral Fellow; permanent address: 
Institute for Physical Chemistry, University of Copenhagen, 
Copenhagen, Denmark. 

'E. W. MontrolI and K. E. Shuler, J. Chern. Phys. 26, 
454 (1957). 

Near equilibrium, i.e., as t --> 00, alI the moments Mr(t) obey, 
to a good approximation, a simple exponential relaxation law 
irrespective of the form of the Anm. 

For systems described by the Fokker-Planck equation 

apeX, t) a 1 a2 

at = - ax [bl(x)P(x, t)] + 2" ax2 [b2(x)P(x, t)], 

the necessary and sufficient condition that the first moment 
M,(t) undergo a simple exponential relaxation is found to be 
b,(x) = (3x + "y and the necessary and sufficient condition 
for the 2nd moment, Mlt) to have a simple exponential 
relaxation is 2xb,(x) + b2 = (322X2 + "Y2. It is shown that 
these conditions are equivalent to the conditions on the 
Anm stated above. 

independent of the initial distribution Ixn(O)}. This 
result, which had been obtained previously by Bethe 
and Teller,2 is somewhat surprising in its simplicity 
since the relaxation of the distribution {xn(t)}, as 
a function of the initial distribution {xn(O) l. follows 
a quite complicated behavior. In general, the solu­
tion of the transport equation (1) is given by a 
linear combination of eigenfunctions f.l;Cn) as 

xn(t) = L Cif.l,(n)e'i', (3) 

where the Ai are the eigenvalues of the matrix 
A = (Anm) and the Ci are related to the initial 
distribution {xn(O)}. While Ao = 0 in order that 
Xn(t) -+ X:quil as t -+ co, the Ai (j ~ 0) are different 
from zero so that the solution (3) will in general 
not reduce to the simple exponential form (2) for 
the moment M 1 (t). 

As has been pointed out previously3 the simple 
exponential relaxation of the moment M, exhibited 
in Eq. (2) depends entirely on the form of the 
transition probabilities Wnm (or An",) which enter 
into the kinetic equation (1). It is the purpose of 
this paper to derive the necessary and sufficient 
conditions on the form of the transition probabilities 
An", under which the moment equation (2) is obtained 
from the master equation (1). This result will then 

2 H. A. Bethe and E. Teller, "Deviations from thermal 
equilibrium in shock waves," Ballistic Research Laboratory, 
Report X-117, 1941 (unpublished). 

3 K. E. Shuler, Phys. Fluids, 2, 442 (1959). 
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be generalized to obtain the necessary and suffi­
cient conditions on the form of the A"m in order 
that the first k moments, M 1(t), M 2 (t), ... , Mk(t), 
satisfy a closed system of linear equations. We 
shall also derive the necessary and sufficient con­
ditions for the exponential relaxation of the first 
and second moments, M 1 (t) and M 2 (t), for systems 
described by the Fokker-Planck equation derived 
from the master equation (1). 

II. RELAXATION OF THE MOMENT M1(t) 

A comparison of Eqs. (7) and (8) and use of the 
normalization (5) shows that the relation 

'" L: nA"m = (3m + "/ (10) 
n=O 

is a sufficient condition for the simple exponential 
relaxation (8) to hold. Since we consider here only 
stationary processes, i.e., A"m is not a function of 
the time, and since all the other quantities appearing 
in Eq. (lO) are independent of the time t, it is 
evident that condition (10) will hold for all time t. 
In addition, in order for Eq. (lO) to be a sufficient 
condition for the validity of the moment relaxation 
equation (8) we require that the relation (lO) hold 
for all values of m. 

Our consideration in this section is restricted to 
systems whose time evolution is described by the 
master equation [see Eq. (1)]. In general, this 
equation, for systems with discrete states, can be 
written as It can readily be shown that Eq. (lO) is also a 

necessary condition. The initial condition for pen, t) 
(4) can be chosen arbitrarily subject only to the con­

ditions [see also Eq. (5)] 

dP(n, t) = ~ A P( t) 
dt f:'o nm m, n=O,I,···co, 

where pen, t) is the probability that the system will 
be found in state n at time t, and where the Anm 
are the elements of the transition probability matrix. 
The pen, t) have the obvious normalization 

'" 
pen, 0) ~ 0, L: pen, 0) = 1. (11) 

Let us then choose the special initial condition 

'" L: pen, t) = 1. 
P(s, 0) = 1; 

(5) 
P(j,O) = 0 for all j ~ s. (12) 

For systems with continuous variables, Eq. (4) 
reads 

Then from Eq. (9) it follows that 

dMI(t) I '" '" '" ----at 1-0 = t;]; nAnmP(m, 0) = t; nAn,. (13) 

aPex, t) 1'" at = 0 A(x, y)P(y, t) dy, (6) Equation (8) becomes 

where P(x, t) dx is the probability that the variable 
x(t) is in the range from x to x + dx at time t and 
where A (x, y), one of the elements of the transition 
probability matrix, is the probability per unit time 
for a transition from y to x. We shall limit our 
discussion here to systems with discrete variables; 
all of our results, however, carryover readily to 
systems with continuous variables. The only change, 
essentially, is the replacement of summation by 
integration. 

We begin by inquiring under what conditions the 
time evolution of the first moment, defined by 

'" 

dM (t) I '" dt 1-0 = (3M I (O) + "/ = (3 ~ nP(n, 0) + "/ 
= (3sP(s, 0) + "/ = (3s + "/. (14) 

A comparison of the r.h.s. of Eqs. (13) and (14) 
shows that Eq. (10) is also a necessary condition. 

As an example of the above relations we now 
discuss briefly the relaxation of M 1(t) for a system 
of harmonic oscillators in weak interaction with a 
heat bath at temperature T. It has been shown in 
reference 1 that for such a system the transition 
probabilities A nm , for transitions from m to n, are 
given by 

M 1(t) = L: nP(n, t), (7) (l/K)Anm = (n + 1) on+1.m 
n=Q 

can be written as - In + (n + l)e-u] onm + ne-u On-I.m, (15) 

(8) where K is a rate constant, the a's are Kronecker 
deltas, and where () = hv/kT with v equal to the 
frequency of the oscillator. Substitution of (15) into 
the I.h.s. of Eq. (lO) yields 

where (3 and "/ are constants. From Eq. (4) and the 
definition (7) it follows that 

'" 
(9) L: nAnm = K[(e-e - 1)m + e- u] = (3m + ,,/, (16) 

n=O 
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which is of the correct form to give the exponential 
moment relaxation (8) with a "relaxation time" 
equal to (_(3)-1 = [K(1 - e-8)rl as obtained III 

reference 1. Note that 

1: = e-
8 (1) 

13 e- 8 - 1 = - e8 - 1 

as required for the first moment 
., 

_E,(oo) 
hv 

Ml(t) = hI! L nP(n, t) = E,(t) , 
n-O 

(17) 

where E.(t) is the vibrational energy of the oscil­
lators at time t, to relax to its equilibrium value 
as t ~ 00. 

III. RELAXATION OF THE MOMENTS Mr(t) 

The development presented above can readily be 
extended to study the relaxation of the moments 

'" 
Mr(t) == L nrp(n, t). 

,~-o 

Specifically, we ask under what conditions on the 
An .. the first k moments Ml(t), M 2(t) , ... , Mk(t) 
satisfy the closed system of linear equations 

dMl(t) ----a:t = 13l1M l(t) + 13J2M 2(t) + ... +13lkM k(t) + 1'1 

dll~~(t) = 1321M l(t) + 1322M 2(t)+ ... +132kMk(t) + 1'2 

(18) 

dMk(t) 
dt = SklMl(t) + 13k2Mit)+ ... +13kkM k(t) + 'Yk' 

In vector notation Eqs. (18) become 

aM(t)/dt = BM + G. (19) 

The time evolution of the rth moment is given, in 
analogy with Eq. (9), by 

dM r(t) .,., r ----a:t = ~]; n An .. P(m, t). (20) 

If now the transition probabilities An .. , in analogy 
to Eq. (10), obey the relation4 

'" L nr An .. = 'Yr + 13rlm + 13r2m2 + ... + 13rkmk (21) 
n-O 

4 Note that for r = 0, 
'" '" 
L n

r An .. = LAn .. = 0 
n-O n-O 

as can readily be seen from Eqs. (4) and (5). This is a con­
sequence of the conservation of particles (mass) during the 
relaxation. 

for all r = 1, 2, ... k, then the moment relaxation 
equation (20) becomes 

dMr(t)/dt = 'Yr + 13dM I(t) 

+ I3r2M2(t) + ... + 13,kMk(t). (22) 

This is of the form of Eqs. (18) so that the relation 
(21) on the An .. is a sufficient condition for Eqs. 
(18) to hold. That relation (21) is also a necessary 
condition can easily be verified by repeating the 
development in Eqs. (11) through (14). 

As a specific example, we shall again discuss the 
relaxation of a system of harmonic oscillators with 
An .. given by Eq. (15). Substitution of An .. into the 
l.h.s. of Eq. (21) yields 

! i: nr An .. = m(m - 1)' 
K ,,-0 

- {mr[m + (m + l)e- 8
] + (m + 1)'+le-8

} , (23) 

Performing the indicated expansions then yields a 
polynomial of rth degree in m 

1~. rA ( -8 1) r - L... n nm = r e - m 
K n=O 

+ Ur\e- 8 + 1) + r(e-8 
- 1)]mr

-
l + ... + e-8

, 

(24) 

which is of the form (21). That the higher moments 
for a system of relaxing harmonic oscillators form 
a closed system of equations where the factorial 
moments, tm, depend only upon the mth and lower 
moments has been shown by Montroll and Shuler l 

who obtained the equation 

dt .. /dt + mel - e-8)f ... = m2e-8fm_l (25) 

for the factorial moments 

'" f .. (t) == L n(n - 1) ... (n - m + 1)p(n, t) 
n-O 

m = 1,2, '" k (26) 

The formal general solution of the moment equa­
tion (19) is 

M(t) = eB'M(O) + eB
' f e - Br dTG 

= eB'M(O) + eB'B-\I - e-B')G (27) 

To evaluate M(t) explicitly it will be necessary to 
find the eigenvalues of the matrix B. A particularly 
simple case arises when f3ri = 0 for r < j where 
then the rth moment, Mr(t) depends only on the 
lower moments Mr-i(t), with i = 0, 1, ... r - 1. 
Under this condition, B assumes the triangular 
form 
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B= 

o 
o 

(28) 

For {31l ~ i322 ~ ... i3kk, the eigenvalues of Bare 
distinct and are, explicitly, 

(29) 

and by the Lagrange-Sylvester interpolation formula 
one then finds 

M(t) = t, (B - i311 I) ... (B - i3aI) 
i-I (i3 ii - i31l) '" (i3ii - (3kk) 

.[liitMk(O) + (lii~i~ 1) G J, (30) 

where the prime indicates that the term B - (3;;I 
is missing from the numerator and the zero term is 
missing from the denominator. Simple analytical 
forms for M(t) can also be obtained for other special 
cases of the matrix B for which the eigenvalues X; 
can be evaluated. 

IV. RELAXATION OF THE MOMENTS NEAR 
EQUILIBRIUM 

In an attempt to reduce the relaxation of physical 
systems to a mathematically amenable basis, the 
assumption is made frequently that the relaxation 
of some of the macroscopic variables related to the 
moments of the distribution such as temperature, 
momentum, number density, etc., follows the simple 
exponential course given by Eq. (2). The classic 
example of this is, of course, Newton's law of 
cooling 

d7'(t)/dt = -a['l'(t) - 7'( (0)] (31) 

but more sophisticated and recent examples can be 
found in the literature. As discussed above, such a 
simple exponential relaxation will be found only 
under special conditions and certainly not in general. 

N ear equilibrium, however, such a simple exponential 
relaxation will be jound to hold, to a good approxi­
mation, jor all moments Mr(t) jor systems whose time 
evolution is described by the master equations (1) or (6), 
irrespective oj the jorms oj the Anm. As t ~ 00, one 
can neglect, to a good approximation, all but the 
lowest (nonzero) eigenvalue XI of the expansion 
(3) and writeS 

Pen, t) 1.-", '" cofJ.o(n) + clfJ.l(n)e-}.,t. (32) 

5 As has been shown in reference (3), all the eigenvalues 
are real. 

From the definition of the moments 

'" 
Mr(t) - L nrPCn, t) 

one then finds that 

dM,(t) I 
dt t~'" 

From (32) one obtains 

tt=Q 

'" 
-Xlcle-}.,t L nrfJ.I(n). 

n-O 

'" 
Mr(t) 1.-", = Mr(oo) = Co LnrfJ.o(n), 

n-O 

so that 

'" 

(33) 

(34) 

Mr(t) 1.-", = M,(oo) + cle-}.,t LnrfJ.,(n). (35) 
n=O 

The use of (35) in Eq. (33) then yields 

dl~t(t) 1.-", = -X,[Mr(l) - illr(oo)], (36) 

which is of the same form as Eq. (2). In this de­
velopment, we assume that all the moments Mr(t) 
exist. Since macroscopic state variables can be ex­
pressed in terms of the moments of the probability 
distribution,6 simple exponential relaxation laws for 
these state variables will be found to hold near 
equilibrium. 

V. RELAXATION OF THE MOMENTS M 1(t) AND 
M 2(t) OF THE FOKKER-PLANCK EQUATION 

We shall now consider the relaxation of the 
moments 

M,(t) == i'" xP(x, t) dx 

M 2(t) == LX> x2p(x, t) dx 

of the Fokker-Planck (F-P) equation 

(37) 

apex, t) a a2 

at - ax [bt(x)P(x, t)] + ! ax2 [b 2(x)P(x, t)], 

(38) 

b1 = 10'" (y - x)A(y, x) dy (39) 

b2 = fa'" (y - X)2 A(y, x) dy. (40) 

6 In the case of translational relaxation, for instance, the 
zeroth moment is proportional to the density, the first 
moment to the momentum, and the second moment to the 
temperature since kT '" (mv2) "" m 2:. V2P(V, t). 

7 We shall assume here, to be consistent with the previouB 
discussion on the discrete master equation, that the range 
of the continuous variable y extends from 0 to co. 
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As is well known8 the F-P Eq. (38) can readily be 
derived from the master equation (6) under certain 
restrictive assumptions on the form of the moments 
bn(x) and the probability distribution P(x, t). 

A. Relaxation of the Moment MI (t) 

To obtain the relaxation equation for the first 
moment MI(t) defined in Eq. (37) we multiply the 
F-P Eq. (38) by x and integrate over all x: 

1'" a[xP(x, t)] d = dMI(t) 
o at x dt 

1'" a 
= - 0 x ax [bI(x)P(x, t)] dx 

1'" a2 
+! 0 x ax2 lMx)P(x, t)] dx. (41) 

Partial integration on the r.h.s. of Eq. (41) leads to 

dM (t) I'" 1'" -tt- = -[xbI(x)P(x, t)] 0 + 0 bI(x)P(x, t) dx 

+ ~ [xP(x, t) ab~~x) + xb2(x) ap~~ t) ] I~ 

- ![b2(x)P(x, t)] I~· (42) 

In order to arrive at the moment relaxation equation 
(8) we must impose some general conditions on the 
distribution function P(x, t) and the coefficient b2 (x): 

(i) b2 (x) can be represented as a polynomial in x 
without a constant term.9 

(ii) P(x, t) goes to zero sufficiently rapidly as 
x ~ <Xl that all the bracketed terms in (42) 
go to zero at the upper limit x = <Xl. 

Under these conditions, all the bracketed terms in 
Eq. (42) go to zero at both limits and Eq. (42) 
reduces to 

(43) 

If we make use of the continuum analog of the 
normalization (5), i.e., 

10'" P(x, t) dx = 1, (44) 

it follows that the necessary and sufficient condition 
for the exponential relaxation of MI(t) is 

8 See, e.g., N. G. van Kampen, Ned. Tijdschr. Natuurk. 
26, 225 (1960); Can. J. Phys. 30, 551 (1961). 

g The absence of a constant term is necessary for the last 
bracketed term in (42) to go to zero at the limit x = O. If the 
range of the variable x is from - GO to GO, no assumption 
has to be made about the form of b2(x) provided that P(x, t) 
also goes to zero sufficiently rapidly as x -> - GO. 

(45) 

As an example of this relation we shall again 
consider our previous example of the relaxation of 
a system of harmonic oscillators in a heat bath. The 
F -P equation for the relaxation of a system of 
classical oscillators in a heat bath has been found 
to be,IO using our present notation, 

1- apex, t) 
kio at 

a 
- ax [(1 - (}x)P(x, t)] 

1 a2 

+ :2 ax2 [2xP(x, t)], (46) 

where klO is a rate constant and where P(x, t) dx 
is the probability that the oscillators will have an 
energy between hvx and hv (x + dx) at time t. 
Rubin and Shuler have shown10 that the relaxation 
of the first moment, the mean vibrational energy 
(E.) = hv I~ xP(x, t) dx, is indeed exponential 
with (3 of Eq. (8) given by (-kIOO). A comparison 
of the condition (45) with the bI(x) of Eq. (46) shows 
that bI(x) is of the proper form and that {3I = -k IO {} 
as required. In addition, it will be noted that b2 (x) = 
2x is of the proper form in being a polynomial in 
x without a constant term. 

B. Relaxation of the Moment M2(t) 

The relaxation equation for the second moment 
M 2 (t) defined in Eq. (37) is obtained in a manner 
completely analogous to that used for MI(t). We 
multiply the F-P Eq. (38) by x2 and integrate over 
all x to obtain 

r'" a[x
2
p(x, t)] d = dM2(t) 

10 at x dt 

1'" a 
= - 0 x

2 
ax [Mx)P(x, t)] dx 

11'" 2 a
2 

+:2 0 x ax2 [bix)P(x, t)] dx. (47) 

Partial integration of the r.h.s. of Eq. (47) leads to 

d~~(t) = i'" P(x, t)[2xbI(x) + b2(x)] dx 

- [x2 bI(x)P(x, t)] [ 

+ ~ [ x2bb) ap~~ t) + x2p(x, t) ab~~x) ] I~ 

- [xb2(x)P(x, t)] t· (48) 

10 R. J. Rubin and K. E. Shuler, J. Chern. Phys. 25, 
59 (1956). 
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Making use again of our assumption (ii) on the form 
of the P(x, t) we find that the bracketed terms in 
Eq. (48) vanish since they go to zero at both the 
upper and lower Iimit.1l Equation (48) then reduces 
to 

dM (t) 1'" T = 0 P(x, t)[2xMx) + bz(x)l dx. (49) 

For M 2 (t) to follow a simple exponential relaxation, 
i.e., 

(50) 

the necessary and sufficient conditions on the b1(x) 
and bz (x) are found to be 

2xb1(x) + Mx) = fJ22X2 + 1'2' (51) 

For M 2 (t) to follow the relaxation law given in 
Eqs. (18), i.e., 

dM2(t)/dt = fJZZM 2(t) + fJ21 M l(t) + 1'2, (52) 

the necessary and sufficient conditions on the b1 (x) 
and b2 (x) are found to be 

2xbr(x) + bz{x) = (322x2 + fJ21X + 1'2' (53) 

If b,(x) is given by Eq. (45), i.e., M1(t) undergoes 
a simple exponential relaxation, then b2 (x) in Eq. 
(53) will be a quadratic polynomial in x. 

As an example of the relaxation of the second 
moment M 2 (t) for a system described by a F-P 
equation of the form of Eq. (38), we consider the 
relaxation of the mean translational energy (EI ) 

of a dilute electron gas dispersed in a heat bath of 
molecules. For this example of a Rayleigh gas the 
Fokker-Planck equation for the electron distri­
bution function I(v, t) can be written, using certain 
assumptions about the electron-molecule collision 
cross sections, as12 

af(v, t) = A ~ {k'I' 2 af(v, t) + m '/( t'} 
at tl iJv M v iJv M v v, ) , (54) 

where A is a constant, m is the mass of the electron, 
and M is the mass of the heavy molecule. Using the 
transformation 'IitCt', t) = P(v, t), Eq. (M) can be 
rewritten as 

(JP(v, t) A 
at 111 

X {~[(2kT - mv)pCv t)] + kT a2p(t'~} (55) 
iJv v ' 8v2

' 

n Note that we can dispense here with the requirement 
that the constant term in the polynomial b2(x) be equal 
to zero. The last term in Eq. (48) will go to zero at the lower 
limit even with a nonzero constant term in the polynomial 
bi(x) since b2(x)P(x, t) is now multiplied by x. 

12 S. L. Kahalas and H. C. Kashian, Phys. Fluids 2, 100 
(1959); D. I. OsiPov, Bull. of the Moscow Univ., Series III 
1, 13 (1961) (in Russian). 

where P(v, t) dv is the probability that an electron 
has a velocity between v and v + dv at time t and 
where P(v, t) is normalized as shown in Eq. (44). 
From Eq. (55) we find 

b1(v) = (A/M)(2kT/v - mv) 

b2 (v) = 2CA/M)kT. 
(56) 

Combining these quantities as shown in the con­
dition (51) we obtain 

2vMt') + b2(v) = (2A/M)(3k'l' - mv~, 

which is clearly of the required form with 

(322 = -2Am/M 
and 

1'2 = 6AkT/M. 

(57) 

(58) 

We should therefore predict an exponential relaxa­
tion for the second moment 

['" 2 
M 2(t) = J

o 
v2P(v, t) dv = 3m (E,(t) 

of the electron gas with a relaxation time - fJ;; 
given by 

- {3-~~ = tM I Am. (59) 

This is indeed the result obtained by Osipov1z by 
another method. 13 Note that 

1'2/(322 = -3kT/m = -(E,(<:o»2/m, (60) 

as required [see also Eq. (17)] for the mean trans­
lational energy to relax to its equilibrium value 
as t ----? ro.14 

The development presented in this section pro­
vides a convenient and easy test of the relaxation of 
the moments of distribution functions whose tempo­
ral development is described by the F-P equation 
(38). If the relations (45), (51), or (53) hold for the 
coefficients b1(x) and b2 (x), then the moments relax 
according to Eqs. (8), (50), or (52). The relaxation 
times _{3~1 and -(3;21 are, respectively, the recipro­
cals of the coefficients of x and x2 in Eqs. (45) and 
(51), and the equilibrium values of the moments, 
MICro) and M2(ro), are, respectively, (-'YI/{31) and 
(-'Y2/fJ2Z)' It is thus possible to write down the 
explicit expressions for the relaxation of the moments 

13 Our fJi2 is Osipov's a and our A is his V Ix. Osipov was 
concerned with the relaxation of the translational temperature 
of a relaxing Maxwellian velocity distribution of electrons 
which is, of course, proportional to the mean energy (see 
footnote 6). 

14 The results of Keilson and Storer, Quart. App!. Math 
10,243 (1952) on the relaxation of M,(t) and MiCt) for the 
velocity distribution of the Brownian Motion F-P equation 
are also in complete agreement with the results presented 
above. 
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without a knowledge of the distribution function 
P(x, t) from the solution of the Fokker-Planck 
equation. If none of the relations (45), (51), or (53) 
are found to hold, then one at least knows that the 
moments M 1(t) and M 2 (t) do not obey the simple 
relaxation equations (8), (50), or (52). 

C. Equivalence of the Conditions on the Anm 
the A(y, x) 

We now wish to demonstrate that the conditions 
(45), (51), and (53) are completely equivalent to 
the previously derived conditions (10) and (21) 
on the Anm. If we perform the indicated integrations 
in Eqs. (39) and (40) for the moments b1(x) and b2(x) 
we obtain 

bJ(x) = L" yA(y, x) dy (61) 

and 

Mx) = L" y2 A(y, x) dy - 2x foro yA(y, x) dy, (6~) 

where we have made use of the result4 that 
f~ A (y, x) dy = O. The integrals in Eqs. (61) and 
(62) are the continuums analogs of the summation 

'" .L: nAnm and 
"",,0 

in the expressions (10) and (21). If we now assume 
that the necessary and sufficient conditions on the 
Anm of Eqs. (10) and (21) also apply to the A(y, x), 
i.e., 

foro yA(y, x) dy = Blx + /'1 

fo'" y2A(y, x) dy = /322X2 + {321 X + /'2, 

we obtain, from (61) and (62), 

bl (x) = {3IX + /'1 

b2(x) = X2(/322 - 2/31) + X(/321 - 2/'1) + /'2' 

(63) 

(64) 

(65) 

(66) 

Note that Eq. (65) is identical with Eq. (45). 
Multiplication of Eq. (65) by 2x and addition to 
Eq. (66) leads to 

2xb1(x) + b2(x) = f322x2 + f321X + /'2, (67) 

which is identical with Eq. (53). For the simple 
exponential relaxation of M 2 (t) as given by Eq. (50), 
it is necessary that f321 = O. Under this condition 
Eq. (67) becomes identical with Eq. (51). The con­
ditions (63) and (64) on the A(y, x) are thus equiva­
lent to the conditions (45), (51), and (53) on the 
coefficients b1 (x) and b2 (x) of the F-P equation. 
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To every irreducible representation W of the rotation group in 2l + 1 dimensions that is used to 
classify states of the electronic configuratio~s In, there. correspond t'Y0 couples (v, S), where v ~nd S 
stand for the seniority number and total spm, respectIvely. Determmantal product states are mtro­
duced to examine this correspondence in detail. It is shown that for two double tensors Wed) and 
W("k), the set of reduced matrix elements 

(lnVIW~SIL IIW(·k)lllnVI'W'~'S/L'), 

for fixed n, VI. VI', W, and W', is proportional to the set 

(lmV2W~S2L IIW(.'k)lllmv2'W'~'S2'L'), 

where ~ and r are additional labels that may be required to define th; st~tes uniq~ely; provi~e~ (a) 
the two couples (v" SI) and (v" S2) are distinct, (b) the two couples (VI, SI ) and (V2' S2 ) are dlstmct, 
and (c) the sum K + K' + k is odd. The amplitudes of t~e double tensor.s ~re chosen so that the con­
stant of proportionality is equal to the ratio of two 3-) symbols, multlphed ?y ~ phase fa?tor. An 
explicit expression for this factor is given for f electrons, and a number of applIcatIOns are dIscussed. 

I. SYMMETRY 

CONJUGATE electronic configurations of ~he 
type In and l41+2-n share many propertIes. 

Perhaps the most familiar is the occurrence of 
identical term schemes; as a consequence of this, 
a table of the terms occurring in the configurations 
ZO, 1\ l2, •.• , r1

+
2 exhibits a symmetry about the 

half filled shell, l21+i. A glance at Table 17 of Condon 
and Shortley,i which lists the terms of all con­
figurations of the type p", d", and !", makes it 
obvious that other kinds of symmetry exist. The 
most striking is the symmetry with respect to L 
(the quantum number of the total orbital angular 
momentum) of the terms of maximum multiplicity 
about the quarter- and three-quarter-filled shells. 
For example, the terms of r with S (the quantum 
number of the total spin angular momentum) equal 
to 5/2 are 6p, 6F, and 6H; while those of r with S 
equal to 1 are 3p, 3F, and 3H. At first sight, it 
appears difficult to find similar types of symmetry 
for terms possessing less than the maximum value 
of S. However, this is because the quantum number 
that should be associated with a sequence of L 
values is not S, but Ms. With this clue, we can 
uncover a large number of symmetries of a rather 
spectacular kind in Condon and Shortley's table; 
for example, the L values of the terms of r that 
can produce components with M B = ±3/2, namely, 

* Work done under the auspices of the U. S. Atomic 
Energy Commission. 

IE. U. Condon and G. H. Shortley, Theory of Atomic 
Spectra (Cambridge University Press, New York, 1935). 

(1) 

are precisely the same as the L values of the terms 
of r that can produce components with M B = ± 1. 
[The superscript to a letter of the sequence (1) 
indicates the number of times the corresponding L 
value occurs.} 

We can gain some understanding of the recurrence 
of a sequence of L values by listing the irreducible 
representations W of R21 +1 , the rotation group in 
2Z + 1 dimensions, to which the representation 5)L 

of Ra belong. From Table 2 of Elliott et al.,2 we find, 
for example, that sequence (1) corresponds to the 
irreducible representations (110), (211), and (111) 
of R7 , both for rand r. The problem of explaining 
why certain sequences of L values recur in different 
configurations can thus be made equivalent to the 
problem of explaining why certain sequences of W 
values recur. In the latter form, the problem is seen 
to be closely connected to an observation of Racah,3 
namely, that to every representation W of the type 
used in classifying states of zn, there correspond two 
values of the couple (v, S), where v stands for the 
seniority. If we denote two such couples by (Vi' SI) 
and (V2' S2), then, according to Eq. (54) of Racah,3 

Vi + 2S2 = V2 + 2S1 = 2l + 1. (2) 

For the representations (110), (211), and (111) of 
our example, we find, from Table 2 of Elliott 

2 J. P. Elliott, B. R. Judd, and W. A. Runciman, Proc. 
Roy. Soc. (London) A240, 509 (1957). 

3 G. Racah, Phys. Rev. 76, 1352 (1949). 

557 



                                                                                                                                    

558 B. R. JUDD 

ct al.,2 that the couples (v, 8) are (5, 5/2), (5,3/2), 
and (3, 3/2) for rand (2, 1), (4, 1), and (4, 2) for r. 

In themselves, the symmetries with respect to L 
possess little more than a curiosity value. Our 
reason for introducing them lies in the hope that 
they will lead to symmetries with respect to matrix 
elements. It is well known that the matrix elements 
of most operators exhibit simple symmetry proper­
ties about the half-filled shell, and for states of 
maximum mUltiplicity it is usually not difficult to 
derive relations between matrix elements in sym­
metrical positions on either side of the quarter- or 
three-quarter-filled shell [see, for example, Eq. (15) 
of Judd4

]. It therefore seems reasonable to anticipate 
analogous relations for other types of symmetry. 
This expectation is strengthened by Eq. (73) of 
Racah,3 which relates matrix elements of the part C2 

of the Coulomb interaction between states defined 
by one couple (v" 8,) to those between states defined 
by the corresponding couple (V2' 8 2), Furthermore, 
Wybourne5 has shown that many matrix elements 
of the spin-orbit interaction between states be­
longing to the two representations Wand W' of R7 
are proportional to similar matrix elements in other 
configurations. Some of his results are examples of 
Eqs. (67) and (6gb) of Racah,6 and are of no interest 
here; of the others, in each case the pair of couples 
(v" 8,) and (V2' 8 2) corresponding to W, and also 
the pair (vi, 8D and (v~, 8~) corresponding to W', 
separately satisfy Eqs. (2). 

The first aim of this paper is to explore the sym­
metries within configurations of the type t. Most 
single-particle interactions of atomic spectroscopy 
can be concisely expressed as the components of 
double tensors, and the second objective is to derive 
relations between the matrix elements of such 
operators. Since the spin-orbit interaction is the 
scalar part of a double tensor of rank one with 
respect to spin, and of similar rank with respect to 
orbit, the second part of the program can be re­
garded as a generalization of Wybourne's5 work to 
arbitrary double tensors. 

II. DOUBLE TENSORS 

In order to define the operators with which we 
shall be concerned, we first introduce the tensors 
t'Kl and V(k) that act in the spin and orbital spaces, 
respectively, of a single electron, and for which 

4 B. R. Judd, Phys. Rev. 125, 613 (1962). 
5 B. G. Wybourne, J. Chern. Phys. 35, 334 (1961). 
6 G. Racah, Phys. Rev. 63, 367 (1943). 

and 

(lllv(k) Ill) = (2k + I)!. 
The (2K + 1)(2k + 1) products 

form the components of the double tensor 
for which 

(3) 

Many-electron tensor operators for the configuration 
In can be easily constructed by summing the operators 
for the n individual electrons; thus 

W(Kk) = L (W(Kk). 

and 

We note 
V(k) = W(Ok) vz. 

The set of quantum numbers W 8LM 8M L is not 
always sufficient to specify a state of In completely. 
We therefore include the additional symbol ~; for 
f electrons this can often be replaced by an irre­
ducible representation U of the group G2 •

3 All 
reduced matrix elements of W(Kk) can be calculated 
by means of the formula 

(r"W~8L IITV(Kk) IllnWT 8' L') 

= n[(28 + J)(2K + 1)(28' + 1)(2L + 1) 

X (21.: + 1)(2L' + l)J! 

where 

X L (1/I{1 ~)(1/I'{1 ~)(-]r 
""j 

X {8 ~ 8'}{L ~ L'} 
s 8 s lL l ' 

T = S + s + 8 + K + L + l + L + k, 

(4) 

and where 1/1,1/1', and ~ are abbreviations for W~8L, 
W' e 8' L', and W~SL, respectively. However the 
construction of the fractional parentage coefficients 
(1/1 { I ~) and W II ~), and the summation over the 
parent terms ~, are often extremely tedious to 
perform. In seeking to establish relations between 
different reduced matrix elements, we aim to 
circumvent this procedure as much as possible. 

III. DETERMINANTAL PRODUCT STATES 

In Sec. I we mentioned the correspondence be­
tween the states r with M 8 = ±3/2, and those 
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of r with M s = ±l. For both configurations, the 
state for which M L = L = 9 can be expressed as 
a single determinantal product state. However, 
without examining the phases of our states in de­
tail, we cannot be sure whether, for example, we 
should identify 

I r, 4M, Ms = -3/2, ML = 9) 

with 

or with 

-{3+ 3- T 1- O-j , , , , . 
We shall return to questions of phase later. For the 
moment, we avoid the difficulty by introducing the 
new states 

characterized by angular brackets, whose phases 
are at our disposal. We can therefore write 

I r, 4M, Ms = -3/2, ML = 9) 

and 

Ir,3M,Ms -1,llh = 9) 

== {3+, r, T, 3-j. 

(5) 

(6) 

Operating on Eq. (5) with W6:2
;, and using Eq' 

(3), we find 

W6~2; i r, 4iV/,Ms = -3/2,./lI L = 9) 

== (5/84)! {l +, 0-, 1-, 2-, 3-) 

+ (5/42)!{3+, -2-,1-, T, 3-) 

+ O/7)!{3+, -1-,0-, T, 3-). (7) 

Similarly, from Eq. (6), we get 

W6~z; I r, 3M, Ms = -1, Jh = 9) 

== (5/84)1{l+, 1-, T, 3-) 

+ (5/42)1{3+, 1-,0-,3-) 

+ (1/7)!{3+, -1-,2-,3-). (8) 

The striking similarity between Eqs. (7) and (8) 
prompts us to ask the following questions: 

(i) Can the determinantal product states of r 
for which M s = -3/2 be put into a one-to-one 
correspondence with the determinatal product states 
of r for which M s = -I? 

(ii) If (i) is true, what is its generalization? 
(iii) If it can be established that the determinantal 

product state {a-y) of to corresponds to the unique 

determinantal product state {b-y} of t', and vice 
versa, what are the conditions on «, k, q, «', k', and q' 
if CH and dH in the expansions 

W6: k
) {a-y} L c-yp{ap} (9) 

and 
W6~:k'){b-y) L d-yp{ bpl (10) 

are to satisfy 

C-yp = d-yp (11) 

for all 'Y and p? 
Questions (i) and (ii) can be taken together. 

Suppose that the g integers mi (i = 1,2, ... , g), 
constituting the set P a, satisfy the inequalities 

I ~ m 1 > m2 > ... > m i > ... > m. ~ -I (12) 

and that the h integers m: (j = 1, 2, '" , h), con­
stituting the set P~, satisfy the inequalities 

I ~ m{ > m~ > ... > m: > ... > m~ ~ -I. (13) 

We denote the combined set of g + h integers by 
Q-y. We can construct two determinantal product 
states, corresponding to any such set Q-y, according 
to the following rules: 

(a) Delete from 

{r,(l-l)+,··· ,(-It, r,(I-1)-,··· ,(-l)-}' 

the state corresponding to a completely filled shell, 
those entries (m/) + for which m/ coincides with a 
member of P a, and also those entries (m/) - for 
which m/ coincides with a member of PG. 

(b) Delete from 

W, (I - 1)+, ... ,(-tt), 

the state corresponding to a half-filled shell with 
maximum M s, those entries (m/)+ for which ml 
is a member of P a, and insert the sequence 

( - mi) - , ( - m~) -, '" , ( - m~)­

between (-I) + and the final bracket. 
The resulting quantities, which we denote by 

I a-y) and I b-y}, respectively, are 

{a-y) == {l+, ... , (m i + It, 
(mi - It, ... (-zt, r, '" ,(m: + 1)-, 

(m: - 1)-, ... , (-l)-) (14) 

and 

{b-y} == {l+, ... ,(mi + It, 
(m i - It, ... , (-It, (-mj)-, 

(- mi) , ... , (- m;)-, ... , (- m:)-). (15) 
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The first, {a., I, is a determinantal product state 
of l41+2-.-h; the second, {b.,}, of 121+1-.+h. The values 
of M s for these two states, which we write as M Sa 

and M Sb, are given by 

Msa = teh - g) 

and 

MSb = ~(2l + 1 - g - h). 

Upon writing 

4l + 2 - g - h = na 

and 

we see 
(16) 

and 

M Sb = -~(2l + 1 - na)' (17) 

If two entries of a determinantal product state 
are interchanged, the state becomes multiplied by 
-1. Two determinantal product states, whose 
entries can be perfectly matched by a process of 
rearrangement, are equivalent. The inequalities (12) 
and (13) impose a standard ordering on the entries 
of the states (14) and (15), and guarantee that no 
two determinantal product states {aoy 1 and {ao!, 
deriving from two distinct sets Qoy and Q" are 
equivalent. Similar remarks apply to states of the 
type {b oy I. If we suppose l, g, and h to be fixed, 
it follows that to each state {aoy 1 of In. there cor­
responds a unique state {boy 1 of t" and vice versa. 
From inequalities (12) and (13), g and h are non­
negative integers, not exceeding 2l + 1. Provided 
we restrict our attention to configurations t for 
which n :::; 2l + 1 -and, in view of the familiar 
symmetry with respect to the half-filled shell, 
nothing is gained by considering configurations in 
the second half of the shell-these conditions imply 
only that no + nb must be an odd integer greater 
than or equal to 2l + 1. Given, then, two con­
figurations to and t' comprising an odd and an 
even number of electrons, the total number being 
at least 2l + 1, the states of to for which M S is 
determined by Eq. (16) can be put into a one-to-one 
correspondence with those of t', for which M S 

is determined by Eq. (17). This statement answers 
questions (i) and (ii) above. 

Having established a method for drawing cor­
respondences between states of the types {aoy 1 and 
{boy l. it is straightforward to construct the right­
hand sides of Eqs. (9) and (10) in detail, and to 
pick out corresponding coefficients Coyp and d OYP' For 

Eq. (11) to be valid for arbitrary l, the conditions 
on K, k, q, K', k', and q' turn out to be 

q' q, 

k' k, (18) 

-1. 

The last equation holds if K + K' + k is odd. These 
equations provide the answers to question (iii). 

IV. MATRIX ELEMENTS 

The infinitesimal operators of the group R2l+1 
can be taken to be Wci~k), where k is odd.3 Any 
one of these operators, acting on a member {aoy 1 
of the collection of determinantal product states 
of to with M S = M SOl generates a linear com­
bination of states of the collection. It follows that 
the collection of states {a-rl for all possible Qoy 
forms a basis for a representation of R2/ + 1 • Now 
for every operation with Wci~k) on a state {aoy 1 
of In., we can construct a corresponding operation 
on the state {boy 1 of In,. According to Eqs. (18), 
the appropriate operator is again the infinitesimal 
operator W6~k) of R2/ + 1 • Hence the transformation 
properties of the basis functions {aoy I are identical 
to those of the basis functions {b., I. We conclude 
that the irreducible representations W, into which 
the two representations with these bases decompose, 
are also identical. This accounts for the recurrence 
of sequences of W values, the existence of which 
was mentioned in Sec. 1. 

The correspondence between the transformation 
properties of the two sets of basis functions {a., I 
and {b-y I holds not only for R 2 l+t, but also for 
any of its subgroups, since the infinitesimal operators 
of the latter can be chosen from those operators 
Wci~k) for which k is odd. The labels Land M L 

can be interpreted as irreducible representations of 
Ra and R 2 ; hence, given a particular expansion 

I ravi W~81LM saM L) = L: Ap I Gp I (19) 
p 

for ta, we can be sure that the linear combination 

(20) 

corresponds to the same set of quantum numbers 
W, L, and M L. The symbol ~ can also be carried 
over if its choice influences the properties of the 
linear combination of determinantal product states 
with respect to the tensors W6~k) for which k is 
odd. However, since either n. or nb is odd and the 
other even, the couple (V2, 8 2 ) associated with the 
expression (20) cannot be the same as (vt, SI)' 
We may therefore write 
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(21) 

with the understanding the Vlt V2 , SI, and S2 satisfy 
Eqs. (2). 

The construction of the matrix elements follows 
easily. If we operate on the right-hand sides of 
Eqs. (19) and (20) with lV~~k) and lV~~'k), respec­
tively, where K + K' + k is odd, the resultant 
linear combinations of determinantal product states 
correspond perfectly. The matrix elements are 
readily completed in a quite general fashion, and 
we obtain the result 

(zn"vflV'e SiL'M saM L' ITV6;k) I zn"vllV~SJJM saM L) 

= (lnbv~W'e S~L'M 8bM L' IlV~;'k) Jl"bv2lV~S2LM 8bM L)' 

To bring the notation into line with that of Eq. (4), 
we reverse the labelings of the states, and replace 
the angular brackets by regular ones. The latter 
operation introduces a phase factor (-If, where 
x is independent of K, K', and k. Pa!3sing to reduced 
matrix elements, we obtain 

(zn·Vl W~SIL IIW CKk
), I zn"viW'e S;L') 

(l"'v2lV~S2L IITV(K'k)lIl"bv~WTS~U) 

== (_1)S:1- S 1-.M sb+_lf sa+ x 

X [!(2l + 1 - VI) 

t(2l + 1 - na) 

!(2l + 1 - VD] 

o -!(2l + 1 - na) 

X [t(2l + 1 - V2) K 

t(2l + 1 - n,,) 0 

t(2l + 1 - VDj-l 
-!(2l + 1 - no) 

(22) 

The last line of the above equation follows from 
Eqs. (2), (17), and (18). To complete the program 
outlined in the last paragraph of Sec. I we have 
but to determine x. 

(rOll) TV~S,L IIW(ll) II I"Ov) - 2 WT Sl + 1 U) 

(l"bV2W~S2L liW(llJIIl"'V2 + 2W'(S2 - 1 U) 

V. PHASE 

Racah3 has shown that the fractional parentage 
coefficients can be factorized according to 

(~{I i/t) == cznvlV~SL{1 zn- lvWML) 
= (["vS{ Iln-lf;B + l)(TV~L I Wn + l). 

If the fractional parentage coefficients are always 
constructed as a product of these two parts, we 
can be sure that the second factor does not contain 
any hidden phase factors dependent on n. Under 
these conditions, we can often use Eq. (4) to gain 
information about x. 

Suppose, for example, that we make the substi­
tutions K = k = K' = 1, vf = VI - 2, and Si = SI - 1 
in the reduced matrix elements of Eq. (22). Equa­
tions (2) must be satisfied by the primed quantities, 
and we deduce that v~ = V2 + 2, S~ = S2 + 1. 
The ratio of the reduced matrix elements can be 
related by Eq. (67) of Racah6 to a ratio for which 
no and nb assume the special values VI and V2 + 2, 
respectively. The couple (v, B) for the matrix ele­
ment of the numerator can now be only (VI - 1, 
S1 - !); that for the matrix element of the de­
nominator, only (V2 + 1, S2 + !). Both of these 
couples correspond to the same TV; hence, if Eq. (4) 
is used to compute the ratio, the sum 

L: (lV~L IlVn + 1)(lV'eL' Ilf'~L + I) 
U 

where 

x (-lr{L ~ L'}, 
l L l 

(J = L + l + L + 1, 

(23) 

occurs in both numerator and denominator, and 
therefore cancels. Equations (52) of Racah3 give the 
magnitudes of the coefficients of the type 

(rvS {I zn- l f;S + I). 
The phase of such a quantity is independent of n,3 
and following Racah, we denote it by f(vS{1 vB). 
The result of the calculation is 

f(v)Slllv) - 1, SI - 1/2)€(vl - 2,81 + Hlv1 - 1,81 - 1/2) >;:;' 

€(v2S211 V2 + 1, S2 + 1/2)E(v2 + 2, 8 2 - IIi V2 + 1,82 + 1/2)"'" 
(24) 

where 

2= [ 
(n. + 2 - v)(4l + 4 - no - v1)(281 - 1)281(281 + 1) Ji 

(nb - v2)(4l + 2 - no - v2)(282 + 1)(282 + 2)(282 + 3) . 
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So much for the left-hand side of Eq. (22). The 
right-hand side, involving the ratio of two 3-j 
symbols, evaluates to 

(25) 

The immediate conclusion, independent of the 
choice made for the phases e(vSII iiS), is that x 
is independent of ~, ~', L, and L', and depends 
solely on the spins and seniorities of the states 
involved in the matrix elements. Equations (2) 
permit us to narrow down the dependence simply 
to the seniorities. 

The above analysis can be repeated for other 
special cases. There are not many to consider, since 
the seniorities and spins with common subscripts 
can differ by, at most, 2 and 1, respectively, if the 
matrix elements are not to vanish. If Si = SI' 
however, S can sometimes assume two values, and 
we cannot be sure that the simple factorization that 
allowed us to cancel the summations (23) still 
prevails. This difficulty can be circumvented, if 
the matrix elements are not completely diagonal 
with respect to v, W, ~, and L, by making use of 
the fact that the corresponding reduced matrix 
elements of W(Ol), being proportional to those of L, 
must vanish. The sum over L and ~ for S = S I - ! 
can now be related to the similar sum for S = 
SI + !, and, with a little manipulation, the de­
pendence of the ratio of the reduced matrix elements 
on ~, L, e, and L' can again be removed. This 
method, which has been previously used by Elliott 
et al.,2 breaks down if one of the matrix elements is 
completely diagonal in all quantum numbers; but 
in this case it is easy to see that the other matrix 
element must also be completely diagonal, and 
hence (-1)" = 1. The result of working through 
the various special cases is that the conclusions of 
the preceding paragraph are true in general: x is 
always independent of ~, e, L, and £I, and depends 
only on the seniorities. 
Thus 

(26) 

The precise form of x depends on the phases 
e(vS {I iiS). If these are still at our disposal, then 
we can go no further in our determination of x. 
However, for some values of l a particular choice 
has been made; for example, Eqs. (56) of Racah3 

determine the phases of e(vS II iiS) for f electrons. 
We may therefore compare expressions, such as 
(24) and (25), for all the various types of couples 
(1', S); the resulting values of x required to lead to 

agreement as to phase for f electrons can be sum­
marized in the equation 

x = VI o(vl , vi) + V2 O(V2, vD + 1. 

Upon putting this value of x into Eq. (22) the ratio 
of the two reduced matrix elements is made un­
ambiguous. 

VI. APPLICATIONS 

We may specialize Eq. (22) in several ways. A 
prudent step is to check that it reproduces those 
special cases that are already known. Wybourne5 

expresses his results for the matrices of the spin-orbit 
coupling in terms of the matrix elements of a 
quantity A defined by 

cznT:V~SLJM J I L: (s, ·li ) I znrV'f s' L' JM J) 
i 

where y = 0 or -! according as n is even or odd' 
From Eq. (25) of Racah,6 we may easily prove 

where 

and 

By combining Eqs. (22) and (27), the ratio of 
the matrix elements of A for any set of states !{II, 

!{Ii, 1/;2' and 1/;~ can readily be found. Of the 31 entries 
in Table III of Wybourne,5 20 are special cases of 
this kind; the remainder are examples of Eqs. (67) 
and (69b) of Racah. 6 We obtain complete agreement 
with Wybourne for 16 of the 20, but the signs of 
the right-hand sides of the sixth, ninth, tenth, and 
eleventh equations of his Table IIIb are incorrect, 
and should be reversed. In a private communication, 
Wybourne has confirmed these four corrections. 7 

Although we have distinguished between Eq. (22) 
(for which VI ~ V2 and vi ~ vn and Eqs. (67) and 

7 Table III of 'Vybourne contains other errors that are 
more obviously typographical. Of these, three possess a 
mathematical significance: In the second equation of Table 
III a, the representation (110) on the extreme right should 
be (111); in the fifth equation of this table, the seniority 
number 4 should be replaced by 3; and in the last equation of 
Table IIIc, the factor -[2(2)/3]112 should read -[2(2)112/3]. 



                                                                                                                                    

DOUBLE TENSOR OPERATORS 563 

(69b) of Racah 6 (for which VI = V2 and vf = vD, 
it should be pointed out that Racah's equations 
can be derived from Eq. (22). It is only necessary 
to compare Eq. (22), as it stands, to a similar equa­
tion in which na possesses its minimum value, 
namely the larger of VI and v[. Suppose, for example, 
we take VI = v[ = V and choose " + k to be even. 
For Eq. (22) to be valid, we must have ,,' = 1. 
We set na = v in Eq. (22) and then na = n. The 
matrix elements 

can be easily eliminated, and v·;e get 

(znvW~SL IIW(Kk)11 l"vW'eS'L') 

(l"vW~SL IIW(Kk)ill'vW'eS'L') 

= (-1) (.-n)/2 [!C2l + 1 - v) 1 !C2l + 1 - V)] 

!C2l + 1 - n) 0 -!C2l + 1 - n) 

X [H2l + 1 - v) 1 !C2l + 1 - V)]-I 

!(2l + 1 - v) 0 - !(2l + 1 - v) 

= (2l + 1 - n)/(2l + 1 - v), 

which agrees with Eq. (69b) of Racah. 6 

The applications of Eq. (22) that have been 
considered so far simply reproduce established 
results. However, it is only necessary to take k 
to be even to obtain a large number of new equations. 

This is because" + ,,' must be odd, and so " cannot 
equal ,,'. We may therefore relate the matrix ele­
ments of W(12) in one configuration to those of 
W(02) in another; in fact, for any matrix element 
of W(l2), a matrix element of W(02) in another 
configuration can be found to which it is related 
by Eq. (22). Since tensors of the type W(I2) and 
W(02) are used in the study of hyperfine structure 
and crystalline field effects, respectively, a con­
siderable amount of labor can be saved by taking 
advantage of this relation. For example, on setting 
VI = v[, SI = Sf, V2 = v~, and S2 = S~ in Eq. (22), 
we obtain, for even k, 

(znav i }V~SIL IIW(Ik) II lnaVIW~' SIL') 

(In'v;rnSzL Illl(k) I! l"'V2 We S2L') 

= _ [(2l + 1 - v2)(2l + 2 - v2)(2l + 3 - V2)J! 
2(2l + 1 - nb)2 . 

(28) 

This result is independent of VI and S2, and relates, 
for example, the matrix elements of part of the 
hyperfine interaction for the quartets of r to the 
matrix elements of V(2) for the terms of r with a 
seniority of 4. Matrix elements of the latter kind 
are the easier to evaluate, since fewer parents are 
involved. Equation (28) should therefore be useful 
in calculating, for example, the contribution to the 
hyperfine structure of PmI 4r 6 H J coming from 
admixtures of quartet states. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 3 MAY-JUNE, 1962 

Transient Response of a Dipole Antenna 

SAMUEL P. MORGAN 

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 
(Received January 30, 1962) 

The transient current in a long dipole antenna excited by a step-function voltage across an in­
finitesimal center gap has recently been calculated by Wu. A simpler derivation of Wu's result is 
given using double Fourier transformation. 

I N a recent paper,l Wu calculates the current in 
a long dipole antenna driven by a voltage im­

pressed across an infinitesimal center gap. The im­
pressed voltage is a step function of both space and 
time, and the current is found up until the time that 
the discontinuity spreading out from the gap first 
reaches the ends of the dipole. Since Wu's analysis, 
while ingenious, is somewhat roundabout, the follow­
ing more direct solution may be of interest. 

In a cylindrical coordinate system (p, ip, z), the 
resultant electric field at the surface of the antenna, 
which is the negative of the applied electric field, 
may be expressed as2 

Ez(a, z, t) = - o(z) U(t) 

1· 1 f sinbhs ')'z d f e
pel 

d = 1m -2" 1 e 'Y - p, .-0 47r C, 21'S c. P 
(1) 

where c is the velocity of light, and the contours 
C'Y and Ct> are up the imaginary axes, with Ct> in­
dented to the right of p = O. 

The electromagnetic field will be transverse mag­
netic and derivable from a stream function n(p, z, t) 
which satisfies the scalar wave equation.2 Such a 
function may be written in the form 

n(p, z, t) 

= ~- f J A( ) Ko(Ap) e')'z+pct d d 
A _2 ,p, 'Y K (Aa) p 'Y , 
~ c~ C p 0 

(2) 

where 

(3) 

In order to represent outgoing or damped waves at 
infinity, A must lie in the fourth quadrant or on 
its boundaries when 1m p < 0, and in the first 
quadrant or on its boundaries when 1m p > O. 
To carry out the p integration when 'Y = i{3, where 
{3 ~ 0, take the contour C~ shown in Fig. 1, indented 

1 T. T. Wu, J. Math. Phys. 2, 892 (1961). 
2 S. A. Schelkunoff, Electromagnetic Waves (D. van 

Nostrand Company, Inc., New York, 1943), pp. 34-35 and 
375-377. 

w v 

P - PLANE I\-PLANE 

1131 

FIG. 1. Contours of integration. 

to pass to the right of p = ±i{3. It is easy to verify 
that if A is taken to be negative imaginary when 
p lies on C~ below -i 1{31, then A describes the con­
tour C~ shown in Fig. 1 as p describes C~, and so 
only outgoing or damped waves are included in the 
integral (2). If (3 = 0, then C; coincides with C" 
and A = p. To make the Bessel functions single 
valued, the A plane may be cut along the negative 
real axis. 

The electric field corresponding to (2) at the 
surface of the antenna is 

Ez(a, z, t) 

= -~ J J A(p, 'Y) floA2 e'Yz+pel dp d'Y, (4) 
47r c, CpO P 

where flo is the characteristic impedance of free 
space, so that the function A(p, 'Y) may be deter­
mined by comparison with (1). The antenna current, 
which is proportional to the surface magnetic field, 
is given by 

an I I(z, t) = -27ra-
ap p~a 

a J J K 1(Aa) ')'z+pc/ d d = --- e P 'Y 
27rflo c, CpO AKoCAa) , 

(5) 

where the convergence factor (sinh hs)/hs has been 
dropped on the assumption that z and t are not 
simultaneously zero. 

To simplify the expression for I(z, t), we observe 

564 
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that the integrand of (5) does not have a pole at 
p = 0, so the center part of e; may be deformed 
into an infinite semicircle in the left half-plane, 
over which the integrand vanishes when t > o. 
The final stage of deformation is shown as e;' in 
Fig. 2, where nothing is left but the integrals around 
the branch cuts from p = ±i \~\ to ±i co • The cor­
responding contour in the X plane is e~'. It is easy to 
show that during the deformation ex does not leave 
the right half-plane, in which the function Ko(Xa) 
has no zeros; furthermore, the ratio K 1(Xa)/Ko(Xa) 
approaches 1 as Ixi approaches co. The contributions 
from the circles around p = ±i \~I can be shown 
to be of the order of l/llog 51, where 5 is the radius 
of these circles in the p plane, so the contributions 
vanish as 5 ----> O. the inner variable of integration from w to v and then 

inverting the order of integration and using the 
(6) resule 

If we now set 

'Y = i~, p = iw, 

where II is real, we can write down the four integrals 
along the branch lines. Expressing the modified 
Bessel functions K O •1 (±illa) in terms of Hankel 
functions and combining terms gives 

I(z, t) ai f'" J.'" [ Hi1'(lIa) 
= 7r'T/o _a> I~I IIH~l'(lIa) 

Hi
2
)(va)] . ( ) ;~, d df.l 

- IIH62'(va) sm wct e w I-' 

Izi > ct, 

Izi < ct, 
(8) 

we find that the antenna current vanishes for 
Izi > ct. For Izl < ct it is given by 

I( t) = ~ 1'" J o[II(C
2
t

2 
- l)!] dv 

z, 7r'T/o 0 J~(va) + .N~(va) v ' 
(9) 

4 fa> fa> sin (wct)e;~' dw d~ 
= 7r

2
'T/o _a> I~I l[J~(va) + N~ (va)] , (7) a result which is clearly equivalent to Wu's Eq. (17). 

h . th 1 t h d th W k' 3 W. Magnus and F. Oberhettinger, Functions of Mathe-
were III east s ep we ave use e rons Ian matical Physic8 (Chelsea Publishing Company, New York, 
relationship between the Hankel functions. Changing 1954), p. 118. 
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An Approach to Gravitational Radiation 
by a Method of Spin Coefficients* 

EZRA NEWMAN 

University of Pittsburgh, Pittsburgh, Pennsylvania 
AND 

ROGER PENROSEt 

Syracuse University,t Syracuse, New York 
(Received September 29. 1961) 

A new approach to general relativity by means of a tetrad or spinor formalism is presented. The 
essential feature of this approach is the consistent use of certain complex linear combinations of 
Ricci rotation coefficients which give, in effect, the spinor affine connection. It is applied to two 
problems in radi~tion the?ry; a concis~ proof of a theorem of Goldberg and Sachs and a description 
of the asymptotIc behaVIOr of the Rlemann tensor and metric tensor, for outgoing gravitational 
radiation. 

I. INTRODUCTION 

I N the study of gravitational radiation, two 
techniques have recently gained prominence; the 

tetrad calculusl
-

6 and the spinor calcul~s.7-9 In the 
present paper (Secs. II, 111/0 and IV) it is shown 
how the two techniques can be used to derive a very 
compact and useful set of equations, which are 
essentially linear combinations of the equations 
for the Riemann tensor expressed in terms of either 
Ricci rotation coefficients or the spinor affine con­
nection. In Sec. V, we give a short proof of a theorem 
of Goldberg and Sachsll to the effect that if in 
empty space there exists a null geodesic congruence 
with vanishing shear, then the Riemann tensor of 
the space must be algebraically specilized (Le., the 
Riemann tensor is not Petrov type I nondegenerate). 

The last application of our formalism is to the 
asymptotic behavior of the Riemann tensor and 
metric tensor in empty space. In Sec. VI a coordinate 
system and tetrad are built around a hypersurface­
orthogonal null-vector field. In Sec. VII, this 
special coordinate system and tetrad are used to 

* TillS work was done while both authors were at Syracuse 
University. It was supported by the Aeronautical Research 
Laboratory. 
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prove essentially the following theorem. If a partic~ 
ular complex (tetrad) component of the Riemann 
tensor (complex because we are using a complex 
tetrad system) has an asymptotic behavior O(r- 5

), 

the other four complex components are, respectively, 
0(r-4

), O(r-S), 0(r-2
) , and 0(r- 1

). The last com­
ponent represents the pure radiation field. Special 
cases of this theorem have been known for some 
time.12

•
13 Our theorem is also a slight generalization 

of a similar result recently obtained by Bondi and 
Sachs.6 

II. TETRAD CALCULUS 

We deal with a four-dimensional Riemannian 
space with a signature -2. Into this space a tetrad 
system of vectors l", m", ifi", n" is introduced, l" and 
np being real null vectors and m" with its complex 
conjugate ifi" being complex null vectors. The 
vector m" can be defined from a pair of real, orthog­
onal ~nit space-like vectors a" and bp. by m" = 
(1/ V2)(a" - ib,,). The f'rthogonality properties 
of the vectors are 

tl" m"m" = ifi"ifi" = n"n" = 0, 

l"n" = -m"ifi" = 1, (2.1) 

It is of great convenience to introduce the tetrad 
notation14 

Zm" = (l", n", m", iii,,), m = 1,2,3,4. 

12 R. Sachs (to be published). 
13 1. Robinson and A. Trautman, Phys. Rev. Letters 4, 

431 (1960). 
14 Greek indices (values 1, 2, 3, 4) are tensor indices, 

bo~d face a, b ... (values 1,2,3, 4) ar~ tetrad indices, capital 
l~tm A, B .... (values 0, 1) are spmor indices and small 
lIghtface latm a, b '" (values 0, 1) are spinor "dyad" indices. 
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The tetrad indices can be raised or lowered by the 
fla t-space metric '17= 

0 1 0 0 

= 1 0 0 0 
(2.2) '17= = '17 

0 0 0 -1 

0 0 -1 0 

The following two relations are easily seen to 
be true; 

mn 
g", = Zm.Zn.'17 

(2.3a) 

(2.3b) 

Complex Ricci rotation coefficients are defined by 

np n,tt P" 
I'm = Zm.:.Z Z , (2.4) 

with the symmetry 

The tetrad components of the Riemann tensor 
defined by 

(2.5) 

can be expressed in terms of the rotation coefficients 
by15 

with 

This can easily be derived from the Ricci identity 

(2.7) 

by repeated application of (2.4). 
The relationship between the Riemann tensor, 

Weyl tensor, and Ricci tensor goes over in tetrad 
form unchanged15 

- 'l7n.JlmeJ - (R/6)('I7mq'l7np - 'l7mp'l7nq). (2.8) 

In the tetrad notation the Bianchi identities, 
Ra~["t8:.[ = 0, take the form 

Rmn[pq:r) = 'Yml [rRpq )In 

- 'Ynl [rRpq)1m + 2Rmnl [P'Y/q[' (2.9) 

Though they appear to be considerably more 

15 L. P. Eisenhart, Riemannian Geometry (Princeton Uni­
versity Press, Princeton, New Jersey, 1960). 

complicated, it will be seen in Sec. IV that with a 
new notation they take a simple and useful form 
in empty space. 

In Eq. (2.6) we used the intrinsic derivative 
defined by cp:m = cp:.zm •. It will be of great value to 
obtain the commutator of two intrinsic derivatives, 
cp:m:n _ cp:n:m. We have 

By interchanging m and n in (2.10) and using 
zm·:.zn. = 'Ympnz~ obtained from (2.4), we see 

(2.11) 

In Sec. IV it will be advantageous to dispense 
with the semicolon notation for intrinsic derivatives 
and use the following; 

!J.cp == cp:.n· 

8cp == cp:.m". 
(2.12) 

III. TWO-COMPONENT SPINOR CALCULUS 

The connection between tensors and spinorsl6 

is achieved by means of a quantity u· AB', satisfying 

(3.1) 

For each value of f.L, u/B
' is a (2 X 2) Hermitian 

matrix. The E'S are Levi-Civita symbols, that is, 
skew-symmetric expressions with EOI = EO'I' = 
EOI = EO'I' = 1, and they are used for lowering or 
raising spin or indices: 

A' 
'17 

A'B' 
E 'l7B', 

A' 
'l7B' = '17 EA'B" (3.2) 

(Note the ordering of the indices.) The spinor 
equivalent of any tensor is a quantity having each 
tensor index replaced by a pair of spinor indices, 
one unprimed and one primedl7

; 

x}.". ~ XAB'CD'EF' = U}.AB'U.CD'X}.·.U'EF" 

Inversely: 

Xx". = U}.AB'U" CD,XAB'CD' EF'U.
EF

'. 

Equation (3.1) tells us that EACEB'D' is the spinor 
equivalent of g.,. 

When taking the complex conjugate of a spinor, 
unprimed indices become primed, and primed 
indices become unprimed. For example, the complex 
conjugatel8 of XAB'CD'EF' is )tA'BC'DE'F, whence 

16 See, for example, W. L. Bade and H. Jehle, Revs. 
Modern Phys. 25, 714 (1953). 

17 We use primed rather than dotted indices for typo­
graphical reasons. 

18 Many authors omit the bar over the complex conjugate. 
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the condition for Xx". to be real is the Hermitian 
property 

XAB'CD' EF' = j(B'AD'C F'E' 

The covariant derivative ~A;p of the spin or ~A is 

~A;p = ~A,p - ~BrB Ap, (3.3) 

where rB Ap is the spinor affine connection. The 
corresponding quantity rB

' A' p deals with the primed 
indices. The rules of covariant differentiation for 
spin or indices are exactly analogous to those for 
tensor indices. The choice of rB Ap is fixed by the 
requirement that the covariant derivatives of 
UPAB"EAB, EA'B' shall all vanish. 16 

Observe that, by (3.1), the four expressions 
p 

u 00', 
p 

U 11', 
p 

U 10' (3.4) 

satisfy the same orthogonality relations (2.1) as 
the four vectors l", n", m", m/. We would like, 
therefore, to identify the expressions (3.4) as a 
convenient tetrad. However, this would not be 
strictly accurate and is a little misleading. The 
expressions (3.4) do not really denote vectors as 
they stand, as is exemplified by the fact that while 
covariant derivative of U"AB' is zero, this is not so 
for l", m P

, in", n" [see Eq. (2.4)]. 
To get around this difficulty we introduce two 

basis spinors OA, ,A (a "dyad") normalized thus: 

Bearing this in mind, it is permissible to choose 
the components of f/ to be the Kronecker delta. 
The dyad components of any spin or will then, in 
fact, be identical with its spinor components. It 
is by no means essential to make this specialization 
but it will be convenient to do so here. The expression 

(3.8) 

now gives us lP, n P
, m P

, in" as ab' take, respectively, 
the values 00', 11', 01', 10', by (3.6). With this 
interpretation, the expressions (3.4) may indeed be 
though of as giving the required tetrad. However, 
it is essential to maintain the distinction between 
the dyad and spinor indices when covariant dif­
ferentiation is involved. 

The components of faB are now the same as those 
of EAB' Hence, faA;" = -faCr

c
A " = f;r CAp = r aAp 

by (3.3). For the analog of the rotation coefficientsl9 

(2.4), we therefore have 

l'abcd l = taA;J.lrbAu1J.Cd' (3.9) 

with the symmetry 

(3.10) 

Writing 

(3.11) 

the intrinsic derivatives (2.12) become 

A dyad (in spin space) is analogous to a tetrad in The commutation relations for these derivatives 
vector space. We may put acting on scalars 

J.I J.I A-B' 
n = U AB" , , 

p. p. A .. -B' m = U AB'O , (3.6) 

The covariant derivatives of these expressions will 
now involve the covariant derivatives of OA and ,B. 

As with the tetrads, it is convenient to have a 
generic symbol for both OA and ,'t, Define f/, f/' by 

- A' _A' fo, = 0 , 

- A' -A' 
fl' =, . (3.7) 

Then, for example, given a spin or YAB,C, we can 
define its dyad components 

Yab,c = YAB'cf/fb,B'fc
c

, 

The lower-case indices behave the same way 
algebraically as ordinary (capital) spinor indices, 
but when covariant differentiation is applied, no 
term involving an affine connection appears for 
the lower case indices. Thus, the important formal 
difference between the lower-case and capital 
indices is simply the difference with respect to 
covariant differentiation. 

== I E"O(r pacd' dab' - r pcab' dod') 

+ E""(r,'b'd'C aa.' - rr'd'b'a dCB')}~ (3.13) 

can be obtained by direct calculation from (3.13) 
using (3.8) and (3.9). By a slight extension of this 
calculation, when the derivatives act on faA we 
obtain 

af.,racdb' - adb,racfe' = EPO{raPdb,rOCf.' 

+ racpb,r.df.' - rapf.,r.cdb' - racp.,r.fdb' I 
+ ""Ir r- r r I E acd,' .'b'.'f - acf" .'.'b'd 

+ 'l'acdfE.'b' + AEe'b,(EcdEaf + EabEcf) 

+ Pacb,.,E/d, (3.14) 

19 The quantities (3.9) can be defined directly in terms of 
derivatives of the Upab', as follows: 

rabcd' = !EP'a' {UCd'IlP'bql - Ucd'bq'ap' - O'ap'bq'ed'} 

where 

or 
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where the spinors 'lrABOD , <PABO'D" and A correspond, 
respectively, to the Weyl tensor, trace-free part 
of the Ricci tensor, and scalar curvature. They 
have the symmetries: 

'lr ABOD =:= 'lr (ABO D) , 

<PABO'D' = <P(ABl(O'D') = <PO'D'AB 

with 

A = (1/24)R. 

The spinor equivalent of the Riemann tensor 
R"~'YQ decomposes as follows20

: 

The relationsS 

O(AP' OB)P'~O = -'lrABOD~D + A~(A€B)C, 
OC(P' 0° Q'l~A = 'PABP'Q,~B 

have been used to obtain (3.14). 
The Bianchi identities in spinor form are 

from which we obtain 

O"d''¥"bcp - O(/''Pabld't' = {3'lrp r(ab r cl"'d' 

+ 'lrabcpr"/d'} - 2r"(au"'Pc)p';d' 

and 

3 o.b,A + OPI''PaPb'" 

""'{'" t' r- p + '" t'r- P} = E '*' ap ,,' b' t ',' '*' apb' t 'w' v' 

{
I' pr + t 'r" r } <PI".' ra t' 'Papb' r"· 

IV. THE SPIN COEFFICIENTS 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

In the present section we will show how the 
formalisms developed in Sees. II and III can be 
put into a relatively concise form, despite the 
fact that all summations will be written out 
explicitly. 

Twelve complex functions (called spin coefficients) 
are defined in terms of either the rotation coefficients 
(2.4) or spinor affine connection (3.9). 

P = 'YI34 = l";,m"rTi:, A = -'Y244 = -n""ffi,"ffi:, 

a = !C'YJ24 - 'Y344) = !(l";,n"ffi: - m,,;.ffi,"ffi,'), 

(3 - 1 ( ) 1 (l ". -I' ') - 2 'Y123 - 'Y343 = 2 ";.n m - m";,m m , 

7 = 'YI32 = l,,;.m"n', (4.1a) 

or 

I"" ab I I 01 \ 

i "" I 00 or \11 
I cd' '''-" 10 

[ oo~-= K € \ ~ 
: 10' I p I a I A 1--------~-I--
i 01' (T {3 ].I. 
1------------

I 11' 7 I 'Y /J 
I ________ ~ __ ~ __ ~ __ _J 

(4.1b) 

It is seen that the spin coefficients appear more 
naturally when dealing with spinors than with tetrad 
vectors. This fact reappears when Eq. (2.6) is 
rewritten in terms of these new functions. The 
equations are rather unattractive until certain 
linear combinations are taken. These simpler 
equations are just the ones, (3.14), that arise 
naturally in the spin or calculus. Equation (3.14) 
or the appropriate linear combinations of Eq. (2.6) 
using (2.8), with the notation of (4.1), is 

(/ + (Ta) + (E + e)p - K7 

- K(3a + p - ~) + 'P~Q 
DO" - OK = (p + p)(T + (3e - E)cr 

- (7 - if + a + 3(3) K + 'lro 

D7 - Lh = (7 + if)p + (7' + ~)(T 
+ (E - e)7 - (3'Y + -Y)K + 'lr1 + 'POI 

Da - bE = (p + E - 2e)a + {3a - PE 

- KA - K'Y + (E + p)~ + 'Plo 

(4.2a) 

(4.2b) 

(4.2c) 

(4.2d) 

ZO These definitions of WAHOD, ~ABO'D' differ by a factor 2 D(3 - OE (a + ~)(T + (p - e)/3 
from those given in reference 8. Also, the Riemann tensor 
used here is the negative of that used in reference 8. - (p. + 'Y) K - (a - if)€ + 'lrt (4.2e) 
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D"( - Llf = (r + ii)a + (T + 1f')/3 - (E + eh 

- ("( + 1)e + r1f' - 11K + 'lt2 - A + <I>ll (4.2f) 

D"A - b1f' = (p"A + ijp.) + 1f'2 + (a - (3)1f' 

- 11K - (3E - e)Jo.. + <I>20 (4.2g) 

Dp. - 01f' = (pp. + a"A) + 1f'ir - (E + E)P. 

- 1f'(a - (3) - 11K + 'lt2 + 2A (4.2h) 

DII - Ll1f' = (11" + T)p. + (ir + r)Jo.. 

+ ("( - 1)1f' - (3E + e)1I + 'lt3 + <I>21 

Ll"A - bll = -(J.L + ji)"A - (3"( - 1»)0.. 

+ (3a + {3 + 11" - 7)11 - 'It. 

op - ~a = pea + (3) - a(3a - {3) 

+ (p - p)r + (p. - ji) K - 'It 1 + <I>OI 

oa - g{3 = (p.p - Jo..u) + aa + {3{3 - 2a{3 

(4.2i) 

(4.2j) 

(4.2k) 

+ "(p - p) + E(P. - ji) - 'lt2 + A + <1>11 (4.2l) 

OJo.. - gp. = +(p - p)1I + (p. - p)1I" 

+ p.(a + {3) + Jo..(a - 3(3) - 'lta + <I>21 

011 - LlJ.L = (/ + AX) + ("( + 1)p. 

- ii1r + [r - 3{3 - a]1I + <I>22 

01' - Ll{3 = (T - a - {3h + J.L r - all 

(4.2m) 

(4.2n) 

(4.20) 

(4.2p) 

<I>oo = -!Rll = <1>000' 0' = <1>00 , 

<1>11 = -i(RI2 + Ra4) = <I>010'1 ' (4.3b) 

<1>01 = -!RI3 = <I>000'1 ' = <1>10, 

<I>12 = -!Rn = <I>011 '1' 

<1>10 = -!R14 = <I>010'0' = <1>01 , 

<1>21 = -!R24 = <1>11 0'1' 

<1>02 = -!R33 = <I>OOI 'I' = <1>20 , 

<1>22 = -!R22 = <1>111 , l' 

A = R/24. 

With the present notation the commutators (2.11) 
or (3.13) are 

(LlD - DLl)<p = [(1' + 1)D + (f + e)Ll 

- (r + ir)b - (7 + 1I")oJ<p 

(oD - Do)<p = [(a + f3 - ir)D + KLl 

- u ~ - (p + E - E) oJ"o 

(M - Llo)<p = [-vD + (r - a - (3)Ll 

+ XJ + (p. - l' + 1)o]<p 

(80 - (8)<p = [(p - p.)D + (p - p)Ll 

- (a - (3)~ - ({3 - a)o]<p. 

(4.4) 

The Bianchi identities (2.9) or (3.18) when written 
out in general, are very long and unwieldy. How­
ever in empty-space, Ra.p = <l>ABC'J)' = 0, they do 
have the simple form21 

- EV - (3('Y - 1 - J.L) + aX + <I>12 

or - Llu = (wr + Xp) + (r + f3 - a)r 

- (31' - 1)u - KV + <I>02 

Llp - ~r = -(pji + UA) + ({3 - a - 7)r 

+ ("( + 1)p + 11K -'lt2 - 2A 

Lla - h = (p + E)II - (r + (3»)o.. 

(4.2q) D'lt1 - WFo = -3&2 + [2E + 4p]'lt1 

- [-11" + 4aJ'lt0 (4.5) 

+ (1 - 'jiJa + ({3 - 7h - 'lt3 • 
(4.2r) D'lt2 - tNtl = -2K'lta + 3p'lt2 

The notation for intrinsic derivatives (2.12) has 
been used. The quantities 'ltv, 'ltl' etc., <I>oo, etc., 
and A are, respectively, related to components of 
the Weyl tensor, Ricci tensor, and scalar curvature 
by the following; 

'lto = -C1313 = -C",h,zamPPm' = 'ltoooo (4.3a) 

'lt l = -C1213 = -C,,{J~,l"n(JPm; = 'lt 0001 

'ltz = -t(CI212 + C1234) = -!C"iJ~' 

X (l"nPFn','J. l"nfJm"lmO) = 'lt0011 

'lts = C1224 = C"fJ~,l"nPn"lm,' = 'lt0111 

'It 4 = - C2424 = - C "iJoy,n" miJn oy m! = 'lt1111 

D'lta - b'ltz = - K'lt4 - [2E - 2p]'lta 

+ 31f'Wz - 2)o..'lt1 

D'lt 4 - tNt a = - [4E - p]'lt 4 

+ [471' + 2a]'lta - 3A'lt2 

Llwo - Q\l1l = [4/' - JiJWo 

- [4r + 2{3]'ltl + 3u'lt2 

21 For completeness, though it is never used in this paper 
we give in the Appendix the formulas for the Bianchi identi: 
ties in the presence of a Maxwell field as well as the Maxwell 
equations using the notation of this section. 
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M't - O'¥2 = II'¥O + [2/' - 2.uJ'¥) 

- 3r'¥2 + 2(J"'¥3 

+ [-2r + 2i3]'¥3 + (J"'¥4 

A'¥3 - O'¥4 = 311'¥2 - [2/' + 4.uJ'¥3 

+ [- r + 4i3J'¥4' 

Before proceeding to applications of the formalism 
developed here, it is useful tb examine briefly the 
geometric meaning of some of quantities (4.1) and 
(4.3) which will be used frequently in the remainder 
of the paper. 

The spin coefficient K is related to the first curva­
ture of the congruence of which l~ is the tangent 
vector by the equation 

l.;.1' = - Kin. - iim~ + (E + ~)l~. (4.6) 

It is easily seen that if K = 0, l~ is tangent to a 
geodesic. By a change in scale l~ ~ <pl~, E + ~ can 
be made zero. In the case of a geodesic with the 
above choice of scaling for l~ we have 

p = t[ -l~;~ + i curll.], 

where 

and (J" is the complex shear of 1. satisfyingt2 .22 

(J"O- = t[l(~;.)l~;· - !(l~;Y]. 

The quantity r describes how the direction of l~ 

changes as we move in the direction n~ as follows 
from the equation 

lpn' = - rin. - Tm~ + (/, + -y)l~. (4.8) 

Again we can make /' + -y zero by the change 
l. ~ <pl .. 

The spin coefficients II, .u, X, 11' are analogous, 
respectively, to K, -p, -(J", r, the difference being 
that the congruence used is given by n~ instead of l .. 

H l. is taken tangent to a geodesic congruence 
and we wish to propogate the remainder of the 
tetrad system parallelly along this congruence, then 

K = E = 11' = 0. (4.9) 

If in addition to being tangent to geodesics, the 
lp are hypersurface orthogonal, that is, proportional 
to a gradiant field, we have 

if equal to a gradient field 

p = p, T = a + 13. (4.11) 

One can understand the meaning of '¥o. '¥t. '¥2. '¥3, 
and '¥ 4 by the following: 

Consider the five cases 

(a) '¥o ~ 0, others zero (d) '¥a ~ 0, others zero 

(b) '¥t ~ 0, others zero (e) '¥4 ~ 0, others zero. 

(c) '¥2 ~ 0, others zero 

The Weyl tensor or the tetrad components of the 
Weyl tensor will have the following algebraic 
properties in each of the five cases; 

(a) Petrov type N (or [4])8 with propagation 
vector n., 

(b) Petrov type III (or [31]) with propagation 
vector n~, 

(c) Petrov type D (or [22]) with propagation 
vector n~ and lp, 

(d) Petrov type III (or [31]) with propagation 
vector l~, 

(e) Petrov type N (or [4]) with propagation 
vector l~. 

By a propagation vector, we mean a repeated 
principal null vector.s 

If in empty space the vector field lp satisfies the 
equation l[~RaJh[ol.lP = 0, then lp corresponds to 
one of the four principal null directions of the 
Riemann tensor and 

(4.12) 

If two or more of the principal null directions 
coincide and are represented by lp, they must satisfy 
RafJ"([ol~lP = ° or 

(4.13) 

(In this case, one refers to the Riemann tensor as 
being algebraically specialized.) 

In the following section it will be shown that in 
empty space if the l~ are tangents to a geodetic 
congruence whose shear (J" vanishes, then (4.13) 
must be satisfied, and conversely. 

V. GOLDBERG-SACHS THEOREM 

In this section the conciseness attained by the 
use of spin coefficients will be illustrated by an 
example. Here and in the remainder of the paper 
it will be assumed that we are dealing with empty 

P = p, (4.10) space, i.e., 

22 I. Robinson, J. Math. Phys. 2, 290 (1961). RaIJ = 0. 
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First we will prove that if the Riemann tensor is 
algebraically specialized, having '1'0 = '1'1 = 0, then 
(J' = K = O. With these assumptions the pertinent 
Bianchi identities become 

3(J''¥2 = 0, 

- Wrz = -3r'¥2 + 20''1'3 (5.la) 

.1'1'2 - 0'1'3 = -3J.1'¥2 + (-2r + 2(3)'¥3 + (J''¥, 

-3K'¥2 = 0 

D'¥2 = -2K'¥3 + 3p'¥2 (5.lb) 

W3 - b,¥z = - K'¥4 - (2E' - 2P)'¥3 + 311''1'2' 

It is easily seen from this that unless the space is 
flat, (J' = 0 by (5.la) and K = 0 by (5.lb). 

The converse is more difficult to prove. We 
assume (J' = K = 0 and wish to prove '1'0 = '1'1 = O. 
We can, by a transformation of the form m~ -? ei8m~ 
and by using a suitable scaling of l~, set E' = O. 

The pertinent Eqs. (4.2) are then 

Dp = / 

o = \flo 

Dr = (r + if")p + '1'1 

D{3 = (3p + '1'1 

op = pea + (3) + (p - p)r - '¥1' 

(4.2a') 

(4.2b') 

(4.2c') 

(4.2e') 

(4.2k') 

With the fact that '¥o = 0, [Eq. (4.2b')] the 
needed Bianchi identities and commutator are 

0'1'1 = (4r + 2(3)'¥1 

WI = 4p\fl1 

(5.2) 

(5.3) 

(Do - oD)tp = (if" - a - (3) Dtp + p otp. (5.4) 

There is yet a freedom in the choice of the vector 
nM the freedom being that of the so-called "null 
rota tions," 

l~ -? l~ 

m~ -? m~ + al~ (5.5) 

n~ -? n~ + afii~ + am~ + aal~. 
This rotation of the tetrad does not change l~ 

or disturb the relation E' = O. The complex function 
a can be chosen so that r = O. [It is possible to do 
this only if p ~ O. However from (4.2 k') it is easily 
seen that if p = 0, then '1'1 = 0, and our theorem 
is proved.] 

Equations (5.2) and (5.3) are rewritten 

o In '1'1 = 2{3 

D In '1', = 4p. 
(5.6) 

Taking mixed derivatives and subtracting the 
two expressions, we have 

(Do - oD) In '1'1 = 2 D{3 - 4 op 

= 2{3p - 4p(a + (3) + 6'1', (5.7) 

after using (4.2 e') and (4.2 b'). The commutator 
(5.4) with tp = In '¥ 11 and using (5.6) is 

(Do - oD) In '1'1 = 2{3p - 4p(a + (3) + 4pif". (5.8) 

Subtracting (5.8) from (5.7) we have 

'1'1 = iip. 

If this is compared with (4.2 c'), '1'1 = -if"p we 
have, since p is assumed different from zero, 
'1'1 = if" = O. This completes the proof.z3 

VI. SPECIAL COORDINATES 

It is always possible, in a hyperbolic Riemannian 
manifold, to introduce a family of null hypersurfaces 
u = const, that is, 

(6.1) 

The vectors l~ = g"'u., are tangent to the family 
of null geodesics lying in the hypersurfaces 
u = const, and satisfy 

l""t = o. (6.2) 

Robinson and Trautman13 show that if one 
chooses as coordinates u = Xl and an affine param­
eter24 along the geodesics r = x 2

, and two coordi­
nates x3

, X4 that label the geodesics on each surface 
u = constant, the metric takes the form (i, j = 3,4) 

0 0 0 

1 22 l3 g24 
g"' 

g 
(6.3) 

0 23 g gii 

0 24 g 

(It is not always most convenient to use an 
affine parameter as x 2

• Sachs uses a "luminosity" 
parameter, r = 2/l";~ which makes the g12 different 
from unity. However, for our purposes an affine 
parameter seems simplest.) 

With these coordinates the vector l" becomes 

,,, = o~, l" = oi. (6.4) 

23 Though we have not seen all the details of the Goldberg­
Sachs proof, we believe our proof to be essentially equivalent, 
but, due to the conciseness of our notation, much shorter. 

24 An affine parameter is a parameter along the geodesic, 
such that the equation for the geodesic takes the standard 
form. See, for example, E. M. Schr6dinger, Expanding 
Universes (Cambridge University Press, New York, 1956). 
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To preserve l"n" = 1, and l"m" = 0, we have 
(i = 3, 4) 

m" = w {j~ + ~i {j~ 
(6.5) 

n" = ai + U a; + Xi (j~. 

The relation between the tetrad components (6.4) 
and (6.5) and the metric components (6.3) is 

l2 = 2(U - ww), (6.6) 

li = Xi - (~iW + tw), 

gi; = -en; + ~i~;), 
(i, j = 3, 4). This follows from (2.3a). 

There is still complete freedom for the rotation 
of the tetrad vectors m" and n" leaving l" fixed. This 
freedom is eliminated by demanding m" and n" be 
parallelly propagated along l". This requirement, in 
addition to the knowledge that l" is a gradient field, 
is stated in terms of the spin coefficients by (see 
Sec. IV) 

K = 7r = f = 0, P = p, T = a + (3. (6.7) 

With these simplifications the commutators (4.4) 
are 

(dD - Dd)cp = (-y + 1) Dcp 

-T8cp-1'acp 

(aD - Da)cp = [a + (3J Dcp 

-u8cp-pacp 

(M - da)cp = -ji Dcp 

+ X 8cp + [Jl + 1 - -yJ Ocp 

(8a - (8)cp = (Jl - p) Dcp 

- [a - (3J 8cp - [~ - aJ acp 

with [using (6.5) and (2.12)] 

D = ajar, 15 = w ajar + ~i ajax i 

d = U ajar + ajau + Xi ajaxi. 

(6.8) 

(6.9) 

In order to relate the tetrad components (or 
metric components) and the spin coefficients we 
replace cp by u, r, and x', respectively, in the four 
commutators. The result of this operation is 
(i = 3, 4) 

aX' - d~' = (Jl + 1 - -y)ti + xt 

at - 5~i = (~ - a)ti + (a - (3)~i 

(6.1Oe) 

(6. !Of) 

aw - 8w = (~- a)w + (a - (3)w + (Jl - p) (6.1Og) 

aU - dw = (}J. + 1 - -y)w + Xw - ji. (6.1Oh) 

We will refer to these as the metric equations. 
To conclude this section we will write the Eqs. 

(4.2) and the Bianchi identities using the conditions 
(6.7). 

Dp = / + uij 

Du = 2pu + 'lio 

DT = Tp + 1'17 + 'li1 

Da = ap + (3ij 

D(3 = (3p + au + 'li1 

D-y = m + 1'(3 + 'li2 

DX = Ap + Jlij 

DJl = JlP + Xu + 'li2 

DII = TX + 1'}J. + 'lis 

dA - 811 = 2w + (1 - 3-y - }J. - p)A - 'li4 

ap - 817 = «(3 + a)p + (~ - 3a)u - 'li1 

(6.11a) 

(6.11b) 

(6.11c) 

(6.11d) 

(6.11 e) 

(6.11£) 

(6.11g) 

(6.11h) 

(6.11i) 

(6.11j) 

(6.11k) 

Oa - 5(3 = JlP - Xu - 2a(3 + aa + (3~ - 'li2 (6.111) 

aX - 5}J. = (a + ~}J. + (a - 3(3)X - 'lis (6.11m) 

{jp - dJl = -YJl - 211(3 + 1}J. + Jl2 + xX (6.11n) 

a-y - d(3 = TJl - UP + (Jl - -y + 1)/3 + Xa (6.110) 

(6.11p) 

dp - 5T = (-y + 1- p)p - 2aT - Xu - 'li2 (6.11q) 

da - h = pp - TA - X(3 

+ (1 - -y - p)a - 'l's 

D'li1 - 5'lio = 4p'li1 - 4a'lio 

D'li2 - 5'li1 = 3p'li2 - 2a'li1 - X'lio 

D'lia - 5'li2 = 2p'lia - 2X'li1 

D'li4 - 5'lia = p'li4 + 2a'lis - 3X'li2 

d'lio - 0'li1 = [4-y - JlJ'lio 

- [4T + 2(3J'li1 + 3u'li2 

(6.11r) 

(6.12a) 

(6.12b) 

(6.12c) 

(6.12d) 

(6.12e) 

D~i = pti + U~i (6.1Oa) d'li1 - 0'li2 = P'lio + [2-y - 2JlJ'lil 

Dw = pw + uw - (a + (3) 

DXi = T~i + 1'~i 

DU = TW + 1'W - (-y + 1) 

(6.1Ob) - 3T'li2 + 2u'l'a 

(6.1Oc) d'li2 - a'lis = 2p'li1 - 3Jl'li2 

(6.1Od) + [- 2T + 2(3J'lia + u'li4 

(6.12f) 

(6.12g) 
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d'lr3 - (j'lr4 = 3v'lr2 - [21' + 4J.1]'lr3 

+ [- T + 4~]'Ir 4' (6.12h) 

VII. ASYMPTOTIC BEHAVIOR 

We shall now investigate the asymptotic behavior 
of the Riemann tensor, spin coefficients and metric, 
for a general type of radiative empty space time. 
In order to do this, it is necessary to impose some 
condition of approach to flatness at infinity on the 
space time. This is usually done in terms of the 
metric tensor, but it is a little more satisfactory to 
impose restrictions on the Riemann tensor instead, 
as we shall do here. 

The main condition that will be adopted here is25 

(7.1) 

but a condition 

(7.2) 

on the r derivative of 'lro will also be used. Further­
more, an assumption of "uniform smoothness" will 
be imposed, that as many as four or three deriva­
tives with respect to x3

, X4 do not spoil the above 
dependence: 

di'lrO = 0(r- 5
), ••• , d i d j d" dz'lro = 0(r- 5

) 

d i Wo 

where 

di == a/ax i 

(i, j, k, l = 3,4) (7.3) 

(i = 3,4). 

It will also be assumed that the hypersurfaces 
u = const are not so chosen that they are "asymp­
totically cylindrical" or "asymptotically plane." The 
exact meaning of this condition will be explained 
later. It means, in effect, merely that certain very 
special choices of coordinate system are to be ruled 
out. From these assumptions26 we shall prove: 

26 The meaning of the order symbols used here is that 
fer, u, x,) = O[g(r)] means If(r, u, xi)1 < ge,) F(u, Xi) for 
some function F independent of r and for all large r, and 
fer, u, Xi) = o[g(r)] means 

. fer, u, Xi) 
hm = 0 for each u Xi. 
r_ro g(r) , 

16 These. assumptions, though stated in terms of a partic­
ular coordmate system appear to have a considerable amount 
of co~rdin!'lte independence. For example, given a null 
geodesIc wIth affine parameter r and tangent vector lp. if 
the r parameter of the original coordinate system can be' so 
adjusted that 

l' = r + oCr), I~ = l~ + 0(r-1), 

then (7.4) implies that $0 = 0(r-6 ) also, where $ 0 is the 
complex Riemann tensor component associated with 11'. 
However, additional global assumptions appear to be neces­
sary to ensure that r can always be so chosen. 

'lrl = 0(r-4) , 

'Ira = 0(r-2) , 

'lr2 = 0(r- 3
) 

'Ir. = O(r- I
). (7.4) 

If, in addition, we were to assume that the 
Riemann tensor (in tetrad form) could be expanded27 

in negative powers of r, for large r, then (7.4) would 
tell us that the coefficient of r-"(n = 1, '" , 5) 
has the algebraic form of an empty-space Riemann 
tensor having the direction l~ as a (5-n)-fold principal 
null direction. Bondi and Sachs6 have obtained a 
similar result under somewhat different (and more 
restrictive) assumptions. 

The choice of 'lro as the quantity whose properties 
are specified in order to characterize the space-time 
is in accordance with a certain form of characteristic 
initial value problem. Given a suitable null hyper­
surface u = const, the function 'lro on this hyper­
surface constitutes the main part (and sometimes all) 
of the initial data28 for gravitation that is required 
for continuation. This matter will be discussed 
elsewhere,29 but it is worth pointing out here that 
the determination of 'lrl' '" , 'lr4 from 'lro seems to 
be a natural first step in this continuation problem. 
Other quantities such as IT or certain metric variables 
can be used equally as alternative initial data, but 
the choice of 'lro seems simpler and is apparently the 
natural analog for gravitation, of certain charac­
teristic initial data that are appropriate for other 
fields. 

The exponent -5 in (7.1) is in agreement with 
what one would expect from the linear theory of a 
radiating quadripole. Also, (7.1) holds for a general 
null hypersurface in Schwarzschild's solution. If 
the hypersurfaces u = const open out into the 
future (i.e., they are analogous to the future null 
cones given by constant advanced time) then 
the condition (7.1) would be expected to hold for 
an isolated system in the absence of incoming 
radiation, as is suggested by the linearized theory. 
In fact, even incoming radiation of sufficiently 
curtailed duration would not be expected to affect 
(7.1), (7.2), or (7.3). 

We now proceed to prove (7.4) from our assump­
tions.ao The proof of (7.4) for a particular null 

27 This may be a fairly strong restriction. It is of course 
stronger than just local analyticity in r since f~r example' 
r-".!n r cannot be expanded in negative pow~rs of r. ' 

More properly, the quantity lfiIto - 5p'l'0 may be the 
most significant one to specify on the hypersurface. 

29 R. Penrose (to be published). 
,"0 The nece~~ity of (7.?) for the deduction of (7.4) and of 

rulmg out the asymptotICally plane" case can be illustrated 
by considerations of certain plane waves. Plane waves can 
also be used to show that, for example, a local assumption 
!llerely of '1'. = 0.(r.-1 ) or even R~,pu = O(r-l) is quite 
madequate for obtammg (7.4). 
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geodesic u, X2, X3 = const will depend on (7.1), 
(7.2), (7.3) only along this geodesic and its neighbor­
hood within the hypersurface u = const. The order 
of procedure will be to obtain the r dependence of 
first p, IT and then the various Xi derivatives 
(i = 3, 4) of p, IT up to third order. Next, Oi, (3, ~\ W, 

WI, are similarly obtained, followed by their Xi 

derivatives. Then A, JI., \Ir 2, are treated correspond­
ingly, followed by \Ir3, \Ir,. The r dependence of the 
remaining quantities T, "I, v, X" U and hence gii 

may also be obtained if desired. 
Writing 

P = [; :l ' Q = [~ \Ira] 
'1'0 ° 

(6.lla, b) become 

DP = p 2 + Q. 

This equation may be solved by 

P = -(DY) Y-t, 

where 

Y = [~1 ~2J 
Yl Y2 

is a nonsingular solution (for given P) of 

(7.5) 

(7.6) 

(7.7) 

DY = -PY (7.8) 

and so satisfies 

The asymptotic behavior of the solutions to (7.9) 
when f r Iwol dr = 0(1), is31 

DY = F + 0(1) (7.10) 

Y = rF + oCr) (7.11) 

where F is a constant matrix. We can improve on 
this here since Q = 0(r- 5

). From (7.9) and (7.11) 
we get 

Hence, integrating32 twice and 
(7.10), we get 

DY = F + 0(r- 3
), 

comparing with 

Y = rF + E + 0(r- 2
), 

(7.12) 

(7.13) 

31 E. Coddington and N. LeviI,lson, Theory ?f Ordinary 
Differential Equations (McGraw-HIll Book Publishers Inc., 
New York, 1955), p. 103. 

32 It is permissible to integrate order symbols formally 
but not to differentiate them. 

where E is another constant matrix. The solution 
(7.6) for P can now be used giving 

P = -r-1I + r- 2Er1 + 0(r- 3
) (7.14) 

provided F is nonsingular. If F is singular, the 
asymptotic behavior of P is quite different. The 
case IFI = 0, F ~ 0, gives the "asymptotically 
cylindrical" case and P becomes asymptotically 
proportional to a singular matrix, with p = _!r- 1 + 
0(r- 2

). If F = 0, we get the "asymptotically plane" 
case and P = 0(r-3

). [In each case, E must be such 
that there are two linearly independent columns 
among those of E, F. Otherwise it follows that in 
fact I YI = ° for all r so we do not get a solution of 
(7.5) for P.] These two exceptional cases are to be 
ruled out by assumption. For any given null geodesic 
u, xz; x3 = const the two types of exceptional 
behavior can always be avoided by an arbitrarily 
small change in the coordinate system which changes 
the relevant hypersurface u = const into a slightly 
different one through this null "geodesic. Such 
exceptional solutions of the Eq. (7.5) do not occur 
for general choices of initial values for p and IT. 

From (7.14) we get 

(7.15) 

In fact, a lot more can be obtained about the 
asymptotic behavior of p and IT, but (7.15) is all 
that will be needed here. 

In order to proceed further, we shall require 
the following lemma: 

Lemma. Let the complex (n X n) matrix B 
and the complex column n vector b be given functions 
of r where 

(7.16) 

Let the (n X n) matrix A be independent of rand 
have no eigenvalue with a positive real part. Then 
all of the solution of 

Dy = (Ar- 1 + B)y + b (7.17) 

are bounded as r ~ 00, y being a complex column 
n vector function of r. 

Proof. Put r = e l
, then (7.17) can be rewritten: 

d (") J 
:0 I 
I I 

l(r) 
A 

I • 

C 
I 

I • I C 
I • 

+ I 
(7.18) 

dl 1 = 1 :0 
I 
I 

I I 
------- -------

lo .. ·o:o 0 .. ·0: 0 



                                                                                                                                    

576 E. NEWMAN AND R. PENROSE 

where 

(7.19) 

Now, the solutions (z = lexp Al}zo, S = so) of 

:0 
I 
I • 

i ~ (;) 

0 .. ·0: 0 

are all bounded. Also, by (7.16) and (7.19) it follows 
that the integrals with respect to l of the moduli 
of the elements of C and of c are bounded as l ~ co. 

Hence by a theorem of N. Levinson/3 the solutions 
of (7.18) are also all bounded [with y = I exp All Yo + 
0(1)]. This proves the lemma.3

' 

Suppose, now, that B, b, and yare also functions 
of X3, x'. Then, differentiating (7.17) with respect 
to Xi we get 

D(diy) = (Ar- 1 + B)(diy) 

+ {(diB)y + dib}, (i = 3,4) 

which is again of the form (7.17) provided that 

If this is the case, it follows from the lemma that 
diy must also be bounded. Repeating this, we get 
the correspondiag results for higher derivatives. 

Now consider the Xi derivatives of (6.l1a, b) 
which can be put in the form 

J p I 2p + 2r-
1 

Dir2 d i (J' 20' 2p + 2r- 1 

l leT 20-

o 
o 

di diP, di d;(J', d i d; dkP, di d; dkO' = 0(r-2
). (7.22} 

Next, using (6.9), we can apply the lemma to 
(6.12a), (6.11d, e), (6. lOa, b), and their complex 
conjugates, y being the column vector 

I '4.... - 3 -3 4 -4 r '¥1, r 'J! 1 , rOl, ra, r{3, rfJ, r~ , r~ , r~ , r~ , W, w}, 

and 

A 

fO . ..·0: 0 0 
0 .. · .. ·0: 0 0 

I 
I 
I 

I 

o ... .. ·0: 0 0 

-a :-1 0 
I 

: 0 -1 

a = [0 0 0 1 1 0 0 0 0 0] , 

0010010000 

b = 0 

the elements of B being 0(r- 2
) expressions In 

r, p, (J', '¥o, D'¥o, and di'¥o. Hence 

(7.23) 

and 

W = 0(1). (7.24) 

Also, by (6.12a) 

D'IJ11 = 0(r- 5
). (7.25) 

Taking successive Xi derivatives and using (7.21), 
(7.22), and (7.3), the lemma also gives 

diOl, ... ,di~" di dia, . .. ,di di dk~4 = O(r -1), 

(7.20) diw" di di dkw = 0(1) 

The lemma applies with A = 0, by (7.15), (7.3)' 
whence 

(7.21) 

The lemma applies again to the next two Xi deriva­
tives of (7.20) successively, whence 

33 N. Levinson, Am. J. Math. 68, 1 (1946). 

and so by (6.12a) 

Next consider (6.12b) and (6.11g, h). The lemma 
applies again with y as the column vector {r3'¥2' 
r'A, r~}, with A = 0 and B, b as certain 0(r- 2

) 

expressions in r, p, (J', '¥o, 01, '¥1, W, D'¥l, ~i, di \)(l' Thus 

\)(2 = 0(r- 3
) 

X, ~ = 0(r- 1
). 

(7.28) 

(7.29) 
34 It may be seen from the proof to the lemma. that condi­

tions (7.16) are in fact, rather stron~er than is necessary. 
They may be weakened to B, b = Off(r)] where If dr = 0(1), 
f > O. This enables condition (7.2) to be weakened to D .yo = Hence, 
O(r-4j(r» and (7.4) can still be obtained. Conditions (7.3) 
[and even (7.1)] can also be correspondingly weakened. 
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and continuing with the Xi derivatives we get 

d i 'IF 2 , d id j'IF 2 = O(r-a); 

d.-X, '" ,didjp, = OCr-I); d i D'lF2 = 0(r-4
). 

Similarly, the lemma applies to (6.12c) with 
y = r Z'IF3, then to its Xi derivative and then to 
(6.12d) with y = r'IF4 giving 

'lFa = 0(r- 2
) (7.30) 

0(r- 2
) , D'lF3 = O(r-a) 

and then 

(7.31) 

We may also continue the process and obtain 

T=O(r- I
); -y,v,xa,X4 = 0(1); U=O(r); (7.32) 

whence by (6.6) 

l2 = OCr), gii = 0(r-2) , 

(i, j = 3,4). (7.33) 

It is possible to obtain a great deal more informa­
tion about the asymptotic behavior of all these 
quantities by examining the above procedure a 
little more closely and then substituting the expres­
sions obtained back into the equations. Also, by 
specializing the coordinate system further many 
simplifications can be obtained. (We have, in fact, 
not even used T = a + (3 here.) This, together with 
the integration of the remainder of the Eqs. (6.10) 
and (6.11), will be discussed elsewhere. 

VIII. CONCLUSIONS 

In the last section we showed that under certain 
fairly general assumptions of approach to flatness 
at infinity that are to be expected in radiative 
empty spaces, the Riemann tensor exhibits a 
characteristic asymptotic behavior. This is given 
by (7.1), (7.23), (7.28), (7.30), and; (7.31); namely 

(n = 0, 1, ... ,4). 

We may thus, in general, break the space up into 
five regions; namely, a near zone, where all terms 
are important; three transition zones, where 'IF 0, 

'lF1' 'lF2 become negligible in turn; and finally the 
radiation zone, where only 'IF 4 remains important 
and the Riemann tensor is essentially null. The 
fourth zone is, of course, generally essentially 
type III and the third is essentially "algebraically 
special" or usually type II.6

.13 The second zone 
is essentially a region in which there are "goedesic 
rays" in the terminology of Sachsl2 and the first 

zone is of "general" type.6 Thus, as we move back­
wards from infinity along a suitable null geodesic 
the principal null directions "peel off" one by one 
from the (outgoing) radial direction. This behavior 
was first observed by Sachs by considering the 
linear theory.6 (It must be pointed out, however, 
that in many particular cases the actual positions 
of the principal null directions and the Petrov 
types encountered may not, in fact, agree with the 
above in detail since some of the 'IF's may be 
fortuitously small in some regions.) 

The analogy between the above and the case of 
electrodynamics is striking. In the latter case there 
are three regions to consider, namely, the near 
zone where r- 3 terms are important, the transition 
zone where r- z terms are important and the radiation 
zone where the field goes essentially as r- I and is 
null. The two electromagnetic principal null direc­
tions exhibit, in the general case, the same charac­
teristic "peeling off" as in the gravitational case. 

An interesting further question to consider will 
be the corresponding "peeling off" theorem for 
the Einstein-Maxwell theory. The relevant spin 
coefficient equations are given in an appendix. 
Another question of importance here is that of the 
extent to which the assumptions made here are 
coordinate independent. 
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APPENDIX 

In the spin coefficient notation Maxwell's equa­

tions take the form 

D'PI - a'Po = (11' - 2a)'Po + 2P'PI - K'Pz 

D'P2 - a'P l = -X'Po + 211''PI + (p - 2e)'P2 

o'P l - A'Po = (p, - 2-y)'Po + 2T'I't - cr'P2 

o'P2 - A'PI = -v'Po + 2J..1'PI + (T - 2m'Pz 

with 

'Po = F",tm', 'PI = iF",(l"n' + ifi"m') , 

(Al) 

If the Ricci tensor is proportional to the Maxwell 
stress tensor, so that 

(m,n = 0,1,2) (A2) 
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then the Bianchi identities become (choosing k = 1 for convenience) 

(8 - T + 413)'l14 - (~ + 2/, + 4JL)'l13 + 3v'l12 

= <P, ~<I>2 

(8 - 2" + 21')'l13 + u'l14 - (~ + 3JL)'l12 + 211'l1, 

= <P, 8<1>2 - <P2 D<I>2 + 2( <P, <I>,JL - <I>2<1>,7I" - <P, <1>2,8 + <I>2<1>2E), 

(8 - 3,,)'l12 + 2u'l13 - (~ - 2/' + 2,u)'l1, + v'l1o 

= <P, ~<I>o - <I>2 8<1>0 + 2( <I> 1 <l>o/' - <I>2<1>oa - <P, <1>1" + <I>2<1>,P), 

(~ - 4/' + JL)'l1o 

= q" 8<1>0 - <P2 D<I>o + 2(<<I>,<I>oB - «I>2<1>oE - <I>,<I>,u + «I>2<1>,K), 

(D + 4E - p)'l14 - (5 + 471" + 2a)'l13 + 3>''l12 

(D + 2E - 2P)'l13 + K'l14 - (8 + 371")'l12 + 2>''l1, 

= <Po 8<1>2 - «I>, D<I>2 + 2( «I>o <1>1 JL - «I>, <l>11l' - «I>O<l>21' + <P, <1>2 e) , 

2a)'l1, + >''l10 

= «I>o ~<I>o - <P, 8<1>0 + 2( <Po<l>o/' - <P, <l>oa - q,o<l>, T + <P, <l>IP)' 

(5 + 71" - 4a)'l10 
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I. INTRODUCTION 
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of superconductors in computer elements such as 
the cryotron. All of the work published thus far 
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conducting material fills an infinite half-space. For 
example, Ittner' and Duijvestijn2 have considered 
the effects of latent heat and eddy currents on 
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'Switching rates under the assumption of zero pene­
tration depth. Cohen and Miranker3 have investi­
gated the effect of nonzero penetration depth for 
an isothermal switching process. 

In the present paper, the process is again taken 
to be isothermal and the penetration depth nonzero, 
but the superconducting half-space is replaced by 
a finite strip and the combined effect of the finite 
boundary distances and the nonzero penetration 
depth is studied. 

The introduction of the finite strip width brings 
with it rather serious mathematical difficulties. A 
similarity treatment can no longer be used and 
asymptotic methods are not applicable to the case 
of greatest interest in which the strip width is of 
the same order of magnitude as the penetration 
depth. The difficulties are overcome mainly by 
applying a numerical method based upon finite 
differences, although an analytical solution is also 
given. 

The effect of combining nonzero penetration 
depth with finite strip width is shown graphically 
in Figs. 5 through 9 and discussed in detail in Sec. IV. 
It is found that in the beginning the transition in 
the strip almost coincides with the transition in the 
half-space, but later on it can be radically different. 
Unless the strip is very thin, its complete transition 
takes much more time than the transition in the 
half-space takes to reach the same distance from the 
surface, all other circumstances being the same. 
In particular, the results show that it is dangerous 
to predict the total transition time (J by extra­
polating the analytical solution valid for small times 
all the way to the center of the strip. 

The problem studied in the present paper can be 
formulated in the following manner: Consider a 
two-dimensional strip of superconducting material 
of width 2w, and let z denote the distance from one 
of its surfaces measured across the strip (Fig. 1). 
Let an equal external magnetic field exist on both 
sides of the strip, perpendicular to the z-y plane. 
Assume the superconductor is kept at a constant 
subcritical temperature, T < T" and the critical 
magnetic field associated with T is He. 

If at time T = 0 the external field is instanta-
neously raised from a subcritical value, Ho < He, 
to a supercritical value, He > H" two normal 
conducting regions begin to form along the two 
surfaces, z = 0 and z = 2w, with a superconducting 
strip of reduced width in between. The two plane 
fronts separating the three regions move inward 

'1 .. " EXTERNAL EXTERNAL 
MAGNETIC .. " MAGI'IETIC 
FIELD FIELD 

" G 

UJ 
UJ G SUPERCONDUCTING STATE I- " ~ ~ 

G In '" " ... ... 
G Z Z 

" ;::: >= 
Gog '" ::> 

0 w 0 2w z i 
z .. 0 0 '" u '" .. J I J 

" c( i. 
c( 

~ ~ .. a: a: " 0 0 
z z .. G 

.. 
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FIG. 1. Cross section of strip. 

until, after the total transition time (J, they coincide 
at the center. Because of the symmetry with respect 
to z = w, it is enough to consider the transition in 
one half of the strip, say for 0 :::; z :::; w. 

The transition problem will be studied on the 
basis of the London theory of superconductivity. 
The amount of penetration is measured by the 
London penetration distance, d = (Ac2/411/, where 
A is the London penetration constant and c the 
speed of light. At a given time T the interface will 
be at a certain distance ~(T) from the surface, where 
~(o) = O. The unknowns of the problem are ~(T), 
as well as the field distributions H- (z, T) and H+ (z, T) 
in the normal and superconducting regions, defined 
by 0 < z < ~(T) and ~(r) < z :::; w, respectively. 
For the total transition time (J one has ~«(J) = w. 

The corresponding problem in a half-space 
(w = OJ) and with an external field on the left side 
only, has been solved analytically, for small times 
and for t ~ OJ, by Cohen and Miranker.3 These 
authors found it useful to employ dimensionless 
space and time variables, x and t, respectively, by 
letting 

x = z/zo, (1) 

where Zo is a convenient distance scale, and 

t = T/To, (2) 

with 

(3) 

where IT-denotes the ohmic conductivity in the 
normal region. Furthermore, let 

(4) 
3 H. Cohen and W. L. Miranker, J. Math. Phys. 2, 575 

(1961). and {3 IT + / IT -, \>;here d is defined above and IT + 
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x 

is the ohmic conductivity III the 8uperconducting 
region. Finally, let 

a = w/zo (5) 

W) = r( T)/Zo, (6) 

and 

o = O/To. (7) 

Then, HO) = 0 and Ho) = a. 
Mathematically, the transition of the strip, from 

the superconducting to the normal state, is described 
by the following free boundary problem (in which 
o < t): 

[0 < x < W)J, 
[W) < x < a, t < 

H-(O, t) = He, 

H:(a, t) = 0, (t < 0) 

H+(~(t), t) = H-(W), t) = He, 

H:(W), t) - (3H~(W), t) 

= -a 1a 

H+(x, t) dx, 
«I) 

(t < 0) 

(t < 0) 

(8) 

oJ (9) 

(10) 

(11) 

(12) 

(13) 

H+(x, O) = Ho cosh [V(a)(a - x)J/cosh [V(a)aJ, 

(0 :::; X :::; a). (14) 

The diffusion and London equations, (8) and (9), 
boundary condition (10), and continuity relation (12) 
are equivalent with Eqs. (14), (15), (17), and (16) 
of reference 3, respectively. Relation (11) is a 
symmetry condition replacing (19) of reference 3. 
Interface condition (13) replaces (20) of reference 3 
and is derived in the same way but using the fact 
that the supercurrent r vanishes at the center x = a 
of the strip. Finally, initial condition (14) says that, 
at t = 0, the subcritical field distribution is stationary 
[relation (14) is the solution of (9), with H~ = 0, 
which satisfies (11) and H+(O, 0) = Hol. 

In Sec. II of the present paper, the transition 
problem defined above is solved analytically for 
small times by expansions in powers of vt. In 
Sec. III, a numerical method is described which 
gives an approximate solution over the full time 

interval 0 :::; t :::; o. Finally, in Sec. IV, the numerical 
and analytical results are discussed and compared 
with each other for various sets of parameter values. 

II. ANALYTICAL APPROACH 

1. Solution for Small Times 

The problem defined in Sec. I can be solved 
analytically, for small times, using a Green's formula 
for the diffusion equation. However, the calculations 
involved are somewhat tedious. Therefore, the 
method will be explained in principle but only the 
more important relations, as well as the final result 
will be given in the following. 

Consider a domain such as the one shown in 
Fig. 2, and assume u(x, t) satisfies diffusion equation 
U zz = u, in this domain. Then the following Green's 
theorem holds (reference 4, p. 311): 

u(x, t) = f IK(x, t; r, s)[u(r, s) dr + u,(r, s) ds] 
ABeD 

- K,(x, t; r, s)u(r, s) ds}, (15) 

where the point P(x, t) is between A and D, in the 
proper sense, Q(r, s) is on the boundary ABCD, and 

K(x, t; r, s) 

= exp [-(x - r)2/4(t - s)J/2(n-)'(t - s)! (16) 

is the fundamental solution of u" = u., associated 
with P(x, t). The segment BC is allowed to shrink 
to a point. 

In this section, it will be assumed that (3 = 1; 
this amounts to passing to a new time variable, 
called t again, which is the old one divided by {3. 

One can introduce new dependent variables, 

u = H- - He, 

v=e""H+, 

(17) 

(18) 

both of which satisfy diffusion equation (8), u being 
defined in the normal region and v in the super­
region (Fig. 3). Let 0 < t < 0 and let Q(r, s) be a 

t 

8 -------------

FIG. 3. (schematic). A I-t-_-__ ~f---lD 

u 

v 
c 

o a X 

4 E. Goursat, Cours d'analyse mathematique III, (Gauthier­
Villars, Paris, 1942), p. 287 et. seq. 
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point on the boundaries of the normal region, AOB, 
or of the super-region, BOCD. In terms of u and v, 
conditions (10) through (14) become 

u(O, s) = 0 (19) 

vr(a,s) = 0, (20) 

u(~(s), s) = - (He - He); v(~(s), s) = He e'''', (21) 

e-a'vr(~(s), s) - Ur(~(S), s) 

v(r, 0) = vo(r) 

= -a e- a
, 1a 

v(p, s) dp, 
, (8) 

= Ho cosh [V(a)(a - r)]/cosh [V(a)a], 

(22) 

(23) 

respectively. The following notations will be used: 
Ur(O, s) = f(s), ur(Hs), s) = g(s), vr(~(s), s) = h(s), 
and v(a, s) = pes). Formula (15) can be applied 
to both u and v. Noticing that dr = 0 along OA 
and CD, ds = 0 along OC, dr = ~(s)ds on OB, 
and using the boundary and initial conditions, 
except (22), one gets 

u(x, t) = - L K(x, t; 0, s)t(s) ds 

+ L {K(x, t; Hs), s)[g(s) - (He - He)~(s)] 

+ K,(x, t;Hs),s)(He - HJl ds, 

and 

-i' vex, t) = {K(x, t; Hs), s)[He ea,,~(s) + h(s)] 

- K,(x, t; ~(s), s)He e'" f ds 

+ { K(x, t; r, O)vo(r) dr 

(24) 

-L K,(x, t; a, s)p(s) ds. (25) 

If x passes to the limits 0 and W) in (24), and to 
W) and a in (25), four integral equations for f(s), 
g(s), h(s), pes), and Hs) are obtained. A fifth equa­
tion derives from (22). These equations will be 
called II, 12 , ••• Is, respectively. They can be solved 
for small t by expanding the unknown functions 
into powers of vt. The following steps must be 
carried out to achieve this. 

Let I/;(s) be a boundary of a domain, such as, 
e.g., OA, OB, or CD in Fig. 3, and let x ~ I/;(t) ± 
denote the fact that x passes to the limit I/;(t) from 
right (+) or left (-). As x ~ 0+ and W) - in (24), 
and x ~ W) + and a - in (25), certain relations 

are needed for treating single- and double-layer 
integrals. Denote these two types of integrals by 

S"[q](x, t) = L K(x, t; I/;(s) , s)q(.s) ds, 

D"[q](x, t) = L K,(x, t; I/;(s) , s)q(s) ds, 

respectively. Then, in passing to the limit, the 
following relations hold (reference 5, pp. 6, 7): 

lim S"'[q](x , t) = S"[q]( I/;(t), t), 
x_I/; (0· 

lim D"'[q](x, t) = D"[q](I/;t) , t) ± q(t)/2. 
x-"y(t)"'" 

Equation Is corresponding to (22) contains expres­
sions such as S;[q] and D;[q]. According to reference 
5, (p. 7) they can be transformed as follows: 

S;[q] 

D;[q] 

-D'[q], 

q(O) exp (-x2 /±t) - D'[q~J - 8'[q], 
2 V(7rt) 

using the fact that HO) = O. 
Let K = K(x, t; r, s). With the help of relations 

Kr = -Kx = K· [(x - r)/2(t - s)] 

= K· {[(x - r)2/4(t - S)2] - [1/2(t - s)]\, 

derived from (16), one can rewrite all integrals in 
terms of K only. 

In II through Is, it is useful to replace the inte­
gration variable s by (j = sit, where 0 ::; (j ::; 1. 
Also, new unknown functions can be defined by 

xes) = Hs)/vs, 
cp(s) = v(s)f(s) , 

'Y(s) = V(s)g(s) , 

TJ(s) = V (s)h(s). 

Having made these transformations, the denomina­
tors of the integrands, the denominators of the ex­
ponents in the kernels, and the integration limits, 
of all integrals with respect to (T are independent 
of t (in Is, in order to achieve this, one must also 
multiply all terms by vt). 

In solving II through 15 for small t by power­
series expansion, one can drop the unknown function 
pet) and Eq. 14 (corresponding to x ~ a-) for the 
following reasons. Equations II and I2 are free of 

• 1. I. Kolodner, Commun. Pure Appl. Math. 1, 1 (1956). 
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pes) to begin with. In 13 , the only term containing 
pes) is 

11 exp {-[x(t)-(a/Vt)Y/4(I-0")}[x(t)-(a/Vt)] 
o 4V7r(I-0")l 

X p(tO") dO". 

Assuming !p(s)! bounded for 0 ~ s ~ t and x(t) = 

0(1) as t---70, this integral is smaller than any power 
of t as t ---7 O. The same is true for the terms of Is 
containing pes). On the other hand, if one writes 

ro 

""'" j /2 xes) = £..... XiS , (26) 
i=O 

and similar expansions for cf>(s), 'Y(s), and 1)(s) , and 
if the integrands are expanded with respect to 0" 
and integrated term by term, most integrals of 
11 ,12 ,13 , and 15 have expansions in increasing powers 
of vt. Thus, one can neglect the terms containing 
pes) which do not contribute to any finite power 
of vt. As pet) itself is uninteresting for small t, 
one can drop 14 and is left with four equations and 
four unknowns. 

The only integrals in the new system of equations 
which are not taken with respect to 0" are 

1
a 

\{cosh} - / [(x, t; r, 0) . h [v (a)(a - r)] dr. 
o S111 

They can be evaluated in closed form using the 
normalized error function, 

"'( ) 2 1" -,' d 
'¥ Y = v';;: 0 e 11. 

The values of y which occur are 0(1/ vt) as t ---7 O. 
Thus, for small t one can use the asymptotic ex­
pression of <1>(y), which holds for large y's: 

<1>(y) = 1 - O(e -y' / y). 

As terms O( V (t)e- I
/

t
) are dropped systematically 

in this small-time analysis, one simply has 
<1>(0(1 vt» = 1. 

The solution has been calculated in zero-order 
approximation only. If Xo is for a moment assumed 
known, the zero-order approximations I~, Ig, and I~, 
of I I, 12 , and 13 , respectively, form a linear algebraic 
system of equations for cf>o, 'Yo, and 1)0. The coeffi­
cients are transcendental expressions in Xo which 
can be evaluated in closed form by quadrature, 
using <1>(y) again. The solutions cf>o, 'Yo, and 1)0 can 
then be plugged into I~, the zero-order approxi­
mation of 15 • This yields a transcendental equation 
for Xo ,vhich reduces to 

<1>( /2) = H, - H, 
Xo H, - Eo' (27) 

and from which Xo is obtained by inverse inter­
polation of the error function ct(y) defined above. 
Equation (27) will be discussed in Sec. IV. 

2. Remark on Final Part of Transition 

Under certain conditions, one can predict that 
the transition in the strip should reach the center 
with infinite speed. In fact, assume 

lim [H:(~(t), t) - H:(a, t)] = O. (28) 
/->0 

It is clear that 

lim l a 

H+(x, t) dx = 0, 
/->0 .(1) 

because H+ is bounded and [a - W)] ---70 as t ---7 O. 
Thus, from (11), (13), and (28) it follows that 

lim H:(~(t), t) = lim H:(W), t) = o. (29) 
t~a t_5 

Differentiating (12) with respect to time gives 

dH*(~(t), t)/dt = H:(W), t)~(t) + H~(W), t) = O. 
(30) 

Assume now that 

lim H~(W), t) and lim H~(W), t) 
t----tO t-~Q 

do not vanish simultaneously. Then, it follows from 
(29) and (30) that W) ---7 ro as t ---7 0, that is ~ ---7 a. 
The numerical solutions, obtained by the method 
described in Sec. III, seem to confirm this result 
(Figs. 7, 8, 9). 

3. Limitations of Analytical Approach 

As pointed out before, the analytical derivation 
of (27) requires tedious calculations. Furthermore, 
the result is disappointing because (27) is equivalent 
to the corresponding result for the half-space 
[reference 3, Eq. (65)]. This means that, if there is 
any substantial effect of the finiteness of the specimen 
upon the transition, this effect is not seen initially 
but must show up later. 

In order to study the transition over the full 
time interval 0 ~ t ~ 0 it seems desirable to attack 
the problem numerically by reformulating it in 
terms of finite differences. Such an approach IS 

described in Sec. III. 

III. NUMERICAL SOLUTION 

1. Finite Grid with Variable Time-Step 

The moving-boundary problem formulated in 
Sec. I is to be solved approximately on a finite grid. 
The numerical field distributions will be denoted 
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by H~.k ~ H=(Xi' tk), with integers i, k, 0 ::; i ::; n, 
o ::; k. Let Xo = 0; Xi = ih, 0 < i < n; and Xn = 
nh = a. Applying a method used before by Douglas 
and Gallie,6 a variable time step, 1;, 1 ::; j ::; n, 
is to be determined in such a way that the interface 
passes through the mesh points (Xk' tk), 0 ::; k ::; n, 
where to = 0, and 

k ;::: l. 
j=l 

This means Htk ) is approximated by Xk = kh, and 
o by In (since Xn = a). 

The advantage of this method is that one can 
classify the grid points a priori as left-hand, inter­
face, and right-hand points (i < k, i = k, and 
i > k, respectively) and one knows exactly how 
and where to apply the various difference operators 
and boundary conditions. 

Solving the free boundary problem numerically 
means determining all internal field values of both 
regions and at the right-hand boundary, i = n, 
as well as the unknown time steps. The solution is 
obtained by stepping forward in time. In the first 
(k = 1) and last (k = n) time steps the general 
procedure used for 2 ::; k ::; n - 1 must be slightly 
modified. 

2. General Procedure (2 ::; k ::; n - 1) 

Assume Hi.; and 1; known for all i, and for 
j ::; lc - 1,2 ::; k ::; n - 1 (Fig. 4). 

In passing to the k level one first has to let 
H O •k = H. and H k •k = He because of (10) and (12), 
r('speetively. The diffusion equation (8) and London 
equation (9) can be replaced by the backward­
difference equations 

IHe 
INTERFACE: 
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Lk 

I 

H. 
Lk.! 

t;..+ 
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FIG. 4. Finite grid with variable time step. 

space step and JJ.k as time step (Fig. 4). An approxi­
mation for JJ.k is obtained by drawing an arc of 
parabola through the points (k, k), (k - 1, k - 1), 
and (k - 2, k - 2) and determining the distance 
PQ accordingly. This yields 8JJ.k = 51k - lk-1' At 
Q the field is He. Similarly, Eq. (32) can be formul­
ated at Rand S, using the steps h/2 and lk' The 
field values at A and B are obtained by interpolating 
the known distribution at the (k - 1) level. For 
example: 8HA = 3Hk + 1 •k - 1 + 6Hk •k _ 1 - He. In 
this way the quantities, H p, H H, and H s can be 
expressed by field values in regular grid points and 
by lk' 

The standard three-point forward and backward 
differentiation formulas (reference 7, p. 96) with 
the step h/2, and the trapezoidal rule (reference 7, 
p. 117) with the step h can now be used to write 
(11) and (13) in difference form: 

3H".k - 4Hs + Hn- 1 • k = 0 (33) 

and 

(-3He + 4H H - Hk+l .k) - (3(3He - 4H p + H k - 1 •k ) 

+ (ah
2
/2)(Hc + 2 '%1 Hi,k + Hn.k) = 0, (34) 

(1 ::; i ::; lc - 1) 

and 

(H,+1.k - 2H i . k + H i -l.k)jr/ 

(31) respectively. Relations (31) through (34) form a 
nonlinear algebraic system of n equations whose 
solution gives the (n - 1) unknown field values 
and lk' 

= aH i . k + {3(H i •k - Hi.k-1)/lk 

(lc + 1 ::; i ::; n - 1), (32) 

respectively. This yield as many equations as there 
are unknown internal field values. 

There are two additional unknowns, H n.k and lkt 
and two additional conditions, (11) and (13). As 
these conditions involve differentiation, it is useful 
to formulate (31) once more at P, using h/2 as 

6 J. Douglas, Jr., and T. M. Gallie, .Jr., Duke Math. J. 
22,557 (1955). 

The very nature of the nonlinearity suggests an 
iterative method for solving the equations. The 
system becomes linear if one replaces lk by a given 
trial value, lk1

). If (34) is dropped temporarily, the 
remaining linear system yields the trial field values 
H;~i associated with lk' ). The H;~i are inserted into 
(34); this makes the left side of (34) equal to a 
residue r2). By suitably choosing new trial values, 
l~'), v = 2, 3, '" ,the quantity Irk') I can be made 

7 W. E. Milne, Numerical Calculus (Princeton University 
Press, Princeton, New Jersey, 1949). 
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smaller and smaller. The process stops when Hp)1 < € 

with a suitably small € > o. 
The solution}. = lk of rk(}.) = 0 is first approached 

from below, by letting lk P
) = Vlk-du, v = 1,2, ... ,w, 

where u is, e.g., 5 or 10. In doing this, one assumes 
the solution is suitably smooth in terms of h so that 
lk will not be too different from lk-I' It can be ex­
pected that rk P

) will change sign. Let w be such that 
this happens when v passes from w - 1 to w. Then 
the ~orrect lk is trapped between lk"'-ll and liw

) 

and the final approximation of it can be found by 
repeatedly using the rule of false position. This 
last approximation will be taken for 1k and the 
corresponding field values for H; .k' 

3. First and Last Integration Steps (k = 1, n) 

For k = 1, HO •I = H. and H I •I = He. In lowest 
order approximation one has Ht) = xovt, where xo 
is obtained from (27). This yields a guess l~ = h2/x~ 
of 11 if one lets W~) = h. Then, the trial values 
become lip) = vlVu. On the same basis one finds 
/-Li') = 31i P )/4. For k = 1, HU - 1 = H+(ih, 0) in 
(32), using (14). 

For k = n, relation (34) cannot be applied. In­
stead, one can use a finite difference analog, 3He 

4Hp + H"-l.n = 0, of (29b). 

4. Modifications for w = co 

In this case, (11) is to be replaced by Eq. (19) of 
reference 3: 

(x - Ht)) --+ co. (35) 

The upper limit of the integral in (13) becomes co, 

and, instead of (14), one has [reference 3, (18)]: 

(x ~ 0). (36) 

large finite distance from He). That is, the right­
hand distribution is calculated for k < i < k + m by 
formulating (32) for all these values of i and letting 
H;+m,k = 0 for all k, according to (35). Relation (33) 
must be dropped. A suitable integer m is chosen in 
consideration of a and h in such a way that H:.o = 
Hoe-V(a)mh is sufficiently small. In (34), n must be 
replaced by k + m. A finite transition times does 
not exist in this case. Instead, the calculation is 
carried out for a prescribed number of time steps. 

IV. RESULTS 

The numerical method described in Sec. III, whose 
main feature is the use of variable time steps, was 
applied to the Stefan problem by Douglas and 
Gallie. 6 These authors proved that, in this case, the 
method is convergent and stable. 

The transition problem considered here reduces 
to a Stefan problem only in the limiting case a --+ co, 

that is if the field is identically zero in the super­
conducting region. In order to test the numerical 
method for finite a this method was first applied 
to the problem in a half-space, that is with w = co. 

and the result compared with both the expansion 
for small times and the asymptotic solution for large 
times given for w = co by Cohen and Miranker.3 

All calculations were done with /3 = 1 and a = 1, 
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and it was assumed that 411'0'- j c2 = 1 cm -2sec so 
that, numerically, formula (3) becomes 7'0 = z~, 
where Zo is measured in cm. From a = 1 and Eqs. 
(4) and (5), it follows that a: = w2jd2

• The computa­
tion of the complete solution of one transition 
problem using n = 50 required a few minutes on the 
IBM 7090. With u = 5 (defined in Sec. III.2) , the 
total average number of iterations per time step 
was about 10. 

The agreement between the numerical solution 
and the initial expansion was very good in all cases. 
An example is shown in Fig. 5. The agreement with 
the asymptotic expansion was good in those cases 
where the numerical solution was carried out suffi­
ciently far in time (Fig. 6). There were no signs of 
numerical instability. 

Passing to the finite strip and finite penetration, 
it is interesting to compare the numerical solution 
for this general case with the numerical and analyti­
cal solutions in the half-space, carried over 0 :::; 
z :::; w. The lowest-order terms of the initial ex­
pansions of the interface in the half-space and the 
strip are identical, that is (27) is equivalent with 
Eq. (65) of reference 3. Thus, in the beginning, the 
transition is not much influenced by the width of 
the superconducting specimen. The numerical solu­
tions confirm this result (Fig. 5). However, as Fig. 7 
shows, the two transitions behave in an entirely 
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different way later on. For not too thin strips, the 
total transition time e is much larger than the time 
required for the transition in the half-space to reach 
the same distance. Thus, it is dangerous to try to 
estimate e by extrapolating the analytical solution 
valid for small times and small distances as far as 
Z = w. If with a given external field one increases 
the width of the strip, keeping all other parameters 
constant, the transition time increases very rapidly 
when the width reaches a certain critical range 
(Fig. 8). With a stronger external field, the same 
phenomenon is observed but for much wider strips 
(Fig. 9). 

All interface curves calculated numerically for 
the strip seem to intersect the center line x = a 
of the strip under a right angle. This seems to con­
firm the prediction, made under Sec. II.2., that 
W) ~ 00 as ~ ~ a. 

ERRATUM: Ising Model and 
Excluded Volume Problem 

M. F. SYKES 

Kings College, University of London, London, England 
[J. Math. Phys. 2 52, (1961)] 

Page 61. In the expansion for C(x) for the 
simple cubic lattice the last term should read 
+ 41 934 1.50Xll. 

Notice that this prediction was based upon rela­
tion (29), which in turn depends on assumption (28). 
One could think that, in using (29b) to determine 
ln' according to Sec. III.3., one forces the numerical 
interface curves to become fiat in the last step only. 
This is not the case; the numerical curves begin to 
fiatten out well before reaching the grid-point 
(xn - lt tn - l ), that is while the solution is still calculated 
according to the general procedure described in 
Sec. III.2. 
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tibility of the simple cubic lattice the last two terms 
should read + 8306 862wlO + 38975 286w ll
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